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Abstract

A complex hyperbolic triangle group is the group of complex hyperbolic isometries generated
by complex involutions fixing three complex lines in complex hyperbolic space. Such a group
is called equilateral if there is an isometry of order three that cyclically permutes the three
complex lines. We consider equilateral triangle groups for which the product of each pair of
involutions and the product of all three involutions are all non-loxodromic. We classify all such
groups that are discrete.

1 Introduction

A complex hyperbolic triangle group is a group generated by three complex reflections that fix
complex lines in complex hyperbolic space. Unlike real reflections, complex reflections can be of
arbitrary order. Much of the literature is confined to the case where the reflections have order two.
In this paper we consider that case and in the subsequent paper [13] we consider the case where
the generators have higher order.

The study of complex hyperbolic triangle groups was begun in [6] where ideal triangle groups
were considered. Since then there have been many developments. There have been two strands
to this work. First, following [6], discrete and faithful representations of triangle groups have
been investigated; see [16] for example. On the other hand, there has been the study of discrete
representations where certain group elements are required to be elliptic of finite order; see [3],
[4], [12], [18] for example. These representations are necessarily unfaithful. Schwartz has given
an excellent survey [17] that outlines progress and gives a conjectural overview of what we might
expect. A more recent survey is also contained in Pratoussevitch’s paper [14]. Pratoussevitch also
considers the case where the generators are complex reflections of higher order, which is related to
earlier work of Mostow; see [10] for example. We will treat groups with generators of higher order
in the sequel to this paper [13].

Three complex lines L1, L2 and L3 in complex hyperbolic space form an equilateral triangle if
each pair intersect and if there is a symmetry map J of order 3 in SU(2, 1) so that J(Lj) = Lj+1

(with indices taken cyclically). For j = 1, 2, 3 let Ij be the complex reflection of order 2 fixing Lj .
Then I2 = JI1J

−1 and I3 = JI2J
−1 = J−1I1J . We call the group ∆ = 〈I1, I2, I3〉 an equilateral

triangle group. In this case ∆ is a normal subgroup of Γ = 〈I1, J〉. At first sight, it might appear
that there is a full S3 symmetry group inside SU(2, 1) operating here, but this is only the case
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when ∆ preserves a Lagrangian plane. The symmetry preserving L1 but interchanging L2 and L3

is antiholomorphic. We shall have more to say about this in Section 2.2.
Our starting point is the following theorem, proved by Schwartz in Section 3.3 of [16]:

Theorem 1.1 (Schwartz [16]) Let ∆ = 〈I1, I2, I3〉 be the group of complex hyperbolic isometries
generated by complex involutions Ij each fixing a complex line. Suppose that there is a symmetry
map J of order 3 so that I2 = JI1J

−1 and I3 = J−1I1J . If I1I2 is parabolic and I1I2I3 is elliptic
then ∆ is not discrete.

The main theorem of this paper is to consider equilateral triangle groups ∆ = 〈I1, I2, I3〉 where
I1I2 and I1I2I3 are both elliptic. Clearly I2I3I1 and I3I1I2 are conjugate to I1I2I3 and so are elliptic;
the fact that ∆ is equilateral means that both I2I3 and I3I1 are conjugate to I1I2 and hence are
elliptic; the fact that each Ij is an involution means that I2I1 = (I1I2)

−1 and I3I2I1 = (I1I2I3)
−1,

and so both of these maps are elliptic as well. We classify all such ∆ that are discrete and we find
that there are remarkably few of them. The point is that I1I2 and I1I2I3 should simultaneously have
finite order. We now give a rough statement of our main theorem. For a more precise statement
see Theorem 3.7 and Proposition 4.5.

Theorem 1.2 Let ∆ = 〈I1, I2, I3〉 be the group of complex hyperbolic isometries generated by
complex involutions Ij each fixing a complex line. Suppose that there is a symmetry map J of order
3 so that I2 = JI1J

−1 and I3 = J−1I1J . Suppose that I1I2 and I1I2I3 are both elliptic. Then ∆ is
discrete if and only if one of the following is true:

(i) ∆ is finite;

(ii) ∆ is a normal subgroup of one of Livné’s lattices;

(iii) ∆ is Deraux’s lattice, with I1I2 of order 4 and I1I2I3 of order 10;

(iv) ∆ is the group described in Section 4.2, with I1I2 of order 14 and I1I2I3 of order 14.

There are other possible theorems along these lines. According to Schwartz’s conjectural picture
[17] discreteness of ∆ = 〈I1, I2, I3〉 is controlled by whether I1I2I3 and I1I2I1I3 are non-elliptic (for
equilateral triangle groups, by symmetry I1I2I1I3 is elliptic if and only if each of I2I3I2I1 and
I3I1I3I2 are elliptic). We could have considered the case of equilateral triangle groups where I1I2

and I1I2I1I3 are elliptic of finite order. Either using the formulae of Pratoussevitch [14] or using the
formulae of Section 2.3 we find that tr(I1I2) = |τ |2 − 1 and tr(I1I2I1I3) = |τ2 − τ |2 − 1. Choosing
τ so that |τ | = 2cos(π/n) and |τ2 − τ | = 2cos(π/m) yields groups for which I1I2 has order n and
I1I2I1I3 has order m. From this it is easy to see that if I1I2I3 is loxodromic and I1I2I1I3 is elliptic
then 1 < |τ |2 < 11/3, which is equivalent to 4 ≤ n ≤ 10. Conjecturally, for a given n in this range
these groups are discrete for all sufficiently large values of m; compare Schwartz’s remark just after
Theorem 4.7 of [17]. (See also the second remark on page 8 of [19].) In [18] Schwartz proves the
discreteness of the group of this type with n = 4 and m = 7. A similar proof should work for n = 4
and m ≥ 8. Note that when n = 4 and m = 5 we obtain Deraux’s lattice, in which case I1I2I3 is
elliptic and has order 10.

After finishing this paper, Julien Paupert and I were discussing complex hyperbolic equilateral
triangle groups where the generators have higher order. It turns out that we can use the same
equations to discuss discreteness of these groups. Certain values of τ yield some of Mostow’s groups
from [10] and other values of τ give normal subgroups of Mostow’s groups. This simultaneously
generalises Theorem 1.2 (ii), since Livné’s lattices are examples of Mostow’s groups, and also work
of Sauter [15] on commensurability between Mostow’s groups. There are also sporadic groups when
the generators have higher order. The details may be found in [13].

2



Acknowledgements

This work was carried out during a visit to Université Pierre et Marie Curie (Paris VI) supported
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2 Parameters and traces

In this section we show how to parametrise equilateral complex hyperbolic triangle groups with a
single complex parameter τ and we find the values of τ that correspond to such a group. We then
describe how the properties of the group (for example the type of I1I2 and I1I2I3) vary with τ .
We will try to keep this account as self contained as possible. However, we shall assume a certain
amount of background knowledge of complex hyperbolic geometry. For such background material
on complex hyperbolic space see [5] and for material on complex hyperbolic triangle groups see [17]
or [14].

2.1 Complex reflections

Let L1 be a complex line in complex hyperbolic 2-space H2
C and write I1 for the complex reflection

of order 2 fixing L1. We may lift I1 to a matrix in SU(2, 1). If the polar vector of L1 is n1 then I1

is given by:

I1(z) = −z + 2
〈z,n1〉
〈n1,n1〉

n1. (1)

In Section 3.3.2 of [5], Goldman uses the polar vectors of two complex lines to determine the
geometry of their relative position.

Proposition 2.1 (Goldman [5]) Suppose that L1 and L2 are complex lines in H2
C

with polar
vectors n1 and n2. Let

N (L1, L2) =
〈n1,n2〉〈n2,n1〉
〈n1,n1〉〈n2,n2〉

.

(i) If N (L1, L2) > 1 then L1 and L2 are ultraparallel;

(ii) If N (L1, L2) = 1 then either L1 and L2 are asymptotic or L1 = L2;

(iii) If N (L1, L2) < 1 then L1 and L2 intersect with angle θ where N (L1, L2) = cos2(θ).

We shall be interested in equilateral triangle groups ∆ = 〈I1, I2, I3〉 generated by complex
involutions fixing complex lines L1, L2 and L3. The hypothesis that the triangle is equilateral
means there is a symmetry map J of order 3 in SU(2, 1) so that J(Lj) = Lj+1, where the indices
are taken mod 3. This implies that J(nj) = nj+1 and so

N (Lj , Lj+1) =
〈nj ,nj+1〉〈nj+1,nj〉
〈nj ,nj〉〈nj+1,nj+1〉

=

∣

∣〈J(nj),nj

〉
∣

∣

2

〈nj ,nj〉2
.

2.2 The parameter space

Suppose we are given an equilateral triangle of complex lines L1, L2 and L3 with polar vectors
n1, n2 and n3 satisfying J(nj) = nj+1 where j = 1, 2, 3 taken mod 3. Because J preserves the
Hermitian form, 〈nj ,nj〉 is the same positive real number for each j. We normalise nj so that this
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number is 2. Likewise 〈nj+1,nj〉 = 〈J(nj),nj〉 is the same complex number for each j which we
define to be τ . That is

〈n1,n1〉 = 〈n2,n2〉 = 〈n3,n3〉 = 2, 〈n2,n1〉 = 〈n3,n2〉 = 〈n1,n3〉 = τ. (2)

Let H be the matrix of the Hermitian form, that is 〈z,w〉 = w∗Hz. We define N to be the matrix
whose columns are n1, n2, n3. Then the ijth entry of N∗HN is 〈nj,ni〉 and so

N∗HN =





2 τ τ
τ 2 τ
τ τ 2



 . (3)

Lemma 2.2 Let L1, L2 and L3 be complex lines in H2
C

with polar vectors n1, n2 and n3. Suppose
that the Hermitian products of these vectors satisfy (2). Then the vectors n1, n2 and n3 are linearly
independent if and only if 8 + 2Re (τ3) − 6|τ |2 6= 0.

Proof: We have

8 + 2Re (τ3) − 6|τ |2 = det





2 τ τ
τ 2 τ
τ τ 2



 = det(N∗HN) = det(H)
∣

∣det(N)
∣

∣

2
.

Since det(H) 6= 0 we see that 8 + 2Re (τ3)− 6|τ |2 6= 0 if and only if N is non-singular. This proves
the result. 2

Let us now consider the case where the vectors n1, n2 and n3 are linearly independent. We
consider the other case at the end of the section. Following Mostow, page 214 of [10], we choose
coordinates so that

n1 =





1
0
0



 , n2 =





0
1
0



 , n3 =





0
0
1



 .

In this case, the matrix N (whose columns are the vectors nj) is the identity. Hence, using equation
(3), we see that the Hermitian form must be 〈z,w〉 = w∗Hτz where

Hτ =





2 τ τ
τ 2 τ
τ τ 2



 . (4)

We can immediately write down J and, using (1), the involutions Ij. They are

J =





0 0 1
1 0 0
0 1 0



 , I1 =





1 τ τ
0 −1 0
0 0 −1



 , I2 =





−1 0 0
τ 1 τ
0 0 −1



 , I3 =





−1 0 0
0 −1 0
τ τ 1



 .

From this it is clear that the groups Γ = 〈I1, J〉 and ∆ = 〈I1, I2, I3〉 are completely determined, up
to conjugation, by the parameter τ . However, not all values of τ correspond to complex hyperbolic
triangle groups: it may be that the Hermitian matrix Hτ does not have signature (2, 1). We now
determine this by finding the eigenvalues of Hτ . In this lemma and throughout the paper we write
ω = e2πi/3 = (−1 + i

√
3)/2.

Lemma 2.3 Let Hτ be given by (4) and write τ = t + is. The eigenvalues of Hτ are

2 + τ + τ = 2 + 2t, 2 + τω + τω = 2 − t +
√

3s, 2 + τω + τ ω = 2 − t −
√

3s.
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(2, 1)

(2, 1)

(2, 1)

(3, 0) (1, 2)

(1, 2)

(1, 2)

Figure 1: The parameter space. We have drawn the points corresponding to the groups listed in
Theorem 1.2. For more details of this part of the picture, see Figure 2.

Proof: We observe that eigenvectors for Hτ are





1
1
1



 ,





1
ω
ω



 ,





1
ω
ω



 .

Their eigenvalues are 2 + τ + τ , 2 + τω + τω and 2 + τω + τ ω respectively. 2

Corollary 2.4 The matrix Hτ has signature (2, 1) if and only if

6|τ |2 − τ3 − τ3 − 8 > 0. (5)

Proof: It is easy to check (for example by adding them) that all three eigenvalues cannot be
negative. Thus Hτ has signature (2, 1) if and only if its determinant is negative. That is

0 > (2 + τ + τ)(2 + τω + τω)(2 + τω + τ ω) = 8 + τ3 + τ3 − 6|τ |2.

2

We now describe how the signature of Hτ varies as τ varies in C. There are three lines each of
which is the locus where one of the eigenvalues vanishes. In Figure 1 we have drawn these three
lines. These lines have seven complementary regions in C, which fall into three types:

• The central triangle where all three eigenvalues are positive and so Hτ has signature (3, 0),
that is it is positive definite.
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• Three infinite components each sharing a common edge with the central triangle. In these
regions two eigenvalues are positive and one negative and so Hτ has signature (2, 1). This is
our parameter space.

• Three infinite components that each only abut the central triangle in a point. Here one
eigenvalue is positive and two are negative and so Hτ has signature (1, 2). These correspond
to groups of complex hyperbolic isometries generated by three complex involutions that each
fix a point.

The values of τ satisfying (5) make up our parameter space. This space has three components
related by multiplication by powers of ω = e2πi/3. This ambiguity corresponds to the choice we have
made when lifting symmetry in PU(2, 1) to the corresponding matrix J in SU(2, 1), the triple cover
of PU(2, 1). In other words, the ordered triples {n1, ωn2, ωn3} and {n1, ωn2, ωn3} correspond to
the same group as {n1, n2, n3}. Hence τ is only defined up to a cube root of unity. Factoring out
by this equivalence, our parameter space is in bijection with one of the three components where
Hτ has signature (2, 1), which we described above. There is a further symmetry of our setup,
namely complex conjugating τ . This corresponds to sending τ = 〈nj+1,nj〉 to τ = 〈nj ,nj+1〉. Up
to conjugation, this preserves I1 and sends J to J−1. In particular, it swaps the roles of I2 and
I3. Thus all the symmetries in S3 (acting on L1, L2 and L3) either preserve τ or send it to τ .
Our parameter space also respects this symmetry. Hence we may restrict our attention to those τ
whose argument lies in [0, π/3]. In fact, this description of the parameter space can be shown to be
a reformulation in terms of τ of Pratoussevitch’s result, Proposition 1 of [14], for our special case.
We will give details of how to pass from τ to Pratoussevitch’s parameters in the next section.

We conclude this section by considering the case where the vectors nj are linearly dependent,
that is when N is singular. Using Lemma 2.2, this implies that

0 = 8 + τ3 + τ3 − 6|τ |2 = (2 + τ + τ)(2 + τω + τω)(2 + τω + τ ω).

It will be convenient to make a choice of which one of these linear factors is zero. In Section 4.1
below it will be useful to suppose that τω + τ ω = −2 and so we focus on that case here. We
shall also explain how to obtain the formulae in the other two cases. We begin with a geometrical
description of the complex lines L1, L2 and L3.

Proposition 2.5 Let L1, L2 and L3 be complex lines in H2
C

with polar vectors n1, n2 and n3.
Suppose that the Hermitian products of these vectors satisfy (2). Then

(i) 8 + 2Re (τ3) − 6|τ |2 = 0 and |τ | < 2 if and only if L1, L2 and L3 have a unique point of
intersection in H2

C
;

(ii) 8 + 2Re (τ3) − 6|τ |2 = 0 and |τ | = 2 if and only if L1, L2 and L3 coincide

(iii) 8 + 2Re (τ3) − 6|τ |2 = 0 and |τ | > 2 if and only if there is a complex line L⊥ in H2
C

that is
orthogonal to each of L1, L2 and L3.

Proof: From Lemma 2.2 we see that 8+2Re (τ3)− 6|τ |2 = 0 if and only the matrix N defined
above is singular. This is true if and only if there exists a non-zero vector z0 so that

0 = N∗Hz0 =





〈z0,n1〉
〈z0,n2〉
〈z0,n3〉



 .

Therefore z0 satisfies
〈z0,n1〉 = 〈z0,n2〉 = 〈z0,n3〉 = 0. (6)
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Hence z0 either corresponds to a common intersection point of L1, L2 and L3 or to the polar vector
of a common orthogonal complex line. Which of these possibilities occurs depends on whether
N (L1, L2) = |τ |2/4 is greater than, equal to or less than 1, using Proposition 2.1. This proves (i)
and (iii).

In order to prove the result, all that remains is to consider the case when |τ | = 2 and to decide
whether the complex lines are asymptotic or coincide. In this case

0 = 8 + 2Re (τ3) − 6|τ |2 = 2Re (τ3) − 16

and so τ3 = 8 and so τ/2 is a cube root of unity. In this case the matrix N has rank 1 and so N∗H
has a two dimensional kernel. The projection of this kernel is L1 = L2 = L3, proving (ii). 2

We can reinterpret Proposition 2.5 in terms of the group ∆ = 〈I1, I2, I3〉. This group fixes
a point of H2

C
, that is it is elementary, if and only if 8 + 2Re (τ3) − 6|τ |2 = 0 and |τ | ≤ 2. If

such a group is discrete then it must be finite. In particular, the case |τ | = 2 corresponds to the
order 2 group where I1 = I2 = I3. On the other hand, ∆ preserves a complex line if and only if
8 + 2Re (τ3) − 6|τ |2 = 0 and |τ | > 2. If such a group is discrete then it is Fuchsian.

When |τ | 6= 2, that is in the cases given by Proposition 2.5 (i) and (iii), we can once again
choose a basis and use this to write down the Hermitian form and matrix representatives for I1,
I2, I3 and J . Suppose that n1, n2, n3 satisfy (2). As in the proof of Proposition 2.5, there exists
z0 satisfying (6). As was indicated in the proof of Proposition 2.5, this vector is negative when
|τ | < 2 and positive when |τ | > 2 (recall we have excluded the case of |τ | = 2). Thus, without loss
of generality, we suppose that

〈z0, z0〉 = |τ | − 2.

Let N ′ be the matrix whose columns are n1, n2, z0. As our Hermitian form is non-degenerate, it
is clear that z0 is not in the span of n1 and n2. Therefore {n1,n2, z0} is a basis of C3 and so N ′ is
non-degenerate. Moreover, if H is the matrix of the Hermitian form then

N ′∗HN ′ =





2 τ 0
τ 2 0
0 0 |τ | − 2



 .

We choose coordinates so that

n1 =





1
0
0



 , n2 =





0
1
0



 , z0 =





0
0
1



 .

Hence the matrix N ′ is the identity, and our Hermitian form is given by the following matrix H ′
τ ,

which only depends on τ :

H ′

τ =





2 τ 0
τ 2 0
0 0 |τ | − 2



 .

Notice that H ′
τ has eigenvalues 2 + |τ |, 2 − |τ | and |τ | − 2 and so it has signature (2, 1) whenever

|τ | 6= 2. Once more, we can use (1) to find I1 and I2. They are

I1 =





1 τ 0
0 −1 0
0 0 −1



 , I2 =





−1 0 0
τ 1 0
0 0 −1



 .
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Using τω + τ ω = −2, one may easily find n3 and this allows us to write down I3 and J :

n3 =





−ω
−ω
0



 , I3 =





1 + τ ω −τω 0
−τω 1 + τω 0

0 0 −1



 , J =





0 −ω 0
1 −ω 0
0 0 ω



 , (7)

Once again, it is clear that the groups Γ = 〈I1, J〉 and ∆ = 〈I1, I2, I3〉 are completely determined
up to conjugation by the parameter τ . In the remaining two cases. namely τω + τω = −2 and
τ +τ = −2 the formulae for n3, I3 and J are obtained from (7) by swapping ω and ω or by replacing
both ω and ω by 1, respectively.

2.3 Traces

We have seen that if τ satisfies (5) then τ corresponds to a group Γ = 〈I1, J〉, in SU(2, 1), with
a equilateral triangle group ∆ = 〈I1, I2, I3〉 as an index three normal subgroup. In this section
we write down the traces of certain elements of Γ in terms of τ . This should be compared to
Theorem 9 of [14] where Pratoussevitch gives (in our language) formulae for the traces of elements
in ∆ that are integer polynomials in |τ |2, τ3 and τ3. We could write down the traces directly from
our expressions for J , I1, I2 and I3. We choose to give a more general argument as this is more
illuminating and is independent of our choice of Hermitian form.

Lemma 2.6 Let A be any element of SU(2, 1). Then

tr(I1A) = −tr (A) + 2
〈A(n1),n1〉
〈n1,n1〉

.

Proof: Using (1) we see that

I1A(z) = −A(z) + 2
〈A(z),n1〉
〈n1,n1〉

n1.

We must find the trace of the matrix corresponding to the linear map T : z 7−→ 〈A(z),n1〉n1.
Writing 〈z,w〉 = w∗Hz and using the fact that this is a complex scalar, we have

〈A(z),n1〉n1 = n1n
∗

1HAz =
(

n1(A
∗Hn1)

∗
)

z.

Hence the matrix of T is n1(A
∗Hn1)

∗. Now if a matrix can be written in the form uv∗ for column
vectors u and v, then its trace is just v∗u. Thus

tr
(

n1(A
∗Hn1)

∗
)

= (A∗Hn1)
∗n1 = n∗

1HAn1 = 〈A(n1),n1〉.

Hence

tr(I1A) = −tr (A) + 2
tr

(

n1(A
∗Hn1)

∗
)

〈n1,n1〉
= −tr (A) + 2

〈A(n1),n1〉
〈n1,n1〉

.

2

Corollary 2.7 Let I1 be a complex involution fixing a complex line L1 with polar vector n1. Let
J ∈ SU(2, 1) be a regular elliptic map of order 3. Then

tr(I1J) = 2
〈J(n1),n1〉
〈n1,n1〉

.
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Proof: This follows directly from the previous lemmas using the fact that, since J is regular
elliptic of order three, its trace is zero. 2

Using equation (2) and the fact that nj+1 = J(nj), an immediate consequence of Corollary 2.7
is that tr(IjJ) = τ . This fact is our justification for naming our parameter τ . The following
theorem is just a restatement of Theorem 6.2.4 of [5]

Proposition 2.8 Let τ be given by (2). Then I1J is regular elliptic if and only if

|τ |4 − 4τ3 − 4τ 3 + 18|τ |2 − 27 < 0.

The curve given by the equality in Proposition 2.8 is a deltoid; see Figure 1. Groups for which
I1J is regular elliptic correspond to points in the interior of this deltoid. Points on the deltoid
correspond to points where I1J is either a complex reflection or is parabolic. Since I1I2I3 = (I1J)3

we can determine the type of I1I2I3 from I1J . (Note that it may be that I1J is regular elliptic and
that I1I2I3 is a complex reflection.)

We now consider I1I2, and hence by symmetry I2I3 and I3I1 as well.

Proposition 2.9 Let L1 and L2 be complex lines in H2
C

with polar vectors n1 and n2 respectively.
Suppose that 〈n1,n1〉 = 〈n2,n2〉 = 2 and 〈n2,n1〉 = τ . Let I1 and I2 denote the complex involutions
fixing L1 and L2. Then

tr(I1I2) = |τ |2 − 1.

Proof: Let z2 and z3 be any distinct vectors on L1 (for example, if the fixed point of J is not
on L1, we could choose z2 = L1 ∩ L3 and z3 = L1 ∩ L2). Then {n1, z2, z3} is a basis for C2,1. We
write n2 in terms of this basis as:

n2 = αn1 + βz2 + γz3.

Since n1 is orthogonal to z2 and z3 then 〈n2,n1〉 = α〈n1,n1〉 and so α = τ/2. Since n1 is a
1-eigenvector for I1 and z2, z3 are both (−1)-eigenvectors we have

n2 =
τ

2
n1 + βz2 + γz3, I1(n2) =

τ

2
n1 − βz2 − γz3.

Adding these two expressions we see that I1(n2) = τn1 − n2. Therefore

〈I1(n2),n2〉 = τ〈n1,n2〉 − 〈n2,n2〉 =
|τ |2
2

〈n2,n2〉 − 〈n2,n2〉.

Hence using Lemma 2.6 we have

tr(I2I1) = −tr(I1) + 2
〈I1(n2),n2〉
〈n2,n2〉

= 1 + |τ |2 − 2 = |τ |2 − 1.

2

If an element of SU(2, 1) with real trace is elliptic then its trace lies in [−1, 3) and conversely
any element of SU(2, 1) whose trace lies in the real interval (−1, 3) is elliptic. If the trace is −1 it
is either elliptic or parabolic. Hence we see that I1I2 is elliptic if and only if |τ | < 2. In Figure 1
we show how the circle |τ | = 2 compares to the deltoid of Proposition 2.8. Furthermore, we can
now see that Pratoussevitch’s parameters [14] may be written in terms of τ as:

r1 = r2 = r3 = |τ |/2, α = arg(τ3).

Using Proposition 2.1 we can, in fact, relate the trace of I1I2 to the relative position of I1 and I2.

9



Corollary 2.10 Let L1 be a complex line in H2
C

with polar vector n1. Let J ∈ SU(2, 1) and write
L2 = J(L1). Let I1 and I2 denote the complex involutions fixing L1 and L2. Then:

(i) If L1 and L2 are ultraparallel then tr(I1I2) > 3;

(ii) If L1 and L2 are asymptotic then tr(I1I2) = 3;

(iii) If L1 and L2 intersect with angle θ then tr(I1I2) = 2 cos(2θ) + 1.

3 When I1I2I3 is elliptic and I1I2 is non-loxodromic

This section is the heart of the paper. We restrict our attention to those groups for which I1I2I3 is
elliptic of finite order and I1I2 is either elliptic of finite order or else parabolic. These are groups for
which τ lies inside or on the deltoid and inside or on the circle in Figure 1. Since they have finite
order, the eigenvalues of I1I2I3 and I1I2 are all roots of unity (in the case where I1I2 is parabolic
then its eigenvalues are all 1). This fact leads to a linear equation in certain cosines of rational
multiples of π. We find all solutions to this equation using a theorem of Conway and Jones [1]. We
then go on to find which of these solutions lie in parameter space, that is, which of the solutions lie
outside the central triangle in Figure 1. As we have already indicated, it suffices to consider those
τ whose argument lies in [0, π/3]. Such values of τ lying outside the central triangle and yet inside
both the deltoid and circle are shown in Figure 2.

3.1 The eigenvalue equation

We now investigate when both I1I2 and I1I2I3 are elliptic of finite order. In fact our proof will be
valid when I1I2 is parabolic and yields a new proof of Theorem 1.1. We know that, I1J (and hence
I1I2I3) is elliptic of finite order if and only if

τ = tr(I1J) = eiα + eiβ + e−iα−iβ , (8)

where α and β are rational multiples of π. Likewise for I1I2. In fact we know slightly more. Since
the intersection of L1 and L2 is a (−1)-eigenvector for each of I1 and I2 it must be a (+1)-eigenvector
for I1I2. Hence the eigenvalues of I1I2 are 1, e2iθ and e−2iθ. That is

|τ |2 − 1 = tr(I1I2) = 2 cos(2θ) + 1, (9)

where θ is a rational multiple of π. From Corollary 2.10 (iii) we see that, geometrically, θ is just
the angle between L1 and L2. If θ = 0 then I1I2 is parabolic (or the identity) and we shall include
this case in our analysis.

We solve equations (8) and (9) by eliminating τ . That is, we seek θ, α, β rational multiples of
π so that

2 cos(2θ) + 2 = |τ |2 = 3 + 2 cos(α − β) + 2 cos(α + 2β) + 2 cos(−2α − β).

Rearranging, this becomes

1

2
= cos(2θ) − cos(α − β) − cos(α + 2β) − cos(−2α − β). (10)

Notice that there is a certain amount of ambiguity in the solutions of this equation. Given one
solution α−β, α+2β and 2α−β we obtain other solutions by a sequence of the following operations:

(i) permuting α − β, α + 2β and −2α − β,

10



(ii) changing the sign of all three of them;

(iii) adding a multiple of 2π to one of them and subtracting the same multiple of 2π from another.

Using the fact that all three angles sum to zero, the net result of these ambiguities is to possibly
complex conjugate τ and/or to multiply τ by a power of ω = e2πi/3. These are precisely the
ambiguities in τ we already know about. For example, adding 2π to α + 2β and subtracting 2π
from −2α− β sends α to α + 2π/3 and β to β + 2π/3. Hence it sends τ to τω. Likewise, swapping
α + 2β and −2α − β sends α to −β and β to −α. This has the effect of sending τ to τ .

The theorem that we use to find all solutions to (10) is the following wonderful theorem due to
Conway and Jones, Theorem 7 of [1]:

Theorem 3.1 (Conway and Jones [1]) Suppose that we are given at most four distinct ratio-
nal multiples of π lying strictly between 0 and π/2 for which some rational linear combination of
their cosines is rational, but no proper subsum has this property. Then this linear combination is
proportional to one of the following:

(a) 1
2 = cos

(

π
3

)

,

(b) 0 = − cos(φ) + cos
(

φ − π
3

)

+ cos
(

φ + π
3

)

where 0 < φ < π
6 ,

(c) 1
2 = cos

(

π
5

)

− cos
(

2π
5

)

,

(d) 1
2 = cos

(

π
7

)

− cos
(

2π
7

)

+ cos
(

3π
7

)

,

(e) 1
2 = cos

(

π
5

)

− cos
(

π
15

)

+ cos
(

4π
15

)

,

(f) 1
2 = − cos

(

2π
5

)

+ cos
(

2π
15

)

− cos
(

7π
15

)

,

(g) 1
2 = cos

(

π
7

)

+ cos
(

3π
7

)

− cos
(

π
21

)

+ cos
(

8π
21

)

,

(h) 1
2 = cos

(

π
7

)

− cos
(

2π
7

)

+ cos
(

2π
21

)

− cos
(

5π
21

)

,

(i) 1
2 = − cos

(

2π
7

)

+ cos
(

3π
7

)

+ cos
(

4π
21

)

+ cos
(

10π
21

)

,

(j) 1
2 = − cos

(

π
15

)

+ cos
(

2π
15

)

+ cos
(

4π
15

)

− cos
(

7π
15

)

.

We claim that we may find all solutions to equation (10) by inspection from this theorem. In
order to see this, observe that by sending φ to π − φ we send cos φ to − cos φ. Thus, by allowing
the angles to lie in (0, π), for each equation in Theorem 3.1 we arrange for all the signs in front
of the cosines to be the same. We then look for three of the angles that (after possibly changing
their sign) add up to a multiple of 2π. Once again, working mod 2π, we adjust the angles so that
they sum to zero. The resulting angles are α − β, α + 2β and −2α − β. The trickiest cases are
those where there are fewer than four angles listed in Theorem 3.1. One then has to use one of the
following identities to reconstruct equation (10):

(k) 1 = cos(0),

(l) 0 = cos
(

π
2

)

,

(m) 0 = cos(φ) + cos(π − φ) for some angle φ.
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Note the identity given in Theorem 3.1 (b) holds for all angles φ ∈ [0, 2π). The condition
0 < φ < π/6 was only there to ensure that the three angles are in (0, π/2). Since we are adding
multiples of π to our angles and changing their sign where necessary, when using Theorem 3.1 (b)
we allow φ to be any angle.

Hence, by inspection, we find the only candidates for α − β, α + 2β, −2α − β solving equa-
tion (10) and we list them in the following table along with θ (we have ordered them so that
α−β < α+ 2β < 2α+ β). From this we find α, β and α+ β. In the last column we indicate which
of the identities (a) to (m) we have used.

2θ α − β α + 2β 2α + β α β α + β

(i) 2π/3 π − φ/2 π 2π − φ/2 π − φ/3 φ/6 π − φ/6 (a), (k), (m)
(ii) φ π/3 − φ π/3 + φ 2π/3 π/3 − φ/3 2φ/3 π/3 + φ/3 (a), (b)
(iii) π/3 π/4 π/2 3π/4 π/3 π/12 5π/12 (a), (l), (m)
(iv) π/5 3π/10 2π/5 7π/10 π/3 π/30 11π/30 (c), (m)
(v) 3π/5 π/10 4π/5 9π/10 π/3 7π/30 17π/30 (c), (m)
(vi) π/2 2π/7 4π/7 6π/7 8π/21 2π/21 10π/21 (d), (l)
(vii) π/2 π/15 11π/15 4π/5 13π/45 2π/9 23π/45 (e), (l)
(viii) π/2 7π/15 17π/15 8π/5 31π/45 2π/9 41π/45 (f), (l)
(ix) π/7 π/21 4π/7 13π/21 2π/9 11π/63 25π/63 (g)
(x) 5π/7 5π/21 19π/21 8π/7 29π/63 2π/9 43π/63 (h)
(xi) 3π/7 11π/21 25π/21 12π/7 47π/63 2π/9 61π/63 (i)

We reiterate that each line in this table is a representative of several equivalent solutions. These
are obtained by permutation, changing sign and adding a multiple of 2π/3 to both α and β. For
example, the solution (iii) also corresponds to the following pair of solutions (reordered so that
β < α):

α = π/3 + 2π/3 = π, β = π/12 + 2π/3 = 3π/4, α + β = 5π/12 + 4π/3 = 7π/4;
α = 2π/3 − π/12 = 7π/12, β = 2π/3 − π/3 = π/3, α + β = 4π/3 − 5π/12 = 11π/12.

We then write down τ = tr(I1J) = eiα + eiβ + e−iα−iβ and tr (I1I2I3) = e3iα + e3iβ + e−3iα−3iβ

using this table. As indicated earlier, the parameters τωj and τωj correspond to the same group
as τ . So in the case of (iii) where τ = eiπ/3 + e−iπ/62 cos(π/4) the two equivalent solutions listed
above yield, respectively:

τ = −1 + i2 cos(π/4) = e2πi/3
(

eiπ/3 + e−iπ/62 cos(π/4)
)

,

τ = eiπ/3 − e−iπ/62 cos(π/4) = e2πi/3
(

e−iπ/3 + eiπ/62 cos(π/4)
)

.

Evaluating τ from each line in the table gives the following result. We have kept the same
labelling (i) to (xi) as in the table.

Proposition 3.2 Suppose that I1I2 and I1I2I3 are both elliptic of finite order (or possibly I1I2 is
parabolic). Up to complex conjugating τ and multiplying by a power of ω, then one of the following
is true:

(i) τ = −e−iφ/3 for some angle φ that is a rational multiple of π;

(ii) τ = e2iφ/3 + e−iφ/3 = eiφ/6 2 cos(φ/2) for some angle φ that is a rational multiple of π;

(iii) τ = eiπ/3 + e−iπ/6 2 cos(π/4);

(iv) τ = eiπ/3 + e−iπ/6 2 cos(π/5);
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(v) τ = eiπ/3 + e−iπ/6 2 cos(2π/5);

(vi) τ = e2πi/7 + e4πi/7 + e8πi/7;

(vii) τ = e2πi/9 + e−iπ/9 2 cos(2π/5);

(viii) τ = e2πi/9 + e−πi/9 2 cos(4π/5);

(ix) τ = e2πi/9 + e−iπ/9 2 cos(2π/7);

(x) τ = e2πi/9 + e−iπ/9 2 cos(4π/7);

(xi) τ = e2πi/9 + e−iπ/9 2 cos(6π/7).

Observe that the first two cases of the above theorem include various elementary groups:

• Putting φ = 0 in (i) we obtain τ = −1 which yields the elementary group of order 6 where
J = I1I2. Multiplying by ω, we see that this value of τ is equivalent to τ = eiπ/3.

• Putting φ = 0 in (ii) we obtain τ = 2 which yields the elementary group of order 2 where
I1 = I2 = I3.

• Putting φ = π/2 in (ii) gives τ = eπi/3(1 − i).

These three groups will be important for our discussion of Theorem 3.7 (i) below. We shall discuss
elementary groups in more detail in Section 4.1. Moreover, it is clear that the only solution with
θ = 0 involves setting φ = 0 in part (ii). This gives a new proof of Schwartz’s theorem, Theorem
1.1.

3.2 Solutions in parameter space

We now consider the values of τ found in Proposition 3.2 and we check which of them satisfy the
conditions of Corollary 2.4. In other words, we find which of them lies in one of the regions in
Figure 1 where the signature is (2, 1). Note that since |τ | ≤ 2 the only possibilities are that Hτ has
signature (2, 1) or (3, 0). We state our results in terms of the signature of Hτ . First, for τ given
in part (i) Hτ has signature (3, 0) unless τ = −1 (or −ω or −ω), when Hτ is degenerate. We now
consider the other cases one by one.

Lemma 3.3 If τ = e2iφ/3 + e−iφ/3 then Hτ has signature (2, 1) if and only if 0 < cos φ < 1 and
signature (3, 0) if and only if −1 ≤ cos φ < 0. When cos φ = 0 or 1 then Hτ is degenerate.

Proof: We have |τ |2 = 2 + 2 cos φ and τ3 = e2iφ + 3eiφ + 3 + e−iφ. Therefore

6|τ |2 − τ3 − τ 3 − 8 = 6(2 + 2 cos φ) − 2(2 cos2 φ + 4cos φ + 2) − 8 = 4 cos φ − 4 cos2 φ.

This is positive when 0 < cos φ < 1 and negative when −1 ≤ cos φ < 0. 2

Lemma 3.4 If τ = e2πi/7 + e4πi/7 + e8πi/7 then Hτ has signature (3, 0).

Proof: We can rewrite τ as (−1 + i
√

7)/2. Thus from Lemma 2.3, the eigenvalues of Hτ are

2 + τ + τ = 1, 2 + τω + ωτ =
5 +

√
21

2
, 2 + τω + τ ω =

5 −
√

21

2
.

These are all positive. 2
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Lemma 3.5 Suppose that τ = eπi/3 + e−πi/62 cos φ for some φ. Then Hτ is degenerate, that is it
has determinant zero.

Proof: We have

τω + τ ω = (−1 + 2i cos φ) + (−1 − 2i cos φ) = −2.

Therefore, using Lemma 2.3 we see that Hτ has an eigenvalue of 0, and hence is degenerate. 2

Lemma 3.6 If τ = e2πi/9 + e−πi/92 cos φ for some φ then Hτ has signature (2, 1) if and only if
cos(3φ) < −1/2 and signature (3, 0) if and only if cos(3φ) > −1/2. If cos(3φ) = −1/2 then Hτ is
degenerate.

Proof: We have

|τ |2 = 1 + 2 cos φ + 4cos2 φ, τ3 = e2πi/3 + eπi/36 cos φ + 12 cos2 φ + e−πi/38 cos3 φ.

Thus

6|τ |2 − τ3 − τ3 − 8 = 6(1 + 2 cos φ + 4cos2 φ) − (−1 + 6 cos φ + 24 cos2 φ + 8cos3 φ) − 8

= −1 + 6 cos φ − 8 cos3 φ

= −1 − 2 cos(3φ).

This is positive if and only if cos(3φ) < −1/2 and negative if and only if cos(3φ) > −1/2. 2

We have shown that the values of τ given in parts (vi), (viii), (x) and (xi) of Proposition
3.2 correspond to values of τ for which Hτ has signature (3, 0). Thus they do not correspond to
groups in SU(2, 1). There are six values of τ where Hτ is degenerate, each of which has the form
τ = eπi/3 + e−πi/62 cos(φ). First, the three values with φ = π/4, π/5, 2π/5 come from parts (iii),
(iv) and (v) of Proposition 3.2. Secondly, there are the three values τ = eiπ/3, 2, eiπ/3(1− i) listed
at the end of Section 3.1 and which correspond to elementary groups. These values correspond to
φ = π/2, π/6, π/3.

We now summarise the results of this section.

Theorem 3.7 Let I1, I2 = JI1J
−1 and I3 = J−1I1J be involutions in SU(2, 1) each fixing a

complex line, where J ∈ SU(2, 1) has order three. Suppose that I1I2 and I1I2I3 = (I1J)3 both have
finite order. If ∆ = 〈I1, I2, I3〉 is discrete then, up to complex conjugating or multiplying by ω or
ω, one of the following is true:

(i) τ = eπi/3 + e−πi/62 cos(2π/n) = eiπ/3(1 − 2i cos(2π/n)) where n = 4, 5, 6, 8, 10 or 12.

(ii) τ = e2iφ/3 + e−iφ/3 where φ is a rational multiple of π in (0, π/2);

(iii) τ = e2πi/9 + e−πi/92 cos(2π/5);

(iv) τ = e2πi/9 + e−πi/92 cos(2π/7).

Note that the cases n = 6 and n = 12 in (i) correspond to the endpoints of the open interval
given in (ii).
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Figure 2: An enlarged view of part of Figure 1 showing the values of τ in Theorem 3.7. Of the groups
from Theorem 3.7 (ii) we have only plotted those that are discrete, as enumerated in Proposition
4.5.

4 The discrete groups

In this section we analyse all the groups from Theorem 3.7. We show that those groups listed in
parts (i), (iii) and (iv) are all discrete and that finitely many of those given in (ii) are discrete. The
parameter values corresponding to discrete groups are all plotted in Figure 2.

4.1 The elementary groups

In this section we consider what happens when τ = eπi/3 + e−πi/62 cos φ = eiπ/3(1− 2i cos φ) where
φ = 2π/n for n = 4, 5, 6, 8, 10 or 12. These are the groups from Proposition 3.2 (iii), (iv), (v)
together with the cases where τ = eiπ/3, τ = 2 and τ = eπi/3(1 − i). These are the six parameter
values listed in Theorem 3.7 (i).

When τ = 2 all three complex lines coincide and so J maps L1 to itself, fixing a single point of
L1. Moreover, I1 and J commute and 〈I1, J〉 is a cyclic group of order six, generated by I1J .

In each case τ satisfies τω + τ ω = −2 which is one of the three linear factors of the equation
6|τ |2−τ3−τ3−8 = 0. Thus, by Lemma 2.2 the polar vectors n1, n2 and n3 are linearly dependent.
In all cases, except for τ = 2, we can write down matrix representatives for I1, I2, I3 and J as was
done at the very end of Section 2.2. These matrices are block diagonal, the upper left hand block
lying in a copy of U(2) (preserving the Hermitian form given by the upper left hand 2× 2 block of
H ′

τ ). We can multiply them by scalars so that the upper left hand block has determinant 1. This
yields

iI1 =





i iτ 0
0 −i 0
0 0 −i



 , ωJ =





0 −ω 0
ω −1 0
0 0 1



 iωI1J =





−2 cos φ − i 2ω cos φ 0
−iω i 0
0 0 −i





where we have used τ = eπi/3(1− 2i cos φ) = −ω + 2iω cos φ. By examining the traces of the upper
left hand blocks of iI1, ωJ and iωI1J we see that they form a dihedral (n = 4), tetrahedral (n = 6),
octahedral (n = 8) or icosahedral (n = 5, 10) group. Therefore 〈I1, J〉 is a finite central extension
of such a group and hence, in each case, is finite
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We remark that in each case tr(IjIj+1) = 4 cos2 φ = 1 + 2 cos(2θ). We could read off the values
of θ from the table given earlier or we can calculate them directly. They are:

φ 4 cos2 φ 2 cos(2θ) 2θ

π/2 0 −1 2π/3

2π/5 (3 −
√

5)/2 (1 −
√

5)/2 3π/5
π/3 1 0 π/2
π/4 2 1 π/3

π/5 (3 +
√

5)/2 (1 +
√

5)/2 π/5
π/6 3 2 0

4.2 The groups with τ = e2πi/9 + e−πi/92 cos(φ).

In this section we consider the equilateral triangle groups corresponding to τ = e2πi/9
(

1−2ω cos φ
)

where ω = e2πi/3 is a cube root of unity and φ = 2π/5 or 2π/7. We remark that when φ = 2π/6
we obtain τ = e2πi/9

(

1 − 2ω cos φ
)

= e2πi/9 + e−πi/3 which is one of the groups from Theorem

3.7 (ii) and is treated in Section 4.3. We want to eliminate the factor of e2πi/9 from our matrix
entries. Therefore we apply the matrix C = diag(e−2πi/9, 1, e2πi/9) to the nj, and hence to the
whole set-up. The images of the polar vectors under C are:

n1 =





e−2πi/9

0
0



 , n2 =





0
1
0



 , n3 =





0
0

e2πi/9



 .

The matrix N whose columns are n1, n2 and n3 is simply C. Therefore, the new Hermitian form,
which we call Hφ, satisfies C∗HφC = Hτ . Clearly C∗ = C−1 and so

Hφ = CHτC
−1 =





2 1 − 2ω cos φ ω − 2ω cos φ
1 − 2ω cos φ 2 1 − 2ω cos φ
ω − 2ω cos φ 1 − 2ω cos φ 2



 .

Obviously, since Hτ and Hφ are conjugate, they have the same eigenvalues. Using Lemma 3.6 we
immediately have

Lemma 4.1 When φ = 2π/5 or φ = 2π/7 the matrix Hφ has signature (2, 1). When φ = 4π/5,
4π/7 or 6π/7 the matrix Hφ has signature (3, 0).

After conjugating by C, the complex involutions are given by

I1 =





1 1 − 2ω cos φ ω − 2ω cos φ
0 −1 0
0 0 −1



 , (11)

I2 =





−1 0 0
1 − 2ω cos φ 1 1 − 2ω cos φ

0 0 −1



 , (12)

I3 =





−1 0 0
0 −1 0

ω − 2ω cos φ 1 − 2ω cos φ 1



 . (13)

The entries of I1, I2 and I3 all have determinant one and lie in the ring Z[ω, 2 cos φ]. It is standard
to write SU(H;O) for the group of unimodular matrices preserving the Hermitian form H whose
entries lie in the ring O. Thus:

16



Lemma 4.2 The group ∆ = 〈I1, I2, I3〉 generated by the matrices given in (11), (12) and (13) is
a subgroup of SU

(

Hφ; Z[ω, 2 cos φ]
)

.

Since ω and 2 cos(2π/n) are both algebraic integers, we see that every element of the ring
Z

[

ω, 2 cos(2π/n)
]

is an algebraic integer in Q
(

ω, 2 cos(2π/n)
)

. The field Q
(

ω, 2 cos(2π/n)
)

is a
totally imaginary quadratic extension of the totally real number field Q

(

2 cos(2π/n)
)

. The following
result (in the case φ = 2π/5) is essentially identical to that given by Deraux in Corollary 2.6 of [3]
and is similar to the proof of Corollary 1.4 of [18].

Proposition 4.3 For φ = 2π/5 or φ = 2π/7 the group SU
(

Hφ; Z[ω, 2 cos φ]
)

is arithmetic and
hence discrete. In particular, ∆ is discrete.

Proof: We give the proof in the case of n = 7. The proof for n = 5 is almost the same; see
also Corollary 2.6 of [3].

The field Q
(

ω, 2 cos(2π/7)
)

is a totally imaginary quadratic extension of the totally real number
field Q

(

2 cos(2π/7)
)

. Let Q(c′) be the totally real number field obtained from any non-trivial Galois
conjugate of c′ of 2 cos(2π/7) and let Q(ω, c′) be a compatible quadratic extension corresponding
to Q(ω, c). The only Galois conjugates of 2 cos(2π/7) are 2 cos(4π/7) and 2 cos(6π/7).

Let H4π/7 and H6π/7 be the Hermitian forms obtained by applying these Galois automorphisms
to H2π/7. From Lemma 4.1 we see that H4π/7 and H6π/7 are positive definite. Therefore the
corresponding groups SU(H4π/7) and SU(H6π/7) are compact.

Let x ∈ Z
[

ω, 2 cos(2π/7)
]

. Then x is an algebraic integer in Q
(

ω, 2 cos(2π/7)
)

. Let x′ and x′′ be
its Galois conjugates in Q

(

ω, 2 cos(4π/7)
)

and Q
(

ω, 2 cos(6π/7)
)

. The map x 7−→ (x, x′, x′′) maps
Z

[

ω, 2 cos(2π/7)
]

to a discrete subset of C3. Hence

SU
(

H2π/7; Z
[

ω, 2 cos(2π/7)
])

× SU
(

H4π/7; Z
[

ω, 2 cos(4π/7)
])

× SU
(

H6π/7; Z
[

ω, 2 cos(6π/7)
])

is discrete. Since SU(H4π/7) and SU(H6π/7) are compact, the image of projection onto the first
factor, namely SU

(

H2π/7; Z
[

ω, 2 cos(2π/7)
])

is also discrete. 2

Note that the groups we eliminated from Proposition 3.2 (viii), (x) and (xi) using Lemma 3.6
are just the Galois conjugates of the two groups we are considering.

Proposition 4.4 The group with τ = e2πi/9 + e−πi/92 cos(2π/5) is Deraux’s lattice.

Proof: We calculate that |τ |2 = 1 + 2 cos(2π/5) + 4 cos2(2π/5) = 2. Hence I1I2 has order 4.
The eigenvalues of I1I2I3 are (e2πi/9)3 = ω, (e−πi/9±2πi/5)3 = ωe±iπ/5. These are the same as the
eigenvalues of I1I2I3 found by Deraux in equation (2.15) of [3]. Thus the groups are the same. 2

We now briefly discuss the group with τ = e2πi/9 + e−πi/92 cos(2π/7). This does not seem to
have previously appeared in the literature. It is easy to show that tr(I1I2) = 1 + 2 cos(π/7) and so
I1I2 has order 14. Furthermore, tr(I1I2I1I3) = 2 cos(π/7) + 2 > 3 and so I1I2I1I3 is loxodromic.
Since I1I2I3 is elliptic, this means that, in the language of [17], ∆ is of Type B; see also Proposition
7.5 of [12] for other discrete, unfaithful groups of Type B. It is not clear whether or not ∆ is the
whole of the lattice SU

(

H7; Z
[

ω, 2 cos(2π/7)
])

. The fact that I1I2I1I3 is loxodromic would indicate
that, in fact, ∆ may not be a lattice. This group merits further investigation.
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4.3 Subgroups of Livné’s lattices

We consider the groups for which τ = e2iφ/3 + e−iφ/3 = eiφ/62 cos(φ/2) for some angle φ ∈ (0, π/2).
Note that we have already treated the cases of φ = 0 and φ = π/2 in Section 4.1. The main result
of this section is

Proposition 4.5 Let τ = e2iφ/3 + e−iφ/3 for some angle φ ∈ (0, π/2). Then the group 〈I1, I1, I3〉
is discrete if and only if φ = 2π/p where p = 5, 6, 7, 8, 9, 10, 12 or 18.

We remark that if p = 6 then I1I2I3 is parabolic and so we are not in the case considered in
Theorem 3.7. In this case it is particularly easy to prove discreteness and we include it for complete-
ness. As we remarked in Section 4.2, when p = 6 we can write τ = e2πi/9(1−2ω cos φ) = e2πi/9(1−ω).
We can then conjugate I1, I2 and I3 into the forms (11), (12) and (13) respectively. These matrices
all have entries in the ring of Eisenstein integers Z[ω], as does every matrix in ∆ = 〈I1, I2, I3〉.
Since Z[ω] is a discrete subring of C we see that ∆ is discrete; see [4] for a more detailed discussion
of this group.

We begin by showing that if φ does not take one of the values listed in Proposition 4.5 then
∆ = 〈I1, I2, I3〉 cannot be discrete. We do this by showing that the subgroup 〈I1, I1I2I3〉 of ∆ is
not discrete for these values of τ . In this discussion we exclude the case of φ = π/3 (that is p = 6)
which we have already discussed.

We can see from line (ii) of the table given given in Section 3.1 that the eigenvalues of I1J are
eiα = ei(π−φ)/3, eiβ = e2iφ/3 and e−i(α+β) = ei(−π−φ)/3. Hence the eigenvalues of I1I2I3 = (I1J)3

are e3iα = −e−iφ, e3iβ = e2iφ and e−3i(α+β) = −e−iφ. Therefore in this case I1I2I3 has a repeated
eigenvalue and so is a complex reflection with rotation angle π − 3φ; it cannot be parabolic as it
is the cube of an elliptic map. (Note that when φ = 2π/6 then I1J has a repeated eigenvalue and
is parabolic, as is I1I2I3.) By examining the eigenvectors, one can show that when φ < 2π/6 then
I1I2I3 is complex reflection in a complex line and when φ > 2π/6 then I1I2I3 is complex reflection
in a point. We will give the details in the former case. The latter case is almost identical.

Lemma 4.6 Let τ = e2iφ/3 + e−iφ/3 with 0 < φ < π/3. Let L1 and L123 be the complex lines fixed
by I1 and I1I2I3 respectively. These complex lines are ultraparallel and their common orthogonal L⊥

is preserved by the group 〈I1, I1I2I3〉. This group acts on L⊥ as the index 2 holomorphic subgroup
of the group generated by reflections in the sides of a hyperbolic triangle with angles π/2, φ/2,
(π − 3φ)/2.

Proof: Since I1 and I1I2I3 are complex reflections, they preserve all complex lines orthogonal
to L1 and L123, respectively. Suppose that L1 and L123 are not ultraparallel. Let their intersection
be z. Then z is fixed by I1 and by I1I2I3. Hence it is also fixed by I2I3 and so must be L2 ∩ L3.
In other words, z is fixed by I1, I2 and I3 and hence the group must be elementary. This is a
contradiction to Lemmas 2.2 and 3.3.

Hence L1 and L123 are ultraparallel. Their common orthogonal is preserved by I1 and I1I2I3

which act as rotations through angles π and π − 3φ respectively. Moreover L⊥ is preserved by I2I3

and so its polar vector must be an eigenvector of I2I3. The eigenvalues of I2I3 corresponding to
positive vectors are eiφ and e−iφ. Hence I2I3 acts on L⊥ as a rotation through φ. 2

In the case where π/3 < φ < π/2 then I1I2I3 is complex reflection in a point. The complex line
L⊥ is now the complex line through this point orthogonal to L1. A similar argument shows that
〈I1, I1I2I3〉 acts on L⊥ as the index 2 holomorphic subgroup of the group generated by reflections
in the sides of a hyperbolic triangle with angles π/2, φ/2, (3φ − π)/2. We can now use plane
hyperbolic geometry to complete the proof of Proposition 4.5.
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Proposition 4.7 Let τ = e2iφ/3 + e−iφ/3 with 0 < φ < π/2 and φ 6= π/3. The group 〈I1, I1I2I3〉
is discrete if and only if φ = 2π/p for p = 5, 7, 8, 9, 10, 12 or 18.

Proof: We consider the subgroup 〈I1, I1I2I3〉 and its action on L⊥. This group is generated
by two elliptic maps whose product is also elliptic. In Theorem 2.3 of [8], Knapp has characterised
when such a group is discrete. Our case is particularly easy because I1 has order 2 and so one of
the angles in our triangle is a right angle. Hence if 〈I1, I1I2I3〉 is discrete then we are in Case I or
Case IV of Knapp’s theorem. In other words either φ/2 = π/p and |π − 3φ|/2 = π/d or else one of
φ/2 and |π − 3φ|/2 equals π/m and the other equals 2π/m for some odd integer m. In fact, if we
solve for m in the last case we see that either m = 10 or m = 14, neither of which is odd. Therefore
we must have φ = 2π/p and |π − 3φ| = π|p − 6|/p = 2π/d. The values of p in the proposition are
precisely those (with 2π/p < π/2) for which 2p/|p − 6| is an integer d. 2

This shows that when φ is not one of the given values then the group ∆ is not discrete. It remains
to show that the values of φ listed in Proposition 4.5 do indeed correspond to discrete groups. This
follows immediately from the following result and will complete the proof of Proposition 4.5.

Proposition 4.8 (Corollary 7.4 of [12]) Let τ = e2iφ/3 + e−iφ/3. When φ = 2π/p for p = 5, 6,
7, 8, 9, 10, 12 or 18 the group ∆ = 〈I1, I2, I3〉 is discrete. Moreover, when p = 5 this group is a
cocompact lattice in SU(2, 1), when p = 6, 7, 8, 9, 10, 12 or 18 it is geometrically infinite.

We now give a brief discussion of how one might prove Proposition 4.8. In [12], this result is
proved by demonstrating that, for such φ, the group ∆ is a normal subgroup of one of the lattices
first described by Livné [9]. There are several ways to show that Livné’s groups are discrete. For
example, fundamental domains for these groups were constructed in [12], and presentations were
given using Poincaré’s polyhedron theorem. Alternatively, one could relate such a group to one of
Mostow’s ball 5-tuples and then use his discreteness criterion ΣINT [11]; see also Theorem 16.1
of [2]. The fact that this criterion precisely characterises discreteness is due to Sauter [15], who
analysed the few remaining cases not treated by Mostow.

Alternatively, for p = 5, 6, 7, 8, 10, 12, 18 we could show that ∆ is arithmetic and hence discrete
using a similar argument to Proposition 4.3. In doing this we use Lemma 3.3 to show that Hτ has
signature (2, 1) if and only if 0 < cos φ < 1. This argument does not work when p = 9. The
Galois conjugates of 2 cos(2π/9) are 2 cos(4π/9) and 2 cos(6π/9). Because cos(4π/9) > 0, Lemma
3.3 implies that the corresponding Hermitian form has signature (2, 1). In fact when p = 9 the
group ∆ is non-arithmetic and, in this case, one must use a geometrical argument.

Furthermore, there are other ways of showing that values of τ listed in Proposition 4.5 are the
only ones of this form that correspond to discrete groups. We could again use Mostow’s ΣINT
condition. A more direct approach would be to use the complex hyperbolic Jørgensen’s inequality
[7] to show that when φ is not one of the angles listed above then ∆ is not discrete.
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