
Bayesian inference for hidden Markov models

Hidden Markov models, often abbreviated to HMMs, are models for time-series data that ex-
hibit dependence over time. More specifically, a hidden Markov model is a bivariate discrete–time
stochastic process {(Yt, St) : t = 1, . . . , T} consisting of an observed process {Yt : t = 1, . . . , T} and
a hidden process {St : t = 1, . . . , T}. The latter is often termed the state or regime and is usually
assumed to have a discrete and finite state space. The former can be discrete or continuous, univari-
ate or multivariate. In the standard theory of hidden Markov models this unobserved process is a
first order Markov chain and, conditional on these hidden states, the observable random quantities,
{Yt : t = 1, . . . , T}, form a conditionally independent sequence in which the conditional distribution
of Yt depends only on St. In the standard case, the hidden Markov model is assumed to be homo-
geneous in the sense that the Markov chain is homogeneous, that is, the transition probabilities are
constant over time, as is the conditional distribution of Yt given St. Through the observed process
{Yt : t = 1, . . . , T}, inference can be made about both the model parameters and the hidden process
which is often of interest in its own right. The inclusion of the unobserved random variables means
that hidden Markov models may also be regarded as missing data models or latent variable models.

Specific features of an observed time series, (y1, . . . ,yT ), can make hidden Markov models par-
ticularly attractive. Hidden Markov models are generalisations of mixture models and so also allow
for overdispersion, skewness and multi–modality. This makes them useful when the marginal dis-
tributions of observables exhibit these traits. Alternatively, in situations where ordered data are
believed to have arisen in distinct segments, hidden Markov models can provide a means of captur-
ing any underlying heterogeneity. Examples include DNA sequence data and series with reversible
or irreversible “change points”, such as the demand for natural gas by industrial users, which can
exhibit “jumps” as manufacturers switch between sources of energy. Finally, if a temporal process
can only be observed in noise, hidden Markov models provide a means of extracting the signal, for
example, in digital communications and speech recognition.

In this project, students will take a Bayesian approach to inference, fitting models using Markov
chain Monte Carlo methods. Beyond this, there is flexibility over the precise topic of research.
Possible areas for exploration include

• Development and comparison of different hidden Markov models for a particular real-world
data set,

• Determination of an appropriate or “useful” number of states,

• Incorporation of time-varying covariate information in the hidden or observed process,

• Incorporation of Markovian dependence in the observed process,

• Parallel tempering to facilitate movement between posterior modes,

• So-called infinite hidden Markov models which are a non-parametric Bayesian approach to
hidden Markov models.
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Essential prior modules

• MATH2707: Markov Chains II,

• MATH2647: Probability II,

• MATH2711: Statistical Inference II,

• MATH2697: Statistical Modelling II.

Essential companion modules

• MATH3411: Advanced Statistical Modelling,

• MATH3421: Bayesian Computation and Modelling,

• MATH3251: Stochastic Processes III.

Suggested resources

The following resources provide references, examples and a comprehensive treatment of inference for
hidden Markov models:

• Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Springer.

• Scott, S. L. (2002). Bayesian Methods for Hidden Markov Models. Journal of the American
Statistical Association, 97, 337–351.

• Zucchini, W., MacDonald, I. L. and Langrock, R. (2016). Hidden Markov Models for Time
Series: An Introduction Using R, Second Edition. CRC Press.
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