Algebraic Geometry III/IV

Problems, set 5.

Exercise 8. In this exercise, we introduce a parametrisation for non-singular projective cubics which explains their global topological structures as real 2dimensional tori (genus $g=0$), and which also makes their group structures completely obvious. Students who took "Elliptic Functions III" may find this exercise particularly appealing. This exercise needs a considerable amount of preparation, but it is really worth to work it through, because this exercise gives wonderful insights...

Firstly, we state that every non-singular cubic $C \subset \mathbb{P}_{\mathbb{C}}^{2}$ can be transformed via a projective transformation into a curve C_{F} with

$$
F(X, Y, Z)=Y^{2} Z-4 X^{3}+g_{2} X Z^{2}+g_{3} Z^{3}
$$

where $g_{2}, g_{3} \in \mathbb{C}$ satisfy $g_{2}^{3}-27 g_{3}^{2} \neq 0$ (otherwise C_{F} is not non-singular). This form is called the Weierstraß normal form of C and you will prove this normal form in next week's exercise sheet.

Secondly, there is a parametrisation of C_{F} via the Weierstra $\beta \wp$-function associated to a lattice $\Lambda=\mathbb{Z} \lambda_{1}+\mathbb{Z} \lambda_{2}$ (with $\lambda_{1}, \lambda_{2} \in \mathbb{C}$ linear independent over \mathbb{R}). This function is defined as follows:

$$
\wp(z)=\wp_{\Lambda}(z)=\frac{1}{z^{2}}+\sum_{\omega \in \Lambda \backslash\{0\}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

We will give the parametrisation of C_{F} via $\wp(z)$ very shortly.
Thirdly, we need to inroduce the notion of elliptic functions and mention some basic properties of them: An elliptic function f is a meromorphic function on \mathbb{C} which is doubly periodic with respect to a lattice Λ, i.e.,

$$
f(z+\omega)=f(z) \quad \forall \omega \in \Lambda .
$$

All elliptic functions with respect to a fixed lattice Λ form a \mathbb{C}-vector space. Examples of elliptic functions are $\wp_{\Lambda}(z)$ and its derivative $\wp_{\Lambda}^{\prime}(z)$. They satisfy the following differential equation

$$
\wp_{\Lambda}^{\prime}(z)^{2}=4 \wp_{\Lambda}(z)^{3}-g_{2}(\Lambda) \wp_{\Lambda}(z)-g_{3}(\Lambda),
$$

where

$$
\begin{align*}
& g_{2}(\Lambda)=60 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{4}} \tag{1}\\
& g_{3}(\Lambda)=140 \sum_{\omega \in \Lambda \backslash\{0\}} \frac{1}{\omega^{6}} . \tag{2}
\end{align*}
$$

This differential equation is the key to the parametrisation of C_{F}.
Next we discuss some important basic properties: Let f be an elliptic function with respect to Λ and $\mathcal{F}=\left\{s \lambda_{1}+t \lambda_{2} \mid 0 \leq s, t<1\right\} \subset \mathbb{C}$. (The parallellogram \mathcal{F} is a fundamental domain of the Λ-action on \mathbb{C}.) Let $z_{1}, \ldots, z_{r} \in \mathbb{C}$ be the zeroes of f in \mathcal{F} with multiplicities m_{1}, \ldots, m_{r}. Let $w_{1}, \ldots, w_{s} \in \mathbb{C}$ be the poles of f in \mathcal{F} with multiplicities n_{1}, \ldots, n_{s}. Then we have the following facts:
(i) The number of zeroes of f in \mathcal{F} with multiplicities coincides with the number of poles of f in \mathcal{F} :

$$
N=\sum_{i=1}^{r} m_{i}=\sum_{j=1}^{s} n_{j} .
$$

The number N is called the order of the elliptic function f.
(ii) The positions of zeroes and poles of f in \mathcal{F} with multiplicities are related as follows:

$$
\sum_{i=1}^{r} m_{i} z_{i}-\sum_{j=1}^{s} n_{j} w_{j} \in \Lambda .
$$

In case of the Weierstraß \wp-function, we have an even elliptic function (i.e., $\wp(-z)=\wp(z))$ of order 2 , and with a pole of order 2 at $z=0$. Its derivative \wp^{\prime} is an odd elliptic function (i.e., $\wp(-z)=-\wp(z)$) of order 3 with a pole of order 3 at $z=0$.

Now we return to the above mentioned parametrisation: We learnt in the lectures that $T_{\Lambda}=\mathbb{C} / \Lambda$ is a Riemann surface, namely a real 2-dimensional torus. T_{Λ} has also a natural group structure inherited from the addition of complex numbers. It can also be shown that for any pair $\left(g_{2}, g_{3}\right) \in \mathbb{C}^{2}$ with $g_{2}^{3}-27 g_{3}^{2} \neq 0$ there exists a lattice $\Lambda \subset \mathbb{C}$ such that $\left(g_{2}, g_{3}\right)=\left(g_{2}(\Lambda), g_{3}(\Lambda)\right)$, where $g_{2}(\Lambda)$ and $g_{3}(\Lambda)$ was given above in (1) and (2). The parametrisation of C_{F} is $\Phi: T_{\Lambda} \rightarrow C_{F}$, given by

$$
\Phi(z+\Lambda)= \begin{cases}{\left[\wp_{\Lambda}(z), \wp_{\Lambda}^{\prime}(z), 1\right]} & \text { if } z \notin \Lambda \\ {[0,1,0]} & \text { if } z \in \Lambda .\end{cases}
$$

Below, you will show that Φ is bijective. It can be shown that Φ is even biholomorphic. The aim of this exercise is to show that

$$
\begin{equation*}
\Phi\left(z_{1}+z_{2}+\Lambda\right)=\Phi\left(z_{1}+\Lambda\right)+\Phi\left(z_{2}+\Lambda\right) \tag{3}
\end{equation*}
$$

where " + " on the right hand side is addition in the cubic with $\mathcal{O}=[0,1,0] \in$ C_{F} as the identity element. The relation (3) explains why the geometric construction $P+Q=\mathcal{O} *(P * Q)$ defines, indeed, a commutative group structure on C_{F}. In short, (3) shows that Φ is also an isomorphism between abelian groups. (As an aside, this approach also provides an alternative proof of the associativity law in C_{F}.)

Now we are ready to formulate your tasks. Check the following facts:
(a) The point $\mathcal{O}=[0,1,0] \in \mathbb{P}_{\mathbb{C}}^{2}$ is a flex of C_{F}. Moreover, the tangent line of C_{F} at \mathcal{O} is given by $L_{0}: Z=0$. Therefore, the only intersection point between L_{0} and C_{F} is \mathcal{O} (with intersection multiplicity 3).
(b) Φ maps points of T_{Λ} to points of C_{F} and Φ is injective (here you may use the facts (i) and (ii) above). (In fact, since images of compact sets under continuous maps are compact, and since holomorphic maps are open maps by the Open Mapping Theorem in Complex Analysis, the image $\Phi\left(T_{\Lambda}\right)$ is both open and closed in C_{F}. This implies that the map $\Phi: T_{\Lambda} \rightarrow C_{F}$ is also surjective, since C_{F} is connected.)
(c) Any point $P \in C_{F} \backslash\{\mathcal{O}\}$ is of the form $P=[a, b, 1]$, and we have $\mathcal{O} * P=[a,-b, 1]$.
(d) Any projective line $L \neq L_{0}$ is of the form $L: \alpha X+\beta Y+\gamma Z=0$ with $(\alpha, \beta) \in \mathbb{C} \backslash\{(0,0)\}$. Assume that $L \cap C_{F}$ has three distinct intersection
points $P_{1}, P_{2}, P_{3} \in \mathbb{P}_{\mathbb{C}}^{2}$. Show that the three points $z_{1}, z_{2}, z_{3} \in \mathcal{F}$ with $P_{j}=\Phi\left(z_{j}+\Lambda\right)$ for $j=1,2,3$ satisfy

$$
z_{1}+z_{2}+z_{3} \in \Lambda .
$$

Hint: You may distinguish the two cases

- all three points $P_{1}, P_{2}, P_{3} \in C_{F}$ differ from \mathcal{O},
- one of the three points $P_{j} \in C_{F}$ agrees with \mathcal{O},
and use the fact that $\alpha \wp(z)+\beta \wp^{\prime}(z)+\gamma$ is an elliptic function with only pole in \mathcal{F} at the origin.
(e) Prove (3) for any pair $z_{1}, z_{2} \in \mathcal{F}$ with $z_{1} \neq z_{2}$ and $z_{1}, z_{2} \neq 0$. The other cases for z_{1} and z_{2} can be proved as well, but we do not ask for these proofs here.

