Algebraic Geometry III/IV

Problems, set 1.

Exercise 1. Prove the following fact: Let $P_{0}, P_{1}, P_{2}, P_{3}$ be four points in $\mathbb{P}_{\mathbb{C}}^{2}$ such that no three of them lie on a common projective line. Then there exists a projective transformation $f: \mathbb{P}_{\mathbb{C}}^{2} \rightarrow \mathbb{P}_{\mathbb{C}}^{2}$ such that $f\left(P_{0}\right)=[1,0,0]$, $f\left(P_{1}\right)=[0,1,0], f\left(P_{2}\right)=[0,0,1]$ and $f\left(P_{3}\right)=[1,1,1]$. In fact, this projective transformation is unique, but you do not need to show this.

Exercise 2. Let P_{1}, \ldots, P_{5} be five different points in $\mathbb{P}_{\mathbb{C}}^{2}$. Prove the following facts:
(a) If no three of these points lie on a common projective line, then there is a unique conic C, containing all five points. Moreover, C is irreducible. You may use Exercise 1 for the proof.
(b) If P_{1}, P_{2}, P_{3} lie on a common projective line L, but P_{4}, P_{5} do not lie on L, then there is also a unique conic C, containing all five points. This time, C is reducible.
(c) If $P_{1}, P_{2}, P_{3}, P_{4}$ lie on a common projective line L, then there are infinitely many conics containing all five points. All these conics are reducible.

