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Abstract: Nonparametric derivative estimation has never attracted much atten-
tion as one gets the derivative estimates as “by-products” from a local polynomial
or spline fit. However, these estimates often suffer from boundary effects and are
very sensitive to outliers. Apart from this, the local polynomial estimators suffer
from a systematic downward bias, as we will demonstrate. This article is intended
to re-establish research interest in derivative estimation, and to guide the user
who needs to work with one of the available packages.
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1 Motivation

Nonparametric estimation of derivatives is important in a variety of dis-
ciplines. Specifically, when considering a regression problem of type yi =
m(xi) + ei, one is often not interested in m(·) itself, but rather in the rela-
tive change dm/dx of m when increasing or decreasing x by a small value
dx. An important special case is when x represents time, in which the 1st
derivative of m has the interpretation of a speed, and the 2nd derivative
of an acceleration, which is of interest in the analysis of growth curves.
However, the importancy of estimating derivatives goes far beyond the end
in itself. Often one relies on asymptotic approximations in order to ob-
tain bias and variance estimates, confidence intervals, optimal bandwidths,
etc., and these expressions usually involve derivatives of m(·), which are
normally unknown and have to be estimated. A further field of application
for derivative estimators are change point problems. For instance, when
analyzing blood lactate data of elite athletes, one is interested in the work-
load at which the lactate level suddenly rises, which can be detected by
finding the maximum of the 2nd derivative (Newell et al., 2005).

2 On nonparametric derivative estimation

There are two main approaches to nonparametric derivative estimation.

Consider firstly local polynomials of degree p. The estimator of the jth

derivative m(j)(x) (0 < j ≤ p) at point x is given by m̂(j)(x) = j!β̂j(x)
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according to Taylor’s theorem, where β̂j(x) is obtained by minimizing
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in terms of the vector (β0(x), . . . , βp(x)). Thereby K is a kernel function
and h the bandwidth controlling the degree of smoothing. Secondly, in
spline smoothing, the usual way of estimating derivatives is to take the
derivatives of the spline estimate. In other words, if m̂(x) is an estimate of

m(x), one considers dj

dxj m̂(x) as an estimator of m(j)(x). Several authors
have pursued this idea, using splines with (Heckman & Ramsay, 2000) or
without penalization.
As these ideas are quite simple, several papers published in the mid-nineties,
particularly originating from the local polynomial smoothing community,
gave the impression that the entire issue of nonparametric derivative es-
timation is solved, and as a result the research activity about this topic
stalled to some extent. This is unfortunate, as most problems are treated
rather cursorily in the literature and many open questions remain. For in-
stance, Ramsay (1998) noted that ‘typically one sees derivatives go wild at
the extremes, and the higher the derivative, the wilder the behavior’, and
that further problems arise when it comes to smoothing parameter (band-
width) selection, where CV and GCV can be ‘poor guides’. In the sequel,
we discuss some of these issues in the framework of a comparative study.

3 Comparison of available routines

For illustration, we consider a data set generated by contaminating the
function m(x) = x + 2 exp(−16x2), x ∈ [−2, 2], with very small Gaussian
noise (σ = 0.1). A moderate outlier at the left boundary with coordinates
(−1.97,−1.75) and a further outlier at (0.95, 0) were added by hand, giving
a total sample size n = 60.

3.1 Local polynomial methods

We start with considering the functions locfit (contained in the homony-
mous package) and locpoly in package KernSmooth. We use the usual
default setting p = j + 1 as theoretically motivated by Fan & Gijbels,
1996, p. 77ff. The bandwidths are chosen such that the curves pass roughly
equally well through the central part of the curve (we used the result of
locfit’s gcvplot for the 2nd derivative, but undersmoothed for the first).
Both functions produce a considerable bias there, which cannot be cured
by modifying the bandwidth as otherwise the outlier and boundary effects
get even worse. In fact, there is a systematic problem with this kind of
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FIGURE 1. Tutorial on behavior of derivative estimators (top: 1st deriv.,
bottom: 2nd deriv.), left: locpoly (dashed), locfit (dashed-dotted); right:
smooth.Pspline (dashed), D1D2 (dashed-dotted).

estimators: Note that the asymptotic bias of the derivative estimate based
on a quadratic fit with bandwidth h is given by

Bias(m̂′(x)|x1, . . . , xn) = c · m′′′(x)h2 + oP (h2)

(c > 0 being a constant depending on kernel moments), which can be
deduced from Fan & Gijbels (1996), Thm 3.1. This implies that, where
m′(·) is concave, the bias is negative, and where m′(·) is convex, the bias
is positive. Hence, concave parts of the derivative will be pulled down and
convex parts will be pulled up. As the concave part will usually (but not
necessarily in a mathematical sense) correspond to positive and the convex
part to negative derivatives, we can speak of a downward smoothing bias

similar as observed by Stoker (1993) for density derivative estimation. This
bias, clearly visible in the left panel of Fig. 1, tends to increase with the
derivative order j; one reason is that the necessary bandwidth h (appearing
in the bias generally as a factor hp+1−j) increases with j. The smoothing
bias diminishes when setting p = j + 2 as suggested by Ruppert (1997), at
the expense of increased outlier and boundary effects (not shown).

3.2 Spline based methods

We consider here for comparison the functions smooth.Pspline (R package
pspline) and D1D2 (sfsmisc), both using penalized smoothing splines. The
latter is restricted to cubic splines, whereas we use for the former a quintic
and septic spline for the 1st and 2nd derivative, respectively (Ramsay,
1998). The smoothing parameter is selected for smooth.Pspline using the
built-in GCV routine, and for D1D2 such that the fits pass equally well
through the central part. Both fits are much less biased than the local
polynomial estimators, and more stable at the left boundary.
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4 Conclusion

In the conference, we extend this study to include comparisons of the R
packages lokern, lpridge (local), and SemiPar (splines). Given the overall
stability, functionality, and performance (assessed through a small simula-
tion study), our favorites are rather among the spline based methods; in
particular pspline and SemiPar work generally quite well and offer sev-
eral interesting options (notably, SemiPar is, apart from locfit, the only
package featuring confidence bands). However, there is a general lack of ro-

bust derivative estimators. Further, smoothing parameter selection tools are
in all packages based on optimizing the estimate of the regression function

and not of the derivative, which can lead to serious undersmoothing (Jar-
row et al., 2004). Function D1D2 at least addresses this problem by adding
a ”fudge” offset to the GCV-selected smothing parameter. As a brief guide,
the capacities of the packages investigated are summarized below:

Package version function jmax Smooth. Par.
locfit 1.5-3 locfit 2 GCV
KernSmooth 2.22-19 locpoly no limit —
lokern 1.0-4 glkerns 4* plug-in**

lpridge 1.0-3 lpridge 9 —

pspline 1.0-10 smooth.Pspline 4*** CV/GCV
sfsmisc 0.95-9 D1D2 2 GCV
SemiPar 1.0-2 spm 7*** (RE)ML

*if bandwidth selected automatically, then jmax = 2. **a variant lokerns fea-
turing a variable bandwidth is also implemented. ***no formal requirement, but
from our experience it breaks down computationally for higher orders.
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