Non-Perturbative calculations in (Intense-Field) QED

Andrew S. Papanastasiou

IPPP Durham

30th Nov 2009

Outline

Introduction

Why Classical?

Formalities

Applications

IR singularities

Conclusions and Outlook

Why Study QED in Intense Fields??

QED has been extensively studied and our understanding of **perturbative** QED is extremely good,

 \Rightarrow e.g. anomalous magnetic moment of electron: theory and experiment have 10 decimal place agreement.

However, when considering QED in intense EM fields, we enter a non-perturbative regime, which is by comparison, poorly understood.

Why Study QED in Intense Fields??

QED has been extensively studied and our understanding of **perturbative** QED is extremely good,

 \Rightarrow e.g. anomalous magnetic moment of electron: theory and experiment have 10 decimal place agreement.

However, when considering QED in intense EM fields, we enter a non-perturbative regime, which is by comparison, poorly understood.

"Ultra-strong" fields:
$$E_c = \frac{m^2c^3}{e\hbar} \simeq 10^{16}~V/cm$$
 "Intense" fields:
$$I_c = \frac{c}{8\pi}E_c^2 \simeq 4\times 10^{29}~W/cm^2$$

So What?

 Breakthroughs in laser field intensities are slowly allowing experiments to probe a previously unexplored region of QED parameter space:

Current records:
$$E \sim 10^{12} \ V/cm$$
 $I \sim 10^{22} \ W/cm^2$

 Require better understanding of beam-beam interactions at beam crossings at linear collider, where field strengths also very high.

→ theory currently behind experiment

→ need accurate theoretical predicitions for meaningful comparisons with experiment

So What?

 Breakthroughs in laser field intensities are slowly allowing experiments to probe a previously unexplored region of QED parameter space:

Current records:
$$E \sim 10^{12} \ V/cm$$
 $I \sim 10^{22} \ W/cm^2$

- Require better understanding of beam-beam interactions at beam crossings at linear collider, where field strengths also very high.
 - → theory currently behind experiment
 - → need accurate theoretical predicitions for meaningful comparisons with experiment
- Medical Applications: tumour therapy, medical imaging.

Throughout this talk:

- our approach is semi-classical, i.e. we treat the external field as unquantized
- consider only plane-wave external fields,

i.e.
$$A_{\mu}^{\mathrm{ext}} = A_{\mu}^{\mathrm{ext}}(k \cdot x)$$

Basic things we want to compute are scattering amplitudes and probabilities.

So need a way of descibing the external field as a special in/out photon state.

→ For intense fields, way to do this is via **coherent states**.

Basic things we want to compute are **scattering amplitudes and probabilities**.

So need a way of descibing the external field as a special in/out photon state.

→ For intense fields, way to do this is via **coherent states**.

These are eigenstates of the positive frequency part of the photon field **operator** \hat{A}_{μ} :

$$\hat{A}_{\mu}^{+}(x) \mid a \rangle = \mid a \rangle a_{\mu}(x)$$

and, each coherent state corresponds to a classical solution of the wave equation.

[Theory of coherent states developed by R. J. Glauber in 60's]

Ok, so how does using these coherent states help??

Ok, so how does using these coherent states help??

$$\langle \ p_i, \dots, I_j, \ a \ | \ \hat{S} \ | \ p_k', \dots, I_n', \ a \ \rangle = \langle \ p_i, \dots, I_j \ | \ \tilde{S}(a) \ | \ p_k', \dots, I_n' \ \rangle$$

 \Downarrow

the change in the S-matrix from $\hat{S} \to \tilde{S}$ is realised through a change in our interaction lagrangian.

$$\mathscr{L}^{\mathsf{int}}_{\mathsf{photon}} o \mathscr{L}^{\mathsf{int}}_{\mathsf{photon}} + \mathscr{L}^{\mathsf{int}}_{\mathsf{classical}}$$

where

$$egin{aligned} \mathscr{L}_{ ext{photon}}^{ ext{int}} &= - e ar{\psi} \gamma^{\mu} \hat{A}_{\mu} \psi \ \mathscr{L}_{ ext{classical}}^{ ext{int}} &= - e ar{\psi} \gamma^{\mu} A_{\mu}^{ ext{ext}}(x) \psi \end{aligned}$$

and $A_{\mu}^{\rm ext}(x)$ now is just some c-function, not an operator.

...and why plane-wave backgrounds?

Taking a plane-wave background, $A_{\mu}^{\rm ext} = A_{\mu}^{\rm ext}(k \cdot x)$ is an idealisation but...

- Good representation of fields provided by laser beams.
- At Linear Collider it is good approximation to the field 'felt' by particles in one bunch due to field of oncoming bunch.
- In principle, any external field can be expanded in terms of plane-wave fields.
- Can make analytic progress with plane-wave external fields!

Basic Ingredients so far

Lagrangian we work with:

$$\mathscr{L} = \bar{\psi}(i\partial \!\!\!/ - m)\psi - e\bar{\psi}\gamma^{\mu}A_{\mu}^{\mathrm{ext}}(x)\psi - e\bar{\psi}\gamma^{\mu}A_{\mu}\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$$

$$= \mathscr{L}_{\mathrm{QED}} - e\bar{\psi}\gamma^{\mu}A_{\mu}^{\mathrm{ext}}(x)\psi$$

Fields we work with:

$$A_{\mu}^{\mathsf{ext}} = A_{\mu}^{\mathsf{ext}}(k \cdot x)$$

and are classical.

"New Interaction" --→ new Feynman rule

$$-e\bar{\psi}A^{\rm ext}\psi \longrightarrow (-ie)\int dsA^{\rm ext}(s)\delta^{(4)}(p+sk-p')$$

So, can just do normal perturbation theory...right?

"New Interaction" --→ new Feynman rule

$$-e\bar{\psi}A^{\rm ext}\psi \longrightarrow (-ie)\int dsA^{\rm ext}(s)\delta^{(4)}(p+sk-p')$$

So, can just do normal perturbation theory...right?

Wrong, have to remember, $A_{\mu}^{\rm ext}$ is an intense field \leadsto fixed order perturbation theory **no longer valid**.

For any process must do an all-orders series expansion in A_{μ}^{ext} .

"New Interaction" --> new Feynman rule

$$-e\bar{\psi}A^{\mathrm{ext}}\psi \longrightarrow (-ie)\int dsA^{\mathrm{ext}}(s)\delta^{(4)}(p+sk-p')$$

So, can just do normal perturbation theory...right?

Wrong, have to remember, $A_{\mu}^{\rm ext}$ is an intense field \leadsto fixed order perturbation theory **no longer valid**.

For any process must do an all-orders series expansion in A_{μ}^{ext} .

 \rightarrow painful

Volkov Functions (non-perturbative artillery)

Want to include the effects of the external field in an exact, non-perturbative manner.

Volkov Functions (non-perturbative artillery)

Want to include the effects of the external field in an exact, non-perturbative manner.

Idea:

- \rightarrow include external field interaction as part of the free Hamiltonian
- \rightarrow solve to find a new set of complete eigenstates (now encapsulating all effects of external field)
- → expand fields in terms of new eigenstates
- \rightarrow only thing treat perturbatively is the ordinary photon field

How do we do this??

Volkov Functions (non-perturbative artillery)

Solve Dirac equation in external field:

$$(i\partial \hspace{-.05cm}/ -m-e\gamma^{\mu}A_{\mu}^{\rm ext}(x))\psi=0$$

In general, this is difficult, but for plane-wave external fields we can solve this!

Conditions:
$$A_{\mu}^{\rm ext}=A_{\mu}^{\rm ext}(k\cdot x),\ k^2=0,\ k\cdot A^{\rm ext}=0$$

Solution:

$$\psi(x) = E_p(x)u(p)$$

$$= e^{-ip \cdot x} \left[1 + e \frac{kA}{2k \cdot p} \right] e^{-i \int^{k \cdot x} \left(e \frac{p \cdot A}{k \cdot p} - e^2 \frac{A \cdot A}{2k \cdot p} \right) d\phi} u(p)$$

[D. M. Volkov, 1935]

Result of all this is a new feynman rule (where all effects of external field are included **exactly**):

$$= \sum_{p \neq p'} \sim (-ie) \int d^4x \; \bar{E}_{p'}(x) \gamma^{\mu} E_p(x)$$

Result of all this is a new feynman rule (where all effects of external field are included **exactly**):

$$= \sum_{p \neq p} \sim (-ie) \int d^4x \; \bar{E}_{p'}(x) \gamma^{\mu} E_p(x)$$

ightarrow now proceed as normal and do perturbation theory with respect to the photon, using this new vertex.

Does this really work...?

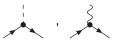
Do these Volkov functions really represent an 'all-orders' series expansion in A_{ii}^{ext} ?

In fact, there is a unitary transformation relating two theories:

$$\mathscr{L}_1 = \bar{\psi}(i\partial \!\!\!/ - m - e \!\!\!/ \!\!\!/^{\mathrm{ext}} - e \!\!\!/ \!\!\!/)\psi \cong \mathscr{L}_2 = \bar{\chi}(i\partial \!\!\!/ - m - e U \!\!\!/ \!\!\!/ \!\!\!/ U^{-1})\chi$$

[R. W. Brown & K. L. Kowalksi , J. Kupersztych]

So, the theory with vertices/rules:



is unitarily equivalent to the theory with $\mbox{vertex/rules:}$

and actually $U = E_n$.

⇒ probabilities calculated using two methods are **equal**.

Simplest Example: Photon Emission

- Doesn't take place in absence of external field.
- Structure of tree level amplitude:

$$\begin{split} i\mathscr{A}^{\mathsf{tree}} &= (-ie) \int d^4x \; \bar{u}(p') \bar{E}_{p'}(x) \gamma^{\mu} E_p(x) u(p) \epsilon_{\mu}^*(l) e^{il \cdot x} \\ &= \int_0^{\infty} ds \; \bar{u}(p') M^{\mu}(s, ...) u(p) \epsilon_{\mu}^*(l) \; \delta^{(4)}(p + sk - p' - l) \end{split}$$

Circularly Polarized Field

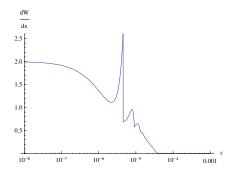
$$A_{\mu}^{\rm ext}(k \cdot x) = a_{1\mu} \cos(k \cdot x) + a_{2\mu} \sin(k \cdot x)$$
 with $a_1^2 = a_2^2 = -a^2$, $a_1 \cdot a_2 = 0 = k \cdot a_1 = k \cdot a_2$ $\downarrow \downarrow$ $i\mathscr{A}^{\rm tree} \rightarrow \sum_{n\geqslant 1} \bar{u}(p') \, M^{\mu}(n,...) \, u(p) \, \epsilon_{\mu}^*(I) \, \delta^{(4)}(q+nk-q'-I)$ [A. I. Nikishov, V. I. Ritus, '63,'64]

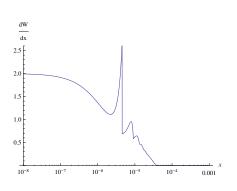
Circularly Polarized Field

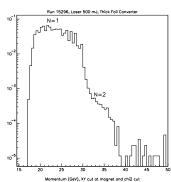
$$\begin{split} A_{\mu}^{\text{ext}}(k\cdot x) &= a_{1\mu}\cos(k\cdot x) + a_{2\mu}\sin(k\cdot x) \\ \text{with } a_1^2 &= a_2^2 = -a^2, \ a_1\cdot a_2 = 0 = k\cdot a_1 = k\cdot a_2 \\ &\downarrow \\ i\mathscr{A}^{\text{tree}} &\to \sum_{n\geqslant 1} \bar{u}(p')\ M^{\mu}(n,\ldots)\ u(p)\ \epsilon_{\mu}^*(I)\ \delta^{(4)}(q+nk-q'-I) \end{split}$$

[A. I. Nikishov, V. I. Ritus, '63,'64]

• $q^{\mu}=p^{\mu}-\frac{e^2a^2}{2k\cdot p}k^{\mu}$ is the so called 'quasi-momentum' \Rightarrow "mass-shift" $m^2\to m_*^2=m^2(1-\frac{e^2a^2}{m^2})$ so far an unobserved effect...







[SLAC E-144 experiment]

Precision, precision...

We want to obtain as accurate and precise theoretical predictions as possible.

ightarrow to do this need to really understand any **singularities** present in amplitudes / cross-sections.

In normal QED: 2 types of singularities

- IR singularities from
 - real emission of soft photons
 - ullet virtual corrections, loop momentum $\to 0$
 - UV singularities from
 - loops, loop momentum $\to \infty$

What happens in External Field Case?

- Expect UV behaviour to still be there (need to renormalize)
- Don't yet know if/how external field affects IR singularities

What happens in External Field Case?

- Expect UV behaviour to still be there (need to renormalize)
- Don't yet know if/how external field affects IR singularities

Step 1: look at $I \rightarrow 0$ behaviour of

Numerical investigation into complete decay for circularly polarized and constant crossed fields $(A_{\mu}^{\rm ext}=(k\cdot x)a_{\mu})$ has revealed **no** singularity.

Don't yet know why it's not there...!

next on agenda to dig out the apparent non-existence of this singularity

Conclusions and Future Work

Conclusions

- Intense-field QED a good thing to study
- Volkov solutions as a non-perturbative, semi-classical approach
- New 'intense-field' effects

Outlook

- Look at processes with more vertices...more complicated calculations, but should shed light onto what precisely happens to IR-singularities
- Look at loops, how these corrections affect shapes of plots, renormalisation...

Thanks for listening!