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Algebraic Geometry III/IV

Problems, set 5.

Exercise 8. In this exercise, we introduce a parametrisation for non-singular
projective cubics which explains their global topological structures as real 2-
dimensional tori (genus g = 0), and which also makes their group structures
completely obvious. Students who took ”Elliptic Functions III” may find this
exercise particularly appealing. This exercise needs a considerable amount of
preparation, but it is really worth to work it through, because this exercise
gives wonderful insights...

Firstly, we state that every non-singular cubic C ⊂ P2

C
can be transformed

via a projective transformation into a curve CF with

F (X, Y, Z) = Y 2Z − 4X3 + g2XZ2 + g3Z
3,

where g2, g3 ∈ C satisfy g3
2
− 27g2

3
6= 0 (otherwise CF is not non-singular).

This form is called the Weierstraß normal form of C and you will prove this
normal form in next week’s exercise sheet.

Secondly, there is a parametrisation of CF via the Weierstraß ℘-function
associated to a lattice Λ = Zλ1 + Zλ2 (with λ1, λ2 ∈ C linear independent
over R). This function is defined as follows:

℘(z) = ℘Λ(z) =
1

z2
+

∑

ω∈Λ\{0}

(

1

(z − ω)2
−

1

ω2

)

.

We will give the parametrisation of CF via ℘(z) very shortly.

Thirdly, we need to inroduce the notion of elliptic functions and men-
tion some basic properties of them: An elliptic function f is a meromorphic
function on C which is doubly periodic with respect to a lattice Λ, i.e.,

f(z + ω) = f(z) ∀ω ∈ Λ.
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All elliptic functions with respect to a fixed lattice Λ form a C-vector space.
Examples of elliptic functions are ℘Λ(z) and its derivative ℘′

Λ
(z). They satisfy

the following differential equation

℘′
Λ(z)

2 = 4℘Λ(z)
3 − g2(Λ)℘Λ(z)− g3(Λ),

where

g2(Λ) = 60
∑

ω∈Λ\{0}

1

ω4
, (1)

g3(Λ) = 140
∑

ω∈Λ\{0}

1

ω6
. (2)

This differential equation is the key to the parametrisation of CF .

Next we discuss some important basic properties: Let f be an elliptic
function with respect to Λ and F = {sλ1 + tλ2 | 0 ≤ s, t < 1} ⊂ C.
(The parallellogram F is a fundamental domain of the Λ-action on C.) Let
z1, . . . , zr ∈ C be the zeroes of f in F with multiplicities m1, . . . , mr. Let
w1, . . . , ws ∈ C be the poles of f in F with multiplicities n1, . . . , ns. Then
we have the following facts:

(i) The number of zeroes of f in F with multiplicities coincides with the
number of poles of f in F :

N =

r
∑

i=1

mi =

s
∑

j=1

nj .

The number N is called the order of the elliptic function f .

(ii) The positions of zeroes and poles of f in F with multiplicities are
related as follows:

r
∑

i=1

mizi −

s
∑

j=1

njwj ∈ Λ.

In case of the Weierstraß ℘-function, we have an even elliptic function (i.e.,
℘(−z) = ℘(z)) of order 2, and with a pole of order 2 at z = 0. Its derivative
℘′ is an odd elliptic function (i.e., ℘(−z) = −℘(z)) of order 3 with a pole of
order 3 at z = 0.
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Now we return to the above mentioned parametrisation: We learnt in the
lectures that TΛ = C/Λ is a Riemann surface, namely a real 2-dimensional
torus. TΛ has also a natural group structure inherited from the addition of
complex numbers. It can also be shown that for any pair (g2, g3) ∈ C2 with
g3
2
− 27g2

3
6= 0 there exists a lattice Λ ⊂ C such that (g2, g3) = (g2(Λ), g3(Λ)),

where g2(Λ) and g3(Λ) was given above in (1) and (2). The parametrisation
of CF is Φ : TΛ → CF , given by

Φ(z + Λ) =

{

[℘Λ(z), ℘
′
Λ
(z), 1] if z 6∈ Λ,

[0, 1, 0] if z ∈ Λ.

Below, you will show that Φ is bijective. It can be shown that Φ is even
biholomorphic. The aim of this exercise is to show that

Φ(z1 + z2 + Λ) = Φ(z1 + Λ) + Φ(z2 + Λ), (3)

where ”+” on the right hand side is addition in the cubic with O = [0, 1, 0] ∈
CF as the identity element. The relation (3) explains why the geometric
construction P + Q = O ∗ (P ∗ Q) defines, indeed, a commutative group
structure on CF . In short, (3) shows that Φ is also an isomorphism between
abelian groups. (As an aside, this approach also provides an alternative proof
of the associativity law in CF .)

Now we are ready to formulate your tasks. Check the following facts:

(a) The point O = [0, 1, 0] ∈ P2
C
is a flex of CF . Moreover, the tangent line

of CF at O is given by L0 : Z = 0. Therefore, the only intersection
point between L0 and CF is O (with intersection multiplicity 3).

(b) Φ maps points of TΛ to points of CF and Φ is injective (here you may
use the facts (i) and (ii) above). (In fact, since images of compact sets
under continuous maps are compact, and since holomorphic maps are
open maps by the Open Mapping Theorem in Complex Analysis, the
image Φ(TΛ) is both open and closed in CF . This implies that the map
Φ : TΛ → CF is also surjective, since CF is connected.)

(c) Any point P ∈ CF\{O} is of the form P = [a, b, 1], and we have
O ∗ P = [a,−b, 1].

(d) Any projective line L 6= L0 is of the form L : αX + βY + γZ = 0 with
(α, β) ∈ C\{(0, 0)}. Assume that L∩CF has three distinct intersection
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points P1, P2, P3 ∈ P2
C
. Show that the three points z1, z2, z3 ∈ F with

Pj = Φ(zj + Λ) for j = 1, 2, 3 satisfy

z1 + z2 + z3 ∈ Λ.

Hint: You may distinguish the two cases

– all three points P1, P2, P3 ∈ CF differ from O,

– one of the three points Pj ∈ CF agrees with O,

and use the fact that α℘(z) + β℘′(z) + γ is an elliptic function with
only pole in F at the origin.

(e) Prove (3) for any pair z1, z2 ∈ F with z1 6= z2 and z1, z2 6= 0. The other
cases for z1 and z2 can be proved as well, but we do not ask for these
proofs here.
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