Algebraic Geometry III/IV

Problems, set 4. To be handed in on Wednesday, 19 February 2014, in the lecture.

Exercise 6. The aim of this exercise is to prove that the Riemann sphere

$$
S^{2}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\} \subset \mathbb{R}^{3}
$$

is a one-dimensional complex manifold. We first introduce the coordinate charts via stereographic projections from the north pole and the south pole of S^{2} : Let $n=(0,0,1), s=(0,0,-1) \in S^{2}$. For any two distinct points $p, q \in \mathbb{R}^{3}$ let $L_{p q} \subset \mathbb{R}^{3}$ denote the straight Euclidean line through p and q. Let $U_{1}=S^{2} \backslash\{n\}$ and $U_{2}=S^{2} \backslash\{s\}$. Let $V_{1}=\mathbb{R}^{2} \times\{0\} \cong \mathbb{C}$ via the identification $(x, y, 0) \mapsto z=x+y i$ and $\phi_{1}: U_{1} \rightarrow V_{1}$ be defined by $\phi_{1}(p)=L_{n p} \cap V_{1}$. Let $V_{2}=\mathbb{R}^{2} \times\{0\} \cong \mathbb{C}$ via the identification $(x, y, 0) \mapsto z=x-y i$ and $\phi_{2}: U_{2} \rightarrow V_{2}$ be defined by $\phi_{2}(p)=L_{s p} \cap V_{2}$.
(a) For $(x, y, z) \in S^{2}$, calculate explicitly $\phi_{1}(x, y, z) \in \mathbb{C}$ and $\phi_{2}(x, y, z) \in$ \mathbb{C}.
(b) For $z \in \mathbb{C}$, calculate explicitly the inverse maps $\phi_{1}^{-1}(z) \in S^{2}$ and $\phi_{2}^{-1}(z) \in S^{2}$.
(c) Calculate the coordinate changes

$$
\phi_{2} \circ \phi_{1}^{-1}, \quad \phi_{1} \circ \phi_{2}^{-2}: \mathbb{C} \backslash\{0\} \rightarrow \mathbb{C} \backslash\{0\},
$$

and check that they are holomorphic maps.
This shows that S^{2} is a Riemann surface, since $S^{2}=U_{1} \cup U_{2}$.
Exercise 7. Let M_{1}, M_{2} be two Riemann surfaces. A bijiective map f : $M_{1} \rightarrow M_{2}$ is called a biholomorphic map if both $f: M_{1} \rightarrow M_{2}$ and f^{-1} : $M_{2} \rightarrow M_{1}$ are both holomorphic maps.
(a) Find a biholomorphic map $f: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow S^{2}$, and show that f is biholomorphic.
(b) You learnt in the lectures that every non-singular projective conic is projectively equivalent to $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$ with $F(X, Y, Z)=X^{2}-Y Z$. Show that the map

$$
g: \mathbb{P}_{\mathbb{C}}^{1} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}, \quad g([a, b])=\left[a b, a^{2}, b^{2}\right]
$$

is a biholomorphic map between $\mathbb{P}_{\mathbb{C}}^{1}$ and C_{F}.

