Algebraic Geometry III/IV

Solutions, set 4.

Exercise 6.

(a) For $p=(x, y, z) \in S^{2}$, we have

$$
L_{n p}=\{t(x, y, z)+(1-t)(0,0,1) \mid t \in \mathbb{R}\}=\{(t x, t y, 1+t(z-1)) \mid t \in \mathbb{R}\}
$$

The intersection $L_{n p} \cap V_{1}$ is calculated by equating $1+t(z-1)=0$, i.e., $t=1 /(1-z)$. This leads to

$$
\phi_{1}(x, y, z)=\frac{x}{1-z}+\frac{y}{1-z} i .
$$

Analogously, we obtain

$$
\phi_{2}(x, y, z)=\frac{x}{1+z}-\frac{y}{1+z} i .
$$

(b) We identify $z=u+v i \in \mathbb{C}$ with $p_{0}=(u, v, 0) \in \mathbb{R}^{3}$ and obtain

$$
L_{n p_{0}}=\{(t u, t v, 1-t) \mid t \in \mathbb{R}\} .
$$

The intersection $L_{n p_{0}} \cap S^{2}$ is calculated via

$$
(t u)^{2}+(t v)^{2}+(1-t)^{2}=1
$$

i.e.,

$$
t^{2}\left(u^{2}+v^{2}+1\right)=2 t
$$

Solutions are then $t=0$ (corresponding to the point $n \in S^{2}$) and $t=\frac{2}{1+u^{2}+v^{2}}=\frac{2}{1+|z|^{2}}$ (corresponding to the point $\phi_{1}^{-1}(z) \in S^{2}$). We obtain

$$
\phi_{1}^{-1}(z)=\left(\frac{2 \operatorname{Re}(z)}{1+|z|^{2}}, \frac{2 \operatorname{Im}(z)}{1+|z|^{2}}, \frac{|z|^{2}-1}{1+|z|^{2}}\right) .
$$

Analogously, identifying $z=u+v i \in \mathbb{C}$ with $p_{0}=\left(u,-v, 0 \in \mathbb{R}^{3}\right.$ we obtain

$$
\phi_{2}^{-1}(z)=\left(\frac{2 \operatorname{Re}(z)}{1+|z|^{2}},-\frac{2 \operatorname{Im}(z)}{1+|z|^{2}}, \frac{1-|z|^{2}}{1+|z|^{2}}\right) .
$$

(c) We first check that

$$
\phi_{1}\left(S^{2} \backslash\{n, s\}\right)=\phi_{2}\left(S^{2} \backslash\{n, s\}\right)=\mathbb{C} \backslash\{0\} .
$$

Therefore, we have $\phi_{2} \phi_{1}^{-1}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$. Moreover, we obtain for $z \in \mathbb{C} \backslash\{0\}$

$$
\begin{aligned}
\phi_{2} \circ \phi_{1}^{-1}(z) & =\phi_{2}\left(\frac{2 \operatorname{Re}(z)}{1+|z|^{2}}, \frac{2 \operatorname{Im}(z)}{1+|z|^{2}}, \frac{|z|^{2}-1}{1+|z|^{2}}\right)=\phi_{2}(X, Y, Z) \\
& =\frac{X}{1+Z}-\frac{Y}{1+Z} i .
\end{aligned}
$$

We have $1+Z=\frac{2|z|^{2}}{1+|z|^{2}}$ and, therefore,

$$
\phi_{2} \circ \phi_{1}^{-1}(z)=\frac{1+|z|^{2}}{2|z|^{2}} \frac{2 \operatorname{Re}(z)}{1+|z|^{2}}-\frac{1+|z|^{2}}{2|z|^{2}} \frac{2 \operatorname{Im}(z)}{1+|z|^{2}} i=\frac{\bar{z}}{|z|^{2}}=\frac{1}{z} .
$$

Analogously, we obtain

$$
\phi_{1} \circ \phi_{2}^{-1}(z)=\frac{1+|z|^{2}}{2|z|^{2}} \frac{2 \operatorname{Re}(z)}{1+|z|^{2}}-\frac{1+|z|^{2}}{2|z|^{2}} \frac{2 \operatorname{Im}(z)}{1+|z|^{2}} i=\frac{\bar{z}}{|z|^{2}}=\frac{1}{z} .
$$

In both cases, the coordinate changes are holomorphic functions, finishing the proof that S^{2} is a Riemann surface.

Exercise 7.

(a) We choose $f: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow S^{2}$ as follows:

$$
f([a, b])= \begin{cases}\phi_{1}^{-1}(a / b) & \text { if } b \neq 0 \\ \phi_{2}^{-1}(b / a) & \text { if } a \neq 0\end{cases}
$$

we first have to check whether this map is well defined, i.e., whether $\phi_{1}^{-1}(1 / z)=\phi_{2}(z)$ for all $z \neq 0$:

$$
\begin{aligned}
\phi_{1}^{-1}(1 / z) & =\left(\frac{2 \operatorname{Re}(1 / z)}{1+|1 / z|^{2}}, \frac{2 \operatorname{Im}(1 / z)}{1+|1 / z|^{2}}, \frac{|1 / z|^{2}-1}{1+|1 / z|^{2}}\right) \\
& =\left(\frac{2 \operatorname{Re}(\bar{z})}{|z|^{2}+1}, \frac{2 \operatorname{Im}(\bar{z})}{|z|^{2}+1}, \frac{1-|z|^{2}}{|z|^{2}+1}\right) \\
& =\left(\frac{2 \operatorname{Re}(z)}{1+\mid z 2^{2}},-\frac{2 \operatorname{Im}(z)}{1+|z|^{2}}, \frac{1-|z|^{2}}{1+|z|^{2}}\right) \\
& =\phi_{2}^{-1}(z) .
\end{aligned}
$$

We recall from the lectures that $\mathbb{P}_{\mathbb{C}}^{1}$ is a Riemann surface via the following coordinate charts $\psi_{1}:\{[a, b] \mid b \neq 0\} \rightarrow \mathbb{C}, \psi_{1}([a, b])=a / b$, and $\psi_{2}:\{[a, b] \mid a \neq 0\} \rightarrow \mathbb{C}, \psi_{2}([a, b])=b / a$. Then we have

$$
\phi_{1} \circ f \circ \psi_{1}^{-1}(z)=\phi_{1} \circ f([z, 1])=\phi_{1} \circ \phi_{1}^{-1}(z / 1)=z,
$$

and

$$
\phi_{2} \circ f \circ \psi_{2}^{-1}(z)=\phi_{2} \circ f([1, z])=\phi_{2} \circ \phi_{2}^{-1}(z / 1)=z,
$$

i.e., both compositions are holomorphic. Similarly, we obtain

$$
\phi_{1} \circ f \circ \psi_{2}^{-1}(z)=\frac{1}{z}, \quad \phi_{2} \circ f \circ \psi_{1}^{-1}(z)=\frac{1}{z},
$$

as maps $\mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$. So all maps $\phi_{j} \circ f \circ \psi_{i}^{-1}$ are holomorphic and, therefore, f is a holomorphic map. One checks that the inverse $\operatorname{map} f^{-1}: S^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}$ is given by

$$
f^{-1}(x, y, z)= \begin{cases}{\left[\phi_{1}(x, y, z), 1\right]} & \text { if }(x, y, z) \neq n \\ {\left[1, \phi_{2}(x, y, z)\right]} & \text { if }(x, y, z) \neq s\end{cases}
$$

Since all compositions $\phi_{j} \circ f \circ \psi_{i}^{-1}$ are even biholomorphic and

$$
\left(\phi_{j} \circ f \circ \psi_{i}^{-1}\right)^{-1}=\psi_{i} \circ f^{-1} \circ \phi_{j}^{-1},
$$

we conclude that f^{-1} is also holomorphic.
(b) We first check that $g([a, b]) \in C_{F}$:

$$
F\left(a b, a^{2}, b^{2}\right)=a^{2} b^{2}-a^{2} b^{2}=0
$$

Next, we check that g is bijective by giving a formula for g^{-1} :

$$
g^{-1}([x, y, z])= \begin{cases}{[y, x],} & \text { if } y \neq 0 \\ {[x, z],} & \text { if } z \neq 0\end{cases}
$$

Note first that if $[x, y, z] \in C_{F}$ then we cannot have $y=z=0$ since then we would also have $x^{2}=y z=0$, i.e., $x=0$, which cannot be. In the case $[x, y, z] \in C_{F}$ and $y \neq 0$ and $z \neq 0$ we have

$$
[y, x]=[y z, x z]=\left[x^{2}, x z\right]=[x, z],
$$

so g^{-1} is well defined. We easily check for $[x, y, z] \in C_{F}$ and $y \neq 0$ that

$$
g\left(g^{-1}([x, y, z])\right)=g([y, x])=\left[y x, y^{2}, x^{2}\right]=\left[x, y, x^{2} / y\right]=[x, y, z]
$$

and

$$
g^{-1}(g([y, x]))=g^{-1}\left(\left[y x, y^{2}, x^{2}\right]\right)=\left[y^{2}, y x\right]=[y, x] .
$$

Similarly, we obtain for $[x, y, z] \in C_{F}$ and $z \neq 0$

$$
g\left(g^{-1}([x, y, z])\right)=g([x, z])=\left[x z, x^{2}, z^{2}\right]=\left[x, x^{2} / z, z\right]=[x, y, z]
$$

and

$$
g^{-1}(g([x, z]))=g^{-1}\left(\left[x z, x^{2}, z^{2}\right]\right)=\left[x z, z^{2}\right]=[x, z] .
$$

C_{F} can be covered by the following two coordinate charts:

$$
U_{1}=\left\{[a, b, c] \in C_{F} \mid b \neq 0\right\}, \quad U_{2}=\left\{[a, b, c] \in C_{F} \mid c \neq 0\right\},
$$

$V_{1}=V_{2}=\mathbb{C}$ and $\phi_{1}: U_{1} \rightarrow V_{1}, \phi_{1}([a, b, c])=a / b$, and $\phi_{2}: U_{2} \rightarrow V_{2}$, $\phi_{2}([a, b, c])=a / c$. Then we have

$$
\phi_{1}^{-1}(z)=\left[z, 1, z^{2}\right], \quad \phi_{2}^{-1}(z)=\left[z, z^{2}, 1\right] .
$$

For biholomorphicity of g, we have to check again that all the compositions $\phi_{j} \circ g \circ \psi_{i}^{-1}$ and $\psi_{i} \circ g \circ \phi_{j}^{-1}$ are biholomorphic. (Here ψ_{i} are the coordinate charts from part (a).) We only consider the example $\phi_{1} \circ g \circ \psi_{1}^{-1}$:

$$
\phi_{1} \circ g \circ \psi_{1}^{-1}(z)=\phi_{1} \circ g([z, 1])=\phi_{1}\left(\left[z, z^{2}, 1\right]\right)=z / z^{2}=1 / z,
$$

which, as a map $\mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\}$, is biholomorphic.

