Algebraic Geometry III/IV

Problems, set 8. To be handed in on Thursday, 20 March 2014, in the lecture.

Exercise 11. Find the genus of a non-singular model of the irreducible curve $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$ with $F(X, Y, Z)=Y^{5}-X^{5}+X^{2} Z^{3}$. Follow the steps outlined in the lectures, namely:
(a) Check that $[0,1,0] \notin C_{F}$, so that the map $\pi: C_{F} \rightarrow \mathbb{P}_{\mathbb{C}}^{1}, \pi([a, b, c])=$ $[a, c]$ is well defined.
(b) Find the sets $R=C_{F} \cap C_{F_{Y}} \subset \mathbb{P}_{\mathbb{C}}^{2}$ and $B=\pi(R)$. Check that B contains at least 3 points.
(c) Find all singularities of C (they are necessarily a subset of R).
(d) Carry out the blow-up procedures to obtain a non-singular model \widetilde{C}.
(e) Choose a triangulation \mathcal{T} of $\mathbb{P}_{\mathbb{C}}^{1}$ with B as its vertex set and determine the numbers V, E, F of the triangulation of \widetilde{C} induced from the triangulation \mathcal{T}.
(f) Calculate $g(\widetilde{C})$.

