Algebraic Geometry III/IV

Problems, set 6. To be handed in on Wednesday, 5 March 2014, in the lecture.

Exercise 9. This exercise is devoted to the derivation of the Weierstraß normal form of a cubic. Let $C \subset \mathbb{P}_{\mathbb{C}}^{2}$ be a non-singular cubic defined by the polynomial $F \in \mathbb{C}[X, Y, Z]$. We start as in last term's lectures (when we transformed C into C_{F} with $F(X, Y, Z)=Y^{2} Z-X(X-Z)(X-\lambda Z)$ with $\lambda \in$ $\mathbb{C} \backslash\{0,1\}$), and can assume that, after a suitable projective transformation, $P=[0,1,0] \in C_{F}$ is a flex and that $Z=0$ is a tangent line to C_{F} at $[0,1,0]$. Analogously as in last term's lectures, this implies that $F(X, Y, Z)$ has the form

$$
F(X, Y, Z)=(\alpha X+\beta Y+\gamma Z) Y Z+G(X, Z)
$$

where $G(X, Z)$ is homogeneous of degree 3 and $\beta \neq 0$. Moreover, $G(X, Z)$ must contain a non-zero term $a X^{3}$ for, otherwise, Z would be factor of $F(X, Y, Z)$ and C_{F} would be reducible and, therefore, singular. You don't need to prove this first step again. Therefore, we can start with the form

$$
F(X, Y, Z)=a X^{3}+b X^{2} Z+c X Y Z+d X Z^{2}+e Y^{2} Z+f Y Z^{2}+g Z^{3}
$$

with $a \neq 0$ and $e \neq 0$.
(a) Show that the substitution of Y by $Y-\frac{c}{2 e} X-\frac{f}{2 e} Z$ implies vanishing of the coefficients of $X Y Z$ and $Y Z^{2}$, and that no new non-zero terms are generated. So, another projective transformation yields

$$
F(X, Y, Z)=a^{\prime} X^{3}+b^{\prime} X^{2} Z+d^{\prime} X Z^{2}+e^{\prime} Y^{2} Z+g Z^{3}
$$

still with $a^{\prime}, e^{\prime} \neq 0$.
(b) Show that substitution of X by $X-\frac{b^{\prime}}{3 a^{\prime}} Z$ yields the equation

$$
F(X, Y, Z)=a^{\prime \prime} X^{3}+d^{\prime \prime} X Z^{2}+e^{\prime \prime} Y^{2} Z+g^{\prime \prime} Z^{3}
$$

still with $a^{\prime \prime}, e^{\prime \prime} \neq 0$.
(c) Argue, why we can, after another projective transformation, obtain the final equation

$$
\begin{equation*}
Y^{2} Z=4 X^{3}-g_{2} X Z^{2}-g_{3} Z^{3} \tag{1}
\end{equation*}
$$

for the cubic C.
(d) Show that (1) defines a non-singular cubic if and only if $g_{2}^{3}-27 g_{3}^{2} \neq 0$.

Additional remarks to this exercise: The function $j=\frac{g_{2}^{3}}{g_{2}^{3}-27 g_{3}^{2}}$ turns out to be a projective invariant of the Weierstraß normal form. Two normal forms $Y^{2} Z=4 X^{3}-g_{2} X Z^{2}-g_{3} Z^{3}$ of non-singular cubics are projectively equivalent if and only if the corresponding values of j coincide. In particular, there are uncountably many projectively non-equivalent non-singular cubics. The final classification of all cubics (non-singular and singular) looks as follows:
(i) Every non-singular cubic is projectively equivalent to a curve of the type $Y^{2} Z=4 X^{3}-g_{2} X Z^{2}-g_{3} Z^{3}$.
(ii) Every irreducible singular cubic is projectively equivalent to the curve $X^{3}+Y^{3}-X Y Z=0$ (cubic with a nodal singularity) or to the curve $X^{3}-Y^{2} Z=0$ (cubic with a cuspidal singularity).
(iii) Every reducible cubic C is either a conic plus a chord, a conic plus a tangent line, or C consists of three lines L_{1}, L_{2}, L which meet in three different points (triangle), in one common point (triple point), or two or three of the lines L_{j} coincide.

