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Abstract

Assuming a version of the Lichtenbaum conjecture, we apply Brauer-Kuroda
relations between the Dedekind zeta function of a number field and the zeta
function of some of its subfields to prove formulas relating the order of the
tame kernel of a number field F with the orders of the tame kernels of some
of its subfields. The details are given for fields F which are Galois over Q

with Galois group the group Z=2 �Z=2; the dihedral group D2p; p an odd
prime, or the alternating group A4: We include numerical results illustrating
these formulas.
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1. Introduction

There are multiplicative relations between the Dedekind zeta functions of a number
field and of some of its subfields, given by Brauer and Kuroda. The first
nonvanishing coefficient of the Taylor expansion at s D 0 of the Dedekind zeta
function of a number field is related to the class number and the first regulator of
this field. Similarly, the analogous coefficient at s D �1 is related to the order of
the tame kernel and the second regulator of the field (under the assumption of the
Lichtenbaum conjecture).

We give more explicit statements in the case of a number field which is Galois
over Q with Galois group the group Z=2 �Z=2; or the dihedral group D2p; p an
odd prime, or the alternating group A4:

�The first author thanks the organizers of the Conference in Nanjing University for the invitation
and hospitality.
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The paper is organized as follows. In Part I we recall known facts on Dedekind’s
zeta functions and on the leading coefficients of their Taylor expansions at s D 0 and
s D �1: These coefficients depend on the class number, on the order of the tame
kernel and on the corresponding regulators of the field in question.

In Part II we recall the Brauer-Kuroda relations and write them in an explicit
form for several groups, including the groups mentioned above. We show that, for
a biquadratic field, Brauer-Kuroda relations imply a well known expression of the
class number of the field by means of class numbers of its quadratic subfields.

The main results of the paper (Theorems 1, 2 and 3, and Corollaries 1, 2 and
3) give relations between the second regulator, respectively the order of the tame
kernel, of a field F with that of some of its subfields, where F is Galois over Q with
Galois group Z=2�Z=2; D2p; orA4: These results are proved under the assumption
of Conjecture 1, which is a variant of the Lichtenbaum conjecture, combined with
results of Bloch and Suslin.

In Part III we include results of numerical experiments, which give the
(conjectural) values of the second regulator for some fields F of small degree over
Q, and give some evidence for Conjecture 1. We check its compatibility with the
Brauer-Kuroda relations and give an example of two fields of different signature
having the same second regulator numerically.

The first two parts of the paper contain an extended version of the talk given
by the first author at the Conference in Nanjing University on the occasion of
the 70th birthday of Professor Aderemi O. Kuku. The last part written by the
second author presents numerical results giving some evidence for the conjecture
mentioned above.

Part I. Dedekind zeta functions and their values at s D 0 and s D�1

2. The Dedekind zeta function

We recall the basic properties of the Dedekind zeta function �F .s/ of a number field
F of a finite degree n over Q:

It is a meromorphic function on C with a unique single pole at s D 1: It has
zeros in the strip fs 2 C W 0 < Res < 1g and possibly at nonpositive integers
�m; m� 0: The multiplicity of zero at s D�m equals

dm D dm.F /D

�

r1C r2� 1 if mD 0;
r1C r2 if m is even, m> 0;
r2 if m is odd:

(2.1)
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Here r1 D r1.F / is the number of real places of F; and r2 D r2.F / is the number of
complex ones. We have nD ŒF WQ�D r1C 2r2:

The Dedekind zeta function satisfies a functional equation. To write it we need
the following notation. Let

A.F / WD
jd.F /j1=2

2r2�n=2
;

where d.F / is the discriminant of F; and let

ˆ.s/ WD A.F /s�.s=2/r1�.s/r2�F .s/:

Then the following functional equation holds: ˆ.s/Dˆ.1�s/ for s 2C nZ:More
explicitly,

A.F /s�. s
2
/r1�.s/r2�F .s/D A.F /

1�s�.1�s
2
/r1�.1� s/r2�F .1� s/: .2:2/

Since �.s/ has poles at nonpositive integers and �F .s/ has a pole at s D 1; the
formula (2.2) does not make sense for s 2 Z:

To overcome this difficulty we introduce the following notation. For an arbitrary
function f .s/ whose Laurent expansion in a neighborhood of s D s0 is

f .s/D ar.s� s0/
r C arC1.s� s0/

rC1C ��� ; where r 2 Z; ar ¤ 0; .2:3/

we denote by f �.s0/ or by .f .s0//� the first nonvanishing coefficient ar in the
expansion (2.3). Obviously .f1f2/�.s0/D f �1 .s0/ �f

�
2 .s0/:

Then (2.2) implies that

A.F /s
�
�. s

2
/r1
���
�.s/r2

��
.�F .s//

� D A.F /1�s
�
�.1�s

2
/r1
���
�.1�s/r2

���
�F .1�s/

��
;

.2:4/

and this formula holds for every s 2C:

When substituting in (2.4) integer values for s, the following well known
formula will be useful:

��.�n/D
.�1/n

nŠ
for n 2 Z; n� 0:

3. The value of ��F .0/ and the first regulator

It is known (see [17], Theorem 7.3 and (6.8)) that

��F .1/D
2r1.2�/r2

jd.F /j1=2
�
R1.F /h.F /

w1.F /
; .3:1/
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where w1.F / is the number of roots of 1 in F; h.F / is the class number of F; and
R1.F / is the (first) regulator of F:

We recall here its definition (see e.g. [17] or [19]). Let OF be the ring of
algebraic integers in F; and let O�F be its group of units. The Dirichlet unit theorem
says that O�F is the direct sum of the cyclic group of roots of unity in F of order
w1.F /; and a free abelian group of the rank d0 D r1C r2� 1:

Let "1;:::;"d0 be generators of this free abelian group. It is called a system of
fundamental units of F: Let �1;�2;:::;�r1Cr2 be embeddings F !C corresponding
to the archimedean places of F: The absolute value of the determinant

R1.F / WD
ˇ̌
ˇdet

�
ci log j�i ."j /j

�
1�i;j�d0

ˇ̌
ˇ; .3:2/

where ci D 1 if �i is real, and ci D 2 otherwise, does not depend on the choice of
the fundamental units "j ; and on the order of the places �1;�2;:::;�d0 chosen. Since
d0 D r1C r2� 1; the archimedean place �r1Cr2 has been omitted in (3.2).

We call R1.F / the first regulator of F:
From the functional equation (2.4) with s D 0 and (3.1) it follows that

��F .0/D�
R1.F /h.F /

w1.F /
: .3:3/

In particular, if d0 D 0; i.e. if F DQ or F is quadratic imaginary, then R1.F /D 1:
Hence (3.3) for F DQ gives

�.0/D �Q.0/D �
�
Q.0/D�

1

2
;

and for F DQ.
p
�d/; d squarefree and > 0; we have

�F .0/D �
�
F .0/D�

h.F /

w1.F /
;

where w1.F /D 4 for d D 1; w1.F /D 6 for d D 3; and w1.F /D 2 otherwise.
For real quadratic fields F; we have w1.F /D 2; and R1.F /D log".F /; where

".F / > 1 is the fundamental unit of the field F: Thus (3.3) takes the form

��F .0/D�
1
2

log".F / �h.F /:

4. The value of ��F .�1/ and the second regulator

The results presented above concerning the case s D 0 are classical, and there are
known effective algorithms for computing the values of the class number h.F / and
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of the first regulator R1.F / of a number field F: See the computer algebra package
[18], where these algorithms have been implemented. See also [11].

Our knowledge in the next cases s D �1;�2;::: is less complete. In the present
paper we do not discuss the cases s � �2: Instead we concentrate on the case s D
�1:

By analogy with the formula (3.3) in the case s D 0; one can expect that an
analogous formula holds in the case s D�1:

Namely, the first regulator R1.F / will be replaced by the second dilogarithmic
regulator eR2.F / defined below in Section 6. It is the absolute value of the
determinant of a matrix of size d1 D r2.F /:

The class number h.F / of the field F; which is equal to the order of the torsion
subgroup of the group K0F; will be replaced by the order k2.F / of the tame kernel
K2OF of F: See [16] for a definition.

Finally, the number w1.F / of roots of unity in F will be replaced by the number
w2.F / of roots of unity in the compositum of all quadratic extensions of F:

Thus, by analogy with (3.3), (see also remarks before (12.1)) one can state the
following conjecture :

Conjecture 1 For every number field F we have

j��F .�1/j D
eR2.F /k2.F /
w2.F /

: .4:1/

Let us remark that Conjecture 1 is related to the Birch-Tate and the Lichtenbaum
conjectures, see [3]. For totally real fields F we have r2.F /D 0; so eR2.F /D 1 and
(4.1) is the Birch-Tate conjecture.

5. The Bloch group

To define the second (or dilogarithmic) regulator, we need a definition of the Bloch
group B.F / of a number field F (see [10]).

For any subfield E of C let ZŒE� be the free abelian group with generators
Œa�; where a runs over all elements of E distinct from 0 and 1. Let @2 D @2.E/ W
ZŒE�!E�êE� be the homomorphism defined on the free generators by @2.Œa�/ WD
aê.1� a/: Here ê is a modified wedge product satisfying uê.�u/ D 0 in place of
the usual u^uD 0:

Let A.E/ WD ker@2.E/: Then we have the exact sequence

0!A.E/ ����! ZŒE�
@2.E/
����! E�êE� �

����! K2E! 0: .5:1/

Here � is defined by �.aêb/D fa;bg; where fa;bg 2K2F is the Steinberg symbol.
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Let C.E/ be the subgroup of ZŒE� generated by the elements Œa� C Œ1 � a�;
Œa�C Œ1=a�; a¤ 0;1; and by the elements of the form Œa1�C Œa2�C Œa3�C Œa4�C Œa5�;

(called 5-cycles), where a1;:::;a5 2 E� n f1g satisfy aiaiC1 C aiC3 D 1; for i D
1;:::;5; and the indices are taken modulo 5. Hence aiaiC1 ¤ 1:

Obviously, every cyclic permutation of the elements in a 5-cycle gives the same
5-cycle. Moreover, the 5-cycle is determined by its first two arguments: If a1 D
x; a2 D y; then a3 D 1�x

1�xy
; a4 D 1� xy and a5 D 1�y

1�xy
; since xy D a1a2 ¤ 1:

One can easily verify that @2.Œa�C Œ1�a�/D @2.Œa�C Œ1=a�/D 0; and for every
5-cycle b we have @2.b/ D 0: Hence C.E/ � ker@2 D A.E/: Defining the Bloch
group of E by B.E/ WDA.E/=C.E/ we get from (5.1) the exact sequence

0! B.E/ ����! ZŒE�=C.E/ @2.E/
����! E�êE� �

����! K2E! 0:

6. The second regulator eR2.F /

In the definition of the first regulator we considered the matrix of size d0; with
elements which are logarithms of some archimedean norms of fundamental units.
In the case of the second regulator, we consider an analogous matrix of size d1:
The role of the units will be played by the elements of the Bloch group, and the
logarithm will be replaced by the dilogarithm of Wigner and Bloch normalized as
follows:

eD.z/ WD �Im
�
1

�

Z z

1

log.1� t /
t

dt

�
C

arg.1� z/
�

� logjzj:

It differs by the factor 1
�

from the original one D.z/ (see [3], Corollary 6.1.2).
It is a real analytic function eD W C ! R satisfying eD.z/ D �eD.z/; where z is

the complex conjugate of z: Hence eD vanishes on R:

The mapping eD can be extended by linearity to a homomorphism ZŒC�! R;

defined on generators, by eD.Œa�/ WD eD.a/ for a 2C: It can be proved that eD.b/D 0
for every element b 2 C.E/: Hence eD induces a homomorphism

eD W ZŒE�=C.E/!R; where E �C;

called also the dilogarithm.
Now let us return to the number field F: Let �j ; j D 1;2;:::;r2 be the complex

places of F:
Then eDj WD eD ı �j are homomorphisms ZŒF �=C.F /! R for j D 1;2;:::;r2:

Collecting them we get a homomorphism D W ZŒF �=C.F /! Rr2 defined by D WD

.eD1;:::;eDr2/: Since B.F / is a subgroup of ZŒF �=C.F /; we can restrict D to this
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subgroup. It turns out that D.B.F // is a lattice ƒ2.F / of maximal rank in Rr2 : We
define the second dilogarithmic regulator eR2.F / as the covolume of this lattice.

In other words, if for some b1;:::;br2 2 B.F / the vectors D.b1/;:::;D.br2/ 2

Rr2 generate the lattice ƒ2.F /; then

eR2.F /D jdet.eD.�j .bi //1�i;j�r2 /j:

Part II. Brauer–Kuroda relations

7. Brauer–Kuroda relations

R. Brauer [5] and S. Kuroda [15] have independently given multiplicative relations
between the zeta function of a number field and zeta functions of some of its
subfields.

Let F=k be a Galois extension of number fields with the Galois group G: Then
the following multiplicative relation holds.

For every cyclic subgroup H of G; let

c.H/ WD
1

.G WH/

X

H�-cyclic
H �H� �G

�
�
jH�=H j

�
;

where � is the Möbius function.
Then, writing FH for the fixed field of H in F , we have

�k.s/D
Y

H -cyclic
H �G

�
c.H/

FH
.s/: .7:1/

In what follows we usually assume that k D Q; so that �k D � is the Riemann zeta
function.

Substituting s D 0 in (7.1), in view of (3.3), we get multiplicative relations
between class numbers and the first regulators of corresponding fields. There are
many papers devoted to this subject.

When we substitute s D �1; and apply Conjecture 1, we get conjectural
relations between the orders of tame kernels and the second regulators of the fields
in question.

We illustrate this by some simple examples. Let us observe that in fact the
relation (7.1) depends essentially on the structure of the Galois group G of the field
F only, and not on the field F itself.
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Example 1 Let G be the cyclic group of order n: Then there exists a unique cyclic
subgroupH of order d; for every d jn: The subgroupsH� containingH have orders
dd 0; where d 0 jn=d: Consequently

X

H�

�.jH�=H j/D
X

d 0 jn=d

�.d 0/D

(
1; if n=d D 1;

0; otherwise:

Therefore c.H/D 1 if H DG; and c.H/D 0; otherwise. From (7.1) we get

�k.s/D �FG .s/;

which is not interesting, since FG D k:

Example 2 Let G D Z=2�Z=2D h�1;�2i:

Then H0 D h�1�2i; H1 D h�1i; H2 D h�2i; and E D f1g are all cyclic
subgroups of G:

Since H0;H1;H2 are maximal cyclic subgroups, we get

c.Hi /D
1
2
�.1/D 1

2
for i D 0;1;2:

Next,
c.E/D 1

4
.3�.2/C�.1//D�1

2
:

For i D 0;1;2; let Fi WD FHi : Then (7.1) gives

�k.s/D .�F0.s/�F1.s/�F2.s//
1=2�F .s/

�1=2:

Hence
�F .s/�k.s/

2 D �F0.s/�F1.s/�F2.s/: .7:2/

Example 3 Let G D S3:
Let H0 be the subgroup of G of order 3, and let H1;H2;H3 be subgroups of

order 2. They are conjugate. To these subgroups there correspond subfields of F W
The quadratic subfield F0; and the cubic ones F1;F2;F3; which are isomorphic.

We have
c.E/D 1

6
.3�.2/C�.3/C�.1//D�1

2
;

c.Hi /D
1
3
�.1/D 1

3
for i D 1;2;3;

c.H0/D
1
2
�.1/D 1

2
:

Then (7.1) gives
�F �

2
k D �F0.�F1�F2�F3/

2=3:

Since zeta functions of isomorphic fields are equal, we get

�F �
2
k D �F0�

2
F1
: .7:3/
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In the following examples, we leave the details to the reader. Denote by �� ; the zeta
function of the subfield of F fixed by the automorphism �:

Example 4 Let G D A4:
The formula (7.1) gives

�F �
2
k D �.12/.34/�

2
.234/:

Example 5 Let G D S4:
Then

�F �
2
k D �.12/�.1234/�.123/:

Example 6 Let G D S5:
Then

�F �
4
k D �

2
.123/.45/�

2
.1234/�.12345/:

Let us remark that other cyclic subgroups of G do not contribute to this formula.

Example 7 Let G D D2p be the dihedral group of order 2p; where p is an odd
prime. Let Hp be its unique subgroup of order p; and H2 a subgroup of order 2.
There are p subgroups of order 2 and they are conjugate.

Then
�F �

2
k D �FHp �

2
FH2

: .7:4/

The case p D 3 has been treated above in Example 3 with more details, since D6 Š
S3:

Example 8 Let G DQD f˙1;˙i;˙j;˙kg be the group of quaternions. It has one
cyclic subgroup h�1i of order 2, and three cyclic subgroups hii; hj i; hki of order 4.

We have
c.E/D

1

8
.�.1/C�.2/C 3�.4//D 0;

c.h�1i/D
1

4
.�.1/C 3�.2//D�

1

2
;

c.hii/D c.hj i/D c.hki/D
1

2
�.1/D

1

2
:

Here the Brauer-Kuroda relation takes the form

�F h�1i.s/�k.s/
2 D �F hii.s/�F hj i.s/�F hki.s/: .7:5/

The Dedekind zeta function �F .s/ of the field F does not appear in this relation,
because c.E/D 0:

Since Q=h�1i D Z=2 � Z=2 and F hii; F hj i; F hki are quadratic subfields of
F h�1i; (7.5) is simply the relation (7.2) from Example 2 for the extension F h�1i=k:
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We call a finite group G exceptional, if the coefficient cG.E/ D c.E/ D 0:

Thus cyclic groups and the group of quaternions are exceptional. In [7] it has been
proved that the only exceptional p-groups are cyclic and generalized quaternion.
Consequently a nilpotent group is exceptional iff some of its Sylow subgroups are
cyclic or generalized quaternion. In [7] there are given also many other examples of
exceptional groups, e.g. SL.2;Fq/ with q odd is exceptional.

In all the above examples, except the first and the last, the Brauer-Kuroda
relation is of the form �F �

m
k
D a product of zeta functions of some proper subfields

of F;withm> 0; because the value of c.E/ is negative, and c.H/� 0 for nontrivial
cyclic subgroups H of G:

In general this is not the case. For example for G D S7 and Z=6�Z=6; we have
c.E/ > 0: Hence �k and �F are on different sides of the Brauer-Kuroda equation.

If the Galois group of a number field F is exceptional, then the Dedekind zeta
function of the field does not appear in the Brauer-Kuroda relation (7.1). One may
expect that then �F is, in a sense, independent of �k and of the Dedekind zeta
functions of some other proper subfields of F:

This can be illustrated by the following observation. There are known Galois
extensions F of Q with the quaternion Galois group such that �F .12/ D 0 and
�Fj .

1
2
/¤ 0 for proper subfields Fj of F:

Hence �F is multiplicatively independent of � and �Fj : (See [12]).

8. The case of a biquadratic field and s D 0

Let F be a biquadratic extension of Q; and let F0;F1;F2 be its quadratic subfields,
with F0 real. Then (7.2) holds.

First we substitute s D 0 in (7.2) and we get some well known relations between
the class numbers and the first regulators of F and of its subfields.

Next we substitute s D �1 and assuming Conjecture 1, we discuss analogous
relations between orders of the tame kernels and of the second regulators of the
fields in question.

We are looking for some analogies in these two situations.
The most interesting case is when F is imaginary. Then F1 and F2 are quadratic

imaginary, so their first regulators are trivial, R1.F1/ D R1.F2/ D 1: Moreover
r2.F / D 2 and r1.F0/ D 2; so d0.F / D d0.F0/ D 1: Thus in F and in F0; there is
only one fundamental unit. Denote it by " and by "0; respectively. Then R1.F0/D
logj"0j and R1.F /D 2logj"j: We may assume that j"j> 1 and j"0j> 1:

Moreover, since "0 is a unit of F; we get j"0j D j"jQ1.F / for some Q1.F / 2 N:
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Consequently we obtain a regulator relation

R1.F /D
2

Q1.F /
R1.F0/: .8:1/

It is known that there are exactly two possibilities: "0 D " (thenQ1.F /D 1/ and
"0 D �"

2; where � is a root of unity (then Q1.F / D 2/: Some sufficient conditions
for Q1.F /D 1 are known. E.g.

	 (i) If N"0 D�1; then Q1.F /D 1:

	 (ii) Let F D Q.
p
�d1;
p
�d2/; where d1;d2 are positive and squarefree. If

gcd.d1;d2/ has an odd prime factor, or both d1;d2 are even and .d1d2/=4
 1
.mod 4/; then Q1.F /D 1:

A more precise description of conditions equivalent to Q1.F / D 1 is given in
[14].

One can easily verify that for the biquadratic field F and its quadratic subfields
F0;F1;F2; we have

4w1.F /D w1.F0/w1.F1/w1.F2/

with only one exception: F DQ.�4;
p
2/DQ.�8/:

Taking into account the value �.0/D�1
2
; the formula (7.2) for s D 0 gives

R1.F /h.F /DR1.F0/h.F0/h.F1/h.F2/: .8:2/

Hence for F ¤Q.�8/; we get from (8.1) and (8.2) that

h.F /D
Q1.F /

2

2Y

jD0

h.Fj / with Q1.F /D 1 or 2: .8:3/

If F is a totally real biquadratic field, then an analogous formula holds (see [14]):

h.F /D
Q1.F /

4

2Y

jD0

h.Fj / with Q1.F /j4:

9. The case of a biquadratic field and s D�1

We assume that F is a complex biquadratic extension of Q; and we use the notation
from the last section. Substituting s D�1 into (7.2) and assuming Conjecture 1, we
get because �.�1/D� 1

12
that

eR2.F /k2.F /
w2.F /

1

122
DeR2.F1/eR2.F2/

2Y

jD0

k2.Fj /

w2.Fj /
: .9:1/
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One can easily verify that

w2.F /D w2.F0/D

�

2 � 24 if
p
2 2 F;

5 � 24 if
p
5 2 F;

24 otherwise;

and w2.F1/D w2.F2/D 24: Hence (9.1) implies

eR2.F /k2.F /D
1

4
eR2.F1/eR2.F2/

2Y

jD0

k2.Fj /: .9:2/

To proceed further we need a regulator formula for second regulators analogous to
(8.1). We shall prove that 2eR2.F1/ �eR2.F2/ is an integer multiple of eR2.F /:

The lattices ƒ2.F1/ and ƒ2.F2/ corresponding to the Bloch groups B.F1/ and
B.F2/ are 1-dimensional, since r2.F1/D r2.F2/D 1:

For i D 1;2 let bi 2 B.Fi / define a generator eD.bi / of the latticeƒ2.Fi /: Hence
eR.Fi /D eD.bi /:

From r2.F / D 2 it follows that the lattice ƒ2.F / is 2-dimensional. Obviously
b1;b2 2 B.F /; hence D.b1/; D.b2/ 2ƒ2.F /:

Let G DGal.F=Q/: For i D 1;2; denote by 	i 2G the nontrivial automorphism
of F trivial on Fi : Then 	1	2 is trivial on the real subfield F0; hence it is complex
conjugation. Consequently the two complex places of F are represented by �1 Did
and �2 D 	2:

The sublattice ƒ02 generated by D.b1/ and D.b2/ in ƒ2.F / has covolume equal
to the absolute value of the determinant of the matrix

�
D.b1/

D.b2/

�
D

�eD.�1.b1// eD.�2.b1//
eD.�1.b2// eD.�2.b2//

�
D

�eD.b1/ �eD.b1/
eD.b2/ eD.b2/

�
;

since �2.b1/D 	2.b1/D 	2	1.b1/ is the complex conjugate of b1:
Thus

covol.ƒ02/D 2eD.b1/eD.b2/D 2eR2.F1/eR2.F2/:

The covolume of a sublattice is an integer multiple of the covolume of the lattice.
Therefore covol.ƒ02/ D Q2.F /covol.ƒ2.F // for some Q2.F / 2 N: Thus we have
proved

Theorem 1 If F is a complex biquadratic extension of Q with imaginary quadratic
subfields F1 and F2; then

eR2.F /D
2

Q2.F /
eR2.F1/eR2.F2/; for some Q2.F / 2N: .9:3/
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From (9.2) and (9.3) we get

Corollary 1 Assume Conjecture 1 for the fields in question. Then in the notation of
Theorem 1; we have

k2.F /D
Q2.F /

8

2Y

jD0

k2.Fj / for some Q2.F / 2N: .9:4/

Zhou Haiyan [23] proved that the odd parts of the k2’s on both sides of (9.4) are
equal. It follows that Q2.F / is 1 a power of 2.

On the basis of numerical evidence given below in Section 12.3, we expect that
Q2.F / is always 1 or 2.

If F is a real biquadratic field not containing
p
2 nor

p
5; and if F0;F1;F2 are its

quadratic subfields, then w2 of all these fields equals 24, and their second regulators
are equal 1.

Applying the Birch–Tate conjecture, we get

k2.E/D w2.E/j�E .�1/j;

which has been proved already for all totally real abelian fieldsE (see [22] Theorem
1.5 and note on p.499). From the Brauer–Kuroda relation (7.2) and the fact that
�.�1/D� 1

12
; we get

k2.F /D
1
4

2Y

jD0

k2.Fj /: .9:5/

Now, assuming Conjecture 1, we give a numerical example, which indicates that
the regulator index Q2.F / in (9.3) can be even, and thus can be greater than 1.

Example 9 (cf. [6]). Let F D Q.
p
�6;
p
�15/: Then F0 D Q.

p
10/; F1 D

Q.
p
�15/; F2 D Q.

p
�6/ are quadratic subfields of F: For all these fields, w2

equals 24 and eR2.F0/D 1; since F0 is real.
1) The number aD 1C

p
�15
4

2 F1 satisfies a2� 1
2
aC1D 0; and hence 1�a3 D

�.1� a/3: Taking b1 WD 18Œa�� 2Œa3� for @21 WD @2.F1/ we get

@21.b1/D 18.aê.1� a//� 2.a3ê.1� a3//
D 18.aê.1� a//� .a3ê.1� a/6/D 0:

Hence b1 2A.F1/ and eD.b1/ 2ƒ2.F1/:
1Note added on January 27, 2013: She proved recently that Q2.F /D 1;2 or 4 , see [24].
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Assuming Conjecture 1 for the field F1; we get

j��F1.�1/j D
eR2.F1/k2.F1/

w2.F1/
: .9:6/

Since k2.F1/ D 2; w2.F1/ D 24; ��F1.�1/ D �0:499525 and eD.b1/ D 5:99431; it
follows from (9.6) that eR2.F1/D eD.b1/; i.e. eD.b1/ generates the lattice ƒ2.F1/:

2) We have aD a21; where a1 D
p
10C
p
�6

4
2 F: Therefore in F �êF � we have

a3ê.�.1� a/3/D a61ê.�.1� a/3/D a61ê.1� a/3 D a3ê.1� a/3:

Consequently, for @2 WD @2.F / we get

@2.b1=2/D 9.aê.1� a//� .a3ê.1� a3//D 9.aê.1� a//� .a3ê.1� a/3/D 0:

Hence b1=2 2A.F / and eD.b1=2/D 1
2
eD.b1/ 2ƒ2.F /:

Let eD.b2/ be a generator of the lattice ƒ2.F2/; where b2 2 A2: Then D.b1=2/

and D.b2/ generate a sublattice of ƒ2.F / of covolume
ˇ̌
ˇ̌det

�
D.b1=2/

D.b2/

�ˇ̌
ˇ̌D 1

2

ˇ̌
ˇ̌det

�
D.b1/

D.b2/

�ˇ̌
ˇ̌DeR2.F1/eR2.F2/:

Therefore eR2.F1/eR2.F2/ is an integer multiple of eR2.F / and from (9.3) it follows
that Q2.F / is even.

10. The case of the dihedral Galois group D2p and s D�1

Let D2p be the dihedral group of order 2p; where p is an odd prime. It is the group
of isometries of a regular p-gon with p vertices 1;2;:::;p:

The group has a unique subgroup of order p generated by the rotation 	 D
.123:::p/; and p subgroups of order 2 generated by symmetries.

Let � D �p be the symmetry fixing the vertex p;

� D .1;p� 1/.2;p� 2/���.p�1
2
; pC1
2
/:

Other symmetries are �j WD 	j�	�j ; j D 1;2;:::;p�1: Then �j fixes the vertex j:

Let F be a Galois extension of Q with the Galois group G D D2p: It has
a unique quadratic subfield F0 fixed by 	; and p subfields Fj fixed by �j ; j D
1;2;:::;p; of degree p:

We have 	.Fj /D FjC1 for j D 1;2;:::;p� 1 and 	.Fp/D F1:
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Namely, if a 2 Fj and �j .a/D a then 	.a/ satisfies

�jC1.	.a//D 	
jC1�	�j .a/D 	.�j .a//D 	.a/:

Therefore 	.a/ 2 FjC1 and Fj D 	j .Fp/ for j D 1;2;:::;p:
Assume that the field F is complex. Then complex conjugation belongs to G;

we may assume that � D �p is the complex conjugation.
Then the field Fp fixed by � is the unique maximal real subfield of F:
We have

r2.F0/D 1; r2.Fj /D
p�1
2
; j D 1;2;:::;p; r2.F /D p:

We determine the complex places of the fields F0;F1;Fp and F:
Obviously, id is the complex place of F0; and 	j ; j D 0;1;:::;p�1 are complex

places of F:
Since �	j is a symmetry, we get �	j�	j Did, hence �	j D 	�j�: Conse-

quently
�.Fj /D �	

j .Fp/D 	
�j�.Fp/D 	

p�j .Fp/D Fp�j

for j D 1;2;:::;p�1: It follows that the fields Fj and Fp�j are complex conjugate.
Therefore the complex places of Fp are

	;	2;:::;	 t ; where t D p�1
2
;

and the complex places of F1 D 	.Fp/ are

id;	; 	2;:::;	 t�1:

Now we describe the dilogarithmic lattices of the fields F0;Fp and F1:
The dilogarithmic lattice ƒ2.F0/ of rank 1 is generated by eD.b0/ for some

b0 2 B.F0/: Hence
eR2.F0/D eD.b0/: .10:1/

The dilogarithmic lattice ƒ2.Fp/ of rank t is generated by the following vectors
DFp .b1/ ;:::; DFp .bt / for some b1;:::;bt 2 B.Fp/; where

DFp .bj /D .eD.	.bj //;eD.	2.bj //;:::;eD.	 t .bj //:

Consequently,

eR2.Fp/D jdet.U1;U2;:::;Ut /j; where Uj D

0

@
eD.	j .b1//
���

eD.	j .bt //

1

A; j D 1;2;:::;t:

.10:2/
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Similarly, the dilogarithmic lattice ƒ2.F1/ of rank t is generated by the following
vectors DF1.btC1/;:::;DF1.b2t / for some btC1;:::;b2t 2 B.F1/; where

DF1.bj /D .eD.bj /;eD.	.bj //;:::;eD.	 t�1.bj ///:

Consequently,

eR2.F1/D jdet.V1;V2;:::;Vt /j; where Vj D

0

@
eD.	 tCj .btC1//

���
eD.	 tCj .b2t //

1

A; j D 1;2;:::;t:

.10:3/

Since the Bloch groups B.F0/;B.Fp/;B.F1/ can be mapped canonically into B.F /;
the elements b0;b1;:::;b2t defined above can be considered as elements of B.F /:

Therefore the lattice ƒ02 generated by elements DF .bj /; j D 0;1;:::;2t; where
DF .b/ D .eD.b/;eD.	.b//;eD.	2.b//;:::;eD.	p�1.b/// for b 2 B.F /; is a sublattice
of the dilogarithmic lattice ƒ2.F /:

We determine the covolume of ƒ02: By the definition of ƒ02 we have

covol.ƒ02/D jdet

0

BB@

DF .b0/

DF .b1/

���

DF .b2t /

1

CCAj: .10:4/

The first row of this matrix is simply

.eD.b0/;eD.b0/;:::;eD.b0//D eD.b0/.1;1;:::;1/:

The .j C 1/st row, where 1� j � t; is

.eD.	.bj //;eD.	2.bj //;:::;eD.	 t .bj //;eD.	 tC1.bj //;:::;eD.	2t .bj //;eD.	2tC1.bj ///

D .eD.	.bj //;eD.	2.bj //;:::;eD.	 t .bj //;�eD.	 t .bj //;:::;�eD.	.bj //;0/;

since 	k.bj / and 	p�k.bj / are complex conjugate and 	2tC1.bj /D 	p.bj /D bj is
real.

The .j C 1/st row, where t C 1� j � 2t; is

.eD.	.bj //;eD.	2.bj //;:::;eD.	 t�1.bj //;eD.	 t .bj //;eD.	 tC1.bj //;:::;eD.	2t .bj //;eD.	2tC1.bj ///

D .eD.	.bj //;eD.	2.bj //;:::;eD.	 t�1.bj //;�eD.	 t�1.bj //;:::;�eD.	.bj //;�eD.bj /;0;eD.bj //;

since 	k.bj / and 	2t�k.bj / are complex conjugate and 	2t .bj /D 	p�1.bj / is real.
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Hence covol.ƒ02/ is the absolute value of the determinant of the matrix

eD.b0/

0

@
1 1 ��� 1 1

U1 U2 ��� Up�1 Up
V2 V3 ��� Vp V1

1

A

D eD.b0/

0

@
1 1 ��� 1 1 1 ��� 1 1 1

U1 U2 ��� Ut�1 Ut �Ut ��� �U2 �U1 0

V2 V3 ��� Vt �Vt �Vt�1 ��� �V1 0 V1

1

A;

.10:6/

where Uj ;Vj are given by (10.2) and (10.3).

Lemma 1 (On the "circulant" matrix) Let M be the last matrix in .10:6/; where Uj
and Vj are arbitrary column vectors of height t: Then

jdet.M/j D .2t C 1/jdet.U1;:::;Ut / � det.V1;:::;Vt /j:

Proof: We operate on columns of M as follows:
1) Add the column containing Uj to the column containing �Uj for j D 1;:::;t:

We obtain
0

@
first t columns 2 2 2 ��� 2 2 2 1

as in M 0 0 0 ��� 0 0 0 0

�Vt �Vt�1 Vt �Vt�2 Vt�1�Vt�3 ��� V4�V2 V3�V1 V2 V1

1

A:

2) Add the j th column to the .j�2/nd consecutively for j D 2tC1;2t;2t�1;:::;tC
3; i.e. we begin with the last column. We get

0

@
first t columns t C 1 t t � 1 ��� 4 3 2 1

as in M 0 0 0 ��� 0 0 0 0

�Vt Vt Vt�1 ��� V4 V3 V2 V1

1

A:

3) Adding the .t C 2/nd column to the .t C 1/st, we get

M 0 WD

0

@
first t columns 2t C 1 t t � 1 ��� 4 3 2 1

as in M 0 0 0 ��� 0 0 0 0

0 Vt Vt�1 ��� V4 V3 V2 V1

1

A:

From the above it follows that detM D detM 0: Now we apply to detM 0 the Laplace
formula with respect to the .t C 1/st column. We get

jdetM 0j D .2t C 1/jdet
�
U1 U2 ��� Ut 0 0 ��� 0 0

� � � � Vt Vt�1 ��� V2 V1

�
j:

Hence the lemma follows.
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Consequently, by (10.4), (10.5) and Lemma 1, we get

covol.ƒ02/D peR2.F0/eR2.Fp/eR2.F1/D peR2.F0/eR2.F1/2; .10:5/

since the isomorphic fields F1 and Fp have equal second regulators, and 2tC1D p:
Thus we have proved

Theorem 2 If F is a Galois extension of Q with the dihedral Galois group D2p;
where p is an odd prime, and if F is not totally real and satisfies w2.F /D 24; then

eR2.F /D
p

Q2.F /
eR2.F0/eR2.F1/2 for some Q2.F / 2N;

where F0 is the unique quadratic subfield of F and F1 is a subfield of degree p:

Corollary 2 In the notation of Theorem 2; assume that Conjecture 1 holds for all
fields in question and that they satisfy w2.�/D 24: Then

k2.F /D
Q2.F /

4p
k2.F0/k2.F1/

2 for some 2 Q2.F / 2N:

11. The case of the alternating Galois group A4 and s D�1

Let F be a complex field Galois over Q with the Galois group G D A4: We
can assume that � WD .12/.34/ is complex conjugation. Then F6 WD F � is the
maximal real subfield of F of degree 6 over Q and F4 WD F .234/; F 04 WD F .124/

are isomorphic but not complex conjugate subfields of F of degree 4 over Q: Let
	 WD .13/.24/: Then F3 WD F h�;�i is a totally real cubic cyclic subfield of F6:

We have r2.F6/ D r2.F4/ D r2.F
0
4/ D 2 and r2.F / D 6: Let 
 WD .123/: One

can verify that the complex places for these fields are


 and 
�1 for F6;

id and 	 for F4 and F 04;

id;	;
;.142/;
�1 and .234/ for F:

Let b1;b2 2 B.F6/; b3;b4 2 B.F4/; and b5;b6 2 B.F 04/ define the lattices
ƒ2.F6/; ƒ2.F4/; and ƒ2.F 04/; respectively. Then

eR2.F6/D jdet
�

D.b1/

D.b2/

�
j;eR2.F4/D jdet

�
D.b3/

D.b4/

�
j; and eR2.F 04/D jdet

�
D.b5/

D.b6/

�
j:

2Note added on January 27, 2013: Zhou Haiyan proved recently that in the case p D 3 we have
Q2.F /D 1;3;9 or 27; see [24].
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Since the elements bj ; j D 1;:::;6; belong to B.F /; they define a sublattice ƒ02.F /
of the lattice ƒ2.F /: We have

covol.ƒ02.F //D jdet

0

BBBBBB@

0 0 eD.b3/ eD.b4/ eD.b5/ eD.b6/
0 0 eD.	b3/ eD.	b4/ eD.	b5/ eD.	b6/

eD.
b1/ eD.
b2/ �eD.b3/ �eD.b4/ eD.	b5/ eD.	b6/
�eD.
b1/ �eD.
b2/ �eD.	b3/ �eD.	b4/ eD.b5/ eD.b6/
�eD.
�1b1/ �eD.
�1b2/ �eD.	b3/ �eD.	b4/ eD.	b5/ eD.	b6/
eD.
�1b1/ eD.
�1b2/ eD.b3/ eD.b4/ �eD.b5/ �eD.b6/

1

CCCCCCA
j:

After computing this determinant we get

covol.ƒ02.F //D 4eR2.F6/eR2.F4/eR2.F 04/D 4eR2.F6/eR2.F4/2; .11:1/

since isomorphic fields have equal second regulators.
Let Q2.F / be the index of ƒ02.F / in ƒ2.F /: Then

covol.ƒ02.F //DQ2.F /covol.ƒ2.F //DQ2.F /eR2.F /:

Thus, by (11.1), we have proved

Theorem 3 If F is a complex Galois extension of Q with Galois group A4;

satisfying w2.F /D 24; then in the above notation we have

eR2.F /D
4

Q2.F /
eR2.F6/eR2.F4/2; for some Q2.F / 2N:

Corollary 3 Assuming Conjecture 1 for the fields in question and that w2.F /D 24;
we have in the notation of Theorem 3 that

.i/ k2.F /D
Q2.F /

16
k2.F6/k2.F4/

2 for some Q2.F / 2N:

and

.i i/ k2.F6/D
eR2.F4/
2eR2.F6/

k2.F3/k2.F4/:

Proof: From the Brauer-Kuroda relation given in Example 4, we get

�F �
2 D �F6�

2
F4
: .11:2/

Then, by Conjecture 1, we obtain

4eR2.F /k2.F /DeR2.F6/eR2.F4/2k2.F6/k2.F4/2
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and by Theorem 3, we get the first part of the corollary.
From the Brauer-Kuroda relation given in Example 2 applied to the Galois

extension F=F3 with Galois group Z=2�Z=2; we get

�F �
2
F3
D �3F6 ; .11:3/

since all three sextic subfields of F are isomorphic.
Eliminating �F from (11.2) and (11.3), we obtain

�2F6�
2 D �2F3�

2
F4
:

Hence �F6� D �F3�F4 ; since for real s > 1 every Dedekind zeta function of a number
field takes positive values.

Then, by Conjecture 1, we get

2eR2.F6/k2.F6/DeR2.F4/k2.F3/k2.F4/; .11:4/

sinceeR2.F3/D 1: Thus the regulatorseR2.F6/ andeR2.F4/ differ by a rational factor.
From (11.4) we obtain the second part of the corollary.

Part III. Numerical Examples

12.1. Introduction

For a number of Galois extensions F of Q with dihedral Galois groups (i.e. of
type D2p; for some p � 3 not necessarily a prime), we compare the Brauer-Kuroda
relation at s D�1 with the associated numerical regulator values.

We also consider biquadratic extensions and A4-extensions of Q; and find in the
latter case a surprising coincidence of regulators, which result from different lattices
of certain subfields.

Our set-up is the following: We assume that (a version of) the Lichtenbaum
Conjecture in weight 2 holds and combine it with results of Bloch and Suslin
which relateK3.F / to the Bloch group and the Borel regulator to the Bloch-Wigner
dilogarithm function D.z/ given above.

Numerous experiments support and suggest the following formulation (cf.
(4.1)):

��F .�1/
‹
D˙

k2.F /eR2.F /
w2.F /

; .12:1/

where we put

	 k2.F /D #K2OF ; the order of the K-group of the number ring, as in the text
above,
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	 w2.F / also as in the text above,

	 eR2.F /D covol.ƒ2.F //; where the lattice

ƒ2.F /D
D
.
1

�
D ı �j .�//j j� 2 ker.@2 W ZŒF �! F �êF �/

E

is generated by the images, under the normalized Bloch-Wigner dilogarithm
function eD.z/D 1

�
D.z/; of all the elements in the Bloch group B.F /; where

the �j W F ! C represent r2 complex embeddings of F (one for each pair of
complex conjugate ones).

12.2. What we compute

Our program, written with the computer algebra package GP-PARI [18], finds a
set of elements in the Bloch group, and in many cases sufficiently many of them to
generate a sublattice of full rank of the latticeƒ2.F / and hence we get a meaningful
covolume. With these data we can form the quotient of covolumes of the regulator
lattices for the subfields of a given field and compare it to the theoretical prediction
in the text above. Moreover, we can compare it to the corresponding Dedekind
zeta values at s D �1; which we can conveniently obtain via Magma [4], and get
conjectural values for the K2-orders of the number rings involved. For more details
see e.g. [9].

Caveat: We will use the notation :
D below to indicate that two sides are equal

up to several digits (usually we work with a minimum precision of 30 digits), but
often under the further assumption that we have found the actual lattice generated
by the Bloch group. Note that we cannot prove in any single case that the elements
found will suffice to generate the full group. In fact for fields of degree > 10; say,
this assumption is presumably overly optimistic.

12.3. Biquadratic cases

The Galois group of a biquadratic extension F4 of signature .0;2/ is the Klein 4-
group (note that this can be viewed as a dihedral group with 4 elements, i.e. as D2p
with p D 2; but its behaviour is rather different from the other D2p; p > 2/:

In a nutshell, the experiments hint at a strong correlation: if we denote the two
imaginary quadratic subfields of F4 by F1 and F2; then we find for the regulator
quotients (see Theorem 1)

2

Q2.F /
D

eR2.F4/
eR2.F1/eR2.F2/

:
D 1 or :

D 2:
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Moreover, the pattern evolving is that this quotient seems to be equal to 1 if the
“Birch-Tate-Lichtenbaum quotients”

w2.F /�
�
F .�1/

eR2.F /

for F D F1 and F D F2 (which are conjecturally equal to the orders of theK-groups
#K2.OF1/ and #K2.OF2/; respectively) are odd. Otherwise it is usually equal to 2,
with few exceptions (for d1 D �4 and d2 D �51;�123; or d2 D �132 we couldn’t
find a better regulator lattice for F4 DQ.

p
d1;
p
d2/ to make the index quotient 2).

We give an explicit example for F D Q.
p
�11;
p
�19/: With subfields F1 D

Q.
p
�11/ and F2 DQ.

p
�19/; we get

eR2.F /
:
D 528:23; eR2.F1/

:
D 16:59; and eR2.F2/

:
D 31:83;

with quotient 1. Here we know (from Tate [21] and Skałba [20]) that both groups
K2OFj .j D 1;2/ are trivial.

Similarly, if F1 D Q.
p
�571/ (still considering F2 D Q.

p
�19//; where we

know from [2] that K2OF1 D Z=5Z; then

eR2.F /
:
D 32315:473; eR2.F1/

:
D 1015:004; and eR2.F2/

:
D 31:83;

still leaving the quotient 1.
If we consider instead F1 D Q.

p
�23/; for which K2OF1 D Z=2Z has even

order, we find
eR2.F /
eR2.F1/

:
D
2463:935

38:695

:
D 2 �eR2.F2/;

whereas for F1 DQ.
p
�51/; for which also K2OF1 D Z=2Z; we obtain

eR2.F /
eR2.F1/

:
D
2409:997

75:695

:
DeR2.F2/:

The former case is the more common one when considering that quotient in the case
that at least one of the K2-orders is even, but the latter case also occurs for certain
distinguished discriminants.

Let us recall that for an imaginary quadratic field F D Q.
p
�d/; the order of

K2.OF / is odd iff d D 1;2;p or 2p; where p 
˙3 .mod 8/ is a prime, see [8].

12.4. Dihedral cases

The case p D 3: We looked at several number fields of the formF DQ.
3
p
d;
p
�3/

which have Galois group D6 Š S3: As a typical case, take d D 2 W we find, using
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the notation F0 DQ.
p
�3/ for the unique quadratic subfield and F1 DQ.

3
p
d/ for

one of the three isomorphic cubic subfields of F W

eR2.F /
:
D 389:3591874=�3

:
D 12:55743124;

eR2.F1/
:
D 13:84967835=�

:
D 4:408489539;

eR2.F0/
:
D 2:029883212=�

:
D 0:646131894;

from which we find for the quotient (see Theorem 2)

3

Q2.F /
D

eR2.F /
eR2.F1/2eR2.F0/

:
D 1:

The corresponding quotient for the fields F DQ.
3
p
d;
p
�3/with squarefree d < 50

is either 3 (for d D 17;19;22;23;33;34;37/ or 1 (for the remaining d/: The elements
found by the program which conjecturally generate the corresponding Bloch group
are typically too complicated to write down here.

The case p � 5: For 5 � p � 14; p ¤ 12;13; we considered one polynomial
each defining a Galois extension F2p of Q with Galois group D2p; as linked from
the GP-PARI website.

	 1. The case p D 5: We consider the field F10 defined by the polynomialP10
iD0cix

i ; where .ci /i D .1;1;2;�1;10;�18;20;�18;12;�5;1/; of discrimi-
nant �475 and signature .r1;r2/D .0;5/; which is Galois over Q with Galois
group D10:

Its (up to an isomorphism) unique degree 5 subfield F5 can be described byP5
iD0cix

i ; where .ci /i D .�11;5;�2;7;�5;1/; and is of discriminant 472 and
signature .1;2/:

Its unique degree 2 subfield F2 is the imaginary quadratic field of discriminant
�47:

Magma gives ��F10.�1/
:
D �3:75562 and our program, written in GP-PARI,

finds a conjectural dilogarithm regulator

eR2.F10/
:
D 13791:5413=�5

:
D 45:06749724:

Hence, since w2.F10/D 24; we are led to

2eR2.F10/
:
D�w2.F10/�

�
F10
.�1/:

For explicit (and short) elements in the Bloch group of F10; see [9], §5.1.1.
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Similarly, we get ��F5.�1/
:
D �0:091823 and ��F2.�1/

:
D �3:09308; while the

corresponding (conjectural) regulators found are

eR2.F5/
:
D 10:8753=�2

:
D 1:101898268;

eR2.F2/
:
D 116:606541=�

:
D 37:11701479;

so that
2eR2.Fk/

:
D�w2.Fk/�

�
Fk
.�1/; for k D 2 or 5:

(Again, w2.Fk/D 24 in both cases.)

As a consequence, we obtain (see Theorem 2)

5

Q2.F10/
D

eR2.F10/
eR2.F5/2eR2.F2/

:
D 1;

from which we should expect that k2.F / D k2.F5/ D k2.F2/ D 2 (the latter
identity of which has been shown, cf. [2]).

A slightly more interesting case is the D10-field F 010 of discriminant �215118

given by x10C 6x8C 21x6C 12x4 � 28x2C 32 and its subfields F 05 and F 02:
In this case we find

80eR2.F 010/
:
D�w2.F

0
10/�

�
F 010
.�1/

and
40eR2.F 05/

:
D�w2.F

0
5/�
�
F 05
.�1/;

as well as
eR2.F 02/

:
D�w2.F

0
2/�
�
F 02
.�1/:

This would suggest that k2.F 010/ D 80; k2.F
0
5/ D 40 and k2.F 02/ D 1 (again,

the latter identity is known; it has been proved long ago by Tate [21]).
Furthermore, this constitutes the first candidate of a D10-field whose second
regulator quotient is different from 1:

5

Q2.F
0
10/
D

eR2.F 010/
eR2.F 02/eR2.F 05/2

D 5:

This example already arose a few years ago in discussion with A. Bartel who,
in collaboration with de Smit, investigated related questions from a more
elaborate point of view [1].
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	 2. The case p D 7 W We consider the field F14 of discriminant �2237; given
by the coefficients

.9;�87;353;�819;1301;�1618;1648;�1379;971;�566;276;�107;33;�7;1/;

of its minimal polynomial and its subfields F7 and F2: Their respective
zeta values at �1 are given by ��F14.�1/

:
D �86878788:53919; ��F7.�1/

:
D

152:73946 and ��F2.�1/
:
D �25:861205: We find for their tentative regulators

the approximate values

eR2.F14/
:
D 18631911242:299834=�7

:
D 6168908:53919;

eR2.F7/
:
D 4371:583358=�3

:
D 140:9902711 and

eR2.F2/
:
D 974:944466=�

:
D 310:334462;

which results in the formulas

2 � 132eR2.F14/
:
D�w2.F14/�

�
F14
.�1/;

2 � 13eR2.F7/
:
D�w2.F7/�

�
F7
.�1/;

2eR2.F2/
:
D�w2.F2/�

�
F2
.�1/:

From this we obtain (cf. Theorem 2)

7

Q2.F14/
D

eR2.F14/
eR2.F7/2eR2.F2/

:
D 1:

Moreover, we expect that k2.F14/D 2 � 132 and k2.F7/D 2 � 13:

	 3. The case p D 8 W In this case, we get w2.Fr/ D 48 for r 2 f4;8;16g and
w2.Fr/D 24 for r D 2: Still the formulas agree with the ones for p D 5; i.e.
putting

q.Fr/ WD w2.Fr/�
�
Fr
.�1/=eR2.Fr/; .12:2/

(which conjecturally agrees with k2.Fr//;we find q.Fr/D 2 for all four fields
Fr ; r j16 .r > 1/ in question.

	 4. The case p D 9 W Consider the field F18 of degree 18 and discriminant
�212 � 1079: In this case we get eR2.F18/

:
D 1507145405664649:50892=�9

:
D

50559910878:40792 and ��F18.�1/
:
D�227519598952:835; so that

�w2.F18/�
�
F18
.�1/=eR2.F18/

:
D 22 � 33;

and the corresponding quotients q.Fr/ for the subfields of F18 of degree 9;6;3
and 2 are conjecturally given by 22 � 3; 22 � 3; 22 and 3, respectively.
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	 5. The case p D 10 W For the field F20 of discriminant 220 � 4710; we find a
regulator

eR2.F20/
:
D 601489603356159:6482=�10

:
D 6422873936:691262

and a zeta value ��F20.�1/
:
D 1:49867 � 1010; resulting in

w2.F20/�
�
F20
.�1/=eR2.F20/

:
D 23 � 7:

The same factor 23 �7 occurs for the corresponding quotient for its subfield F4
of degree 4, but apparently not for the other degrees, for which the quotient
becomes equal to 2.

Hence we expect k2.F20/ D k2.F4/ D 23 � 7; so the non-trivial part of
K2.OF20/ should be induced from K2.OF4/:

	 6. The case p D 11 W This case is for the field F22 of discriminant 16711 and
its subfields F11 and F2: It is very similar to the one for p D 5 above and
yields the analogous formula

2eR2.Fr/
:
D˙w2.Fr/�

�
Fr
.�1/; r D 2;11 or 22

with respective regulator values

:
D 77805299818597772:5399; 9899632:6249 and 793:9095:

Hence the regulator quotient equals 1.

	 7. The case p D 14 W The corresponding quotients for Galois extension F28
with Galois groupD28 and discriminant 228 �10114 and for its subfields Fk of
degree k are as follows: for F28;F14;F7;F4 and F2; we find q.Fk/

:
D 212 �19;

26;24;19 and 1, respectively.

12.5. The alternating group A4

We considered several complex fields with Galois group A4; the alternating group
on 4 letters. It turns out that in each case there is a degree 4 and a degree 6 subfield
F4 and F6 (both with r2 D 2/ which have exactly the same regulator. The fact that
their regulators differ by a rational factor is a consequence of the Brauer-Kuroda
relations and Conjecture 1, see (11.4).

More precisely, one seems to have

�F3.�1/ �eR2.F6/D�2��F6.�1/;
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where F3 is the totally real field of degree 3 which is a subfield of F6 and

�Q.�1/ �eR2.F4/D�2��F4.�1/:

Nevertheless, although the covolumes agree, the actual lattices do not – instead,
e.g. the elements of ƒ2.F6/ arise from taking Q-linear combinations (with very
small denominators) of the rows of ƒ2.F4/; where different rows correspond to
different embeddings (of the Bloch elements whose dilogarithm values generate the
lattice).

For example, F12 given by x12C 6x10 � 11x8C 42x6 � 30x4C 40x2C 1 has
the subfields F6 defined by x6� 4x5C 4x4� 4x3C 20x2� 16x� 8 and F4 defined
by x4 � 4x3C 14x2 � 28xC 21: They have both dilogarithmic regulator eR2.Fr/

:
D

1127:145385=�2
:
D 114:203704545 .r D 4;6/; while their special values at �1 are

given by ��F6.�1/
:
D 2:7191358 and �F4.�1/

:
D 4:7584876; respectively. We thus

get the quotients eR2.F6/=��F6.�1/
:
D 42 and eR2.F4/=��F4.�1/

:
D 24; which matches

the above displayed formulas because �F3.�1/D�1=21:
The latticeƒ2.F4/ is generated by the two (column) vectors .27:115:::;14:087:::/

and .�1:9487:::;40:556:::/; each vector being indexed by the two complex places
of F4; while ƒ2.F6/; also equipped with two complex places, is generated by
.21:2526:::;19:3039:::/ and .34:2806:::;�21:8981:::/:

The lattices are (numerically) related as follows:

ƒ2.F6/

�
1 2

�1 0

�
D

�
�1 1

1 1

�
ƒ2.F4/:

The entries for both lattices arise from entries of (a specific column

c12 D .9:9747:::;�3:1379:::;�16:1659:::;0:9743:::;20:278:::;31:227:::/

of) the rank 6 lattice for F12 as linear combinations with coefficients of modulus
� 2 (e.g. the first entry 27:115::: for F4 equals c12Œ1�C c12Œ2�C c12Œ5�/:

This suggests a kind of symmetrization of the Bloch groups via descent on
number fields (note that this should be a more general phenomenon than the
Galois descent which is known for the associated K-groups, as F6 is not a Galois
extension).

We find similar such lattice correspondences for other A4-extensions.

12.6. The symmetric group S4

Moreover, we obtain a further relationship for certain S4-extensions: for example,
for the Galois closure (of degree 24 and Galois group S4.6d/ D Œ22�S3 in GAP
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notation [13]) of the field with minimal polynomial x6 � x4 � x3 � x2 C 1; we
find two subfields of signature .0;4/ and .4;4/; respectively, whose regulators
:
D 788598:76=�4 agree while their lattices are different but can be transformed
into each other using integer matrices, in a more complicated manner than for the
previous example.

An observation: In all the examples above the regulator quotients m
Q2.F /

; when
computed, are integers, where mD 2;p or 4 for the Galois groups Z=2�Z=2;D2p
and A4; respectively. Thus Q2.F / takes only values dividing m; and in these
examples it holds that mj#G: Is this true in general?

Acknowledgments: We thank the anonymous referee for valuable comments. We
are grateful to Professor Anthony Bak for his remarks, which helped us to improve
the exposition of the paper.
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