Algebraic Geometry III/IV

Solutions, set 2.

Exercise 3. Using the chain rule when differentiating $k(t)$ we obtain

$$
\begin{aligned}
k^{\prime}(t)=F_{X}(f(t), g(t), h(t)) f^{\prime}(t)+F_{Y}(f(t), g(t) & , h(t)) g^{\prime}(t) \\
& +F_{Z}(f(t), g(t), h(t)) h^{\prime}(t)
\end{aligned}
$$

Setting $t=0$ and recalling that $P=[f(0), g(0), h(0)]$ we conclude that

$$
k^{\prime}(0)=F_{X}(P) f^{\prime}(0)+F_{Y}(P) g^{\prime}(0)+F_{Z}(P) h^{\prime}(0)
$$

Now, if $k^{\prime}(0) \neq 0$, then at least one of $F_{X}(P), F_{Y}(P), F_{Z}(P)$ is not vanishing and, therefore, P is a nonsingular point of C_{F}. Recall that the tangent line L^{\prime} of C_{F} at the nonsingular point P is given by

$$
F_{X}(P) X+F_{Y}(P) Y+F_{Z}(P) Z=0
$$

If we would have $L^{\prime}=L$ then we could conclude $[f(t), g(t), h(t)] \in L^{\prime}$ for all $t \in(-T, T)$ and, therefore, by differentiation

$$
\begin{aligned}
0=\frac{d}{d t} & \left.\right|_{t=0} \underbrace{\left(F_{X}(P) f(t)+F_{Y}(P) g(t)+F_{Z}(P) h(t)\right)}_{=0} \\
& =F_{X}(P) f^{\prime}(0)+F_{Y}(P) g^{\prime}(0)+F_{Z}(P) h^{\prime}(0)=k^{\prime}(0)
\end{aligned}
$$

But this would be in contradiction to $k^{\prime}(0) \neq 0$.
Exercise 4. Let $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$ be a nonsingular projective cubic and

$$
\mathcal{H}_{F}=\operatorname{det}\left(\begin{array}{lll}
F_{X X} & F_{X Z} & F_{X Z} \\
F_{Y X} & F_{Y Y} & F_{Y Z} \\
F_{Z X} & F_{Z Y} & F_{Z Z}
\end{array}\right)
$$

be its Hessian.
(a) First of all, C_{F} and $C_{\mathcal{H}_{F}}$ do not share a common factor for, otherwise, we would have $C_{F} \subset C_{\mathcal{H}_{F}}$, because C_{F} is nonsingular and, therefore, irreducible. But then every point of C_{F} is a flex. A theorem in last term's lecture states that this implies that $\operatorname{deg} C_{F}=1$, which is a contradiction. Recall that $\operatorname{deg} \mathcal{H}_{G}=3(d-2)$ where d is the degree of G. Since $\operatorname{deg} F=3$, we have $\operatorname{deg} \mathcal{H}_{G}=3$, and we can now apply Bezout's Theorem and conclude that $C_{F} \cap C_{\mathcal{H}_{F}}$ is finite and

$$
\sum_{P \in C_{F} \cap C_{\mathcal{H}_{F}}} \operatorname{ind}_{P}\left(F, \mathcal{H}_{F}\right)=3 \cdot 3=9 .
$$

(b) Using the comments in the exercise, we can assume that $P=[0,1,0]$ and

$$
F(X, Y, Z)=Y^{2} Z-X^{3}+(1+\lambda) X^{2} Z-\lambda X Z^{2}
$$

for some $\lambda \in \mathbb{C}-\{0,1\}$. Then we have

$$
\begin{aligned}
F_{X} & =-3 X^{2}+2(1+\lambda) X Z-\lambda Z^{2} \\
F_{Y} & =2 Y Z, \\
F_{Z} & =Y^{2}+(1+\lambda) X^{2}-2 \lambda X Z,
\end{aligned}
$$

and the tangent line L is given by the equation

$$
F_{X}(0,1,0) X+F_{Y}(0,1,0) Y+F_{Z}(0,1,0) Z=0 .
$$

The statement follows now from $F_{X}(0,1,0)=0, F_{Y}(0,1,0)=1$ and $F_{Z}(0,1,0)=1$.
(c) We have

$$
F_{X X}=-6 X+2(1+\lambda) Z, \quad F_{X Y}=0, \quad F_{X Z}=2(1+\lambda) X-2 \lambda Z
$$

and

$$
F_{Y X}=0, \quad, F_{Y Y}=2 Z, \quad F_{Y Z}=2 Y,
$$

and

$$
F_{Z X}=2(1+\lambda) X-2 \lambda Z, \quad F_{Z Y}=2 Y, \quad F_{Z Z}=-2 \lambda X,
$$

and therefore

$$
k(t)=\mathcal{H}_{F}(t, 1,0)=\operatorname{det}\left(\begin{array}{ccc}
-6 t & 0 & 2(1+\lambda) t \\
0 & 0 & 2 \\
2(1+\lambda) t & 2 & -2 \lambda t
\end{array}\right)=24 t .
$$

(d) Choosing $f(t)=t, g(t)=1, h(t)=0$, we have

$$
k(t)=\mathcal{H}_{F}(f(t), g(t), h(t))=24 t
$$

and $k^{\prime}(0)=24 \neq 0$. Moreover, if L denotes the line $Z=0$, which is the tangent line of C_{F} at the nonsingular point $P=[0,1,0]$, then $[f(t), g(t), h(t)] \in L$ for all $t \in \mathbb{R}$, and we can apply Exercise 3 to conclude that P is also a nonsingular point of the curve $\mathcal{H}_{F}=0$ and that L is not the tangent line of $\mathcal{H}_{F}=0$ at P.
(e) Recall that we started with an arbitrary flex P of C_{F}. The result in (d) shows that

$$
\operatorname{ind}_{P}\left(F, \mathcal{H}_{F}\right)=1 .
$$

Therefore all intersection indices in the formula in (a) are equal to 1 and there must be nine summands. But the flexes of C_{F} agree precisely with the points of the intersection $C_{F} \cap C_{\mathcal{H}_{F}}$, so the curve C_{F} must have precisely 9 flexes.

