Algebraic Geometry III/IV

Problems, set 2. To be handed in on Wednesday, 5 February 2014, in the lecture.

Exercise 3. Let $C_{F}=\{[a, b, c] \mid F(a, b, c)=0\} \subset \mathbb{P}_{\mathbb{C}}^{2}$ be a projective curve and $P \in C_{F}$. Let $L \subset \mathbb{P}_{\mathbb{C}}^{2}$ be a line through P. Let $f, g, h:(-T, T) \rightarrow \mathbb{C}$ be differentiable functions such that

$$
[f(t), g(t), h(t)] \in L \quad \forall t \in(-T, T)
$$

and $P=[f(0), g(0), h(0)]$, and let $k:(-T, T) \rightarrow \mathbb{C}$ be defined by

$$
k(t)=F(f(t), g(t), h(t)) .
$$

Show the following fact: If $k^{\prime}(0) \neq 0$ then P is a nonsingular point of C_{F} and L is not the tangent line of C_{F} at the point P.

Exercise 4. This exercise leads you through the proof that every nonsingular projective cubic $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$ has precisely 9 different flexes. (In last term's course you saw a proof that C_{F} has at least one flex.)

So assume that $C_{F} \subset \mathbb{P}_{\mathbb{C}}^{2}$ is a nonsingular projective cubic and

$$
\mathcal{H}_{F}=\operatorname{det}\left(\begin{array}{lll}
F_{X X} & F_{X Y} & F_{X Z} \\
F_{Y X} & F_{Y Y} & F_{Y Z} \\
F_{Z X} & F_{Z Y} & F_{Z Z}
\end{array}\right) .
$$

(a) Show first that $C_{F} \cap C_{\mathcal{H}_{F}}$ is finite and that

$$
\sum_{P \in C_{F} \cap C_{\mathcal{H}_{F}}} \operatorname{ind}_{P}\left(F, \mathcal{H}_{F}\right)=9
$$

(b) Let $P \in C_{F}$ be a flex. From last term's lecture we can assume without loss of generality that $P=[0,1,0]$ and that F has the form

$$
F(X, Y, Z)=Y^{2} Z-X(X-Z)(X-\lambda Z)
$$

with $\lambda \in \mathbb{C}-\{0,1\}$ (via a suitable projective transformation). Check that the tangent line L of C_{F} at P is given by $Z=0$.
(c) The points $P_{t}=[t, 1,0]$ lie in the tangent line $L: Z=0$ given in (b), for all $t \in \mathbb{R}$. Calculate $k(t)=\mathcal{H}_{F}\left(P_{t}\right)$ explicitely.
(d) Conclude with the help of Exercise 3 that P is a nonsingular point of the curve $\mathcal{H}_{F}=0$ and that the line $L: Z=0$ cannot be its tangent line.
(e) Use the previous results to show that C_{F} has precisely 9 flexes.

