Algebraic Geometry III/IV

Problems, set 9.

Exercise 12. Let \mathcal{L} be the set of all projective lines in $\mathbb{P}_{\mathbb{C}}^{2}$, i.e.,

$$
\mathcal{L}=\left\{C_{u X+v Y+w Z} \mid(u, v, w) \neq 0\right\} .
$$

There is a natural identification $\Phi: \mathcal{L} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$, given by $C_{u X+v Y+w Z} \mapsto[u, v, w]$. This identification leads to the definition of the dual of a projective algebraic curve: Let $C \subset \mathbb{P}_{\mathbb{C}}^{2}$ is a non-singular algebraic curve and $\mathcal{T}(C)$ be the set of all tangent lines of C. Then the dual of C is the set $C^{*}=\Phi(\mathcal{T}(C)) \subset \mathbb{P}_{\mathbb{C}}^{2}$. Prove the following facts:
(a) Let

$$
A=\left(\begin{array}{lll}
a & d & e \\
d & b & f \\
e & f & c
\end{array}\right)
$$

A projective conic $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$, given by the equation

$$
F(X, Y, Z)=\left(\begin{array}{lll}
X & Y & Z
\end{array}\right) A\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

is non-singular if and only if $\operatorname{det} A \neq 0$.
(b) Let $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$ be a non-singular conic and F as in (a). Let $P=$ $[\alpha, \beta, \gamma] \in C_{F}$. Then the tangent line of C_{F} at P is given by the equation

$$
\left(\begin{array}{lll}
\alpha & \beta & \gamma
\end{array}\right) A\left(\begin{array}{l}
X \\
Y \\
Z
\end{array}\right)=0
$$

(c) Let $C=C_{F}$ be a non-singular conic and F as in (a). Then the dual $C^{*} \subset \mathbb{P}_{\mathbb{C}}^{2}$ of the conic C is again a non-singular conic $C^{*}=C_{G}$, given by the equation

$$
G(X, Y, Z)=\left(\begin{array}{lll}
X & Y & Z
\end{array}\right) A^{-1}\left(\begin{array}{c}
X \\
Y \\
Z
\end{array}\right)
$$

Exercise 13. Find the genus of a non-singular model of the irreducible curve $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$ with $F(X, Y, Z)=3 Y^{4}+4 Y^{3} Z+X^{4}$.

Exercise 14. Find the genus of a non-singular model of the irreducible curve $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$ with $F(X, Y, Z)=Y^{4}-2 X^{2} Y^{2}+X Z^{3}$.

Exercise 15. Find the genus of a non-singular model of the irreducible curve $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$ with $F(X, Y, Z)=X^{5}+3 Y^{5}-5 Y^{3} Z^{2}$.

