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Abstract: The stochastic search variable selection (SSVS), introduced by George and
McCulloch[1], is one of the prominent Bayesian variable selection approaches for regres-
sion problems. Some of the basic principles of modern Bayesian variable selection
methods were first introduced via the SSVS algorithm such as the use of a vector of
variable inclusion indicators. SSVS can effectively search large model spaces, identifying
the maximum a posteriori and median probability models, and also readily produce
Bayesian model averaging estimates. A number of generalizations and extensions of
the method have appeared in the statistical literature implementing SSVS to a variety of
applications such as generalized linear models, contingency tables, time series data, and
factor analysis.

1 Introduction

One of the most prominent topics in statistical science is the selection of a model from a set of potentially
plausible models under consideration. In regression analysis, this problem commonly reduces to choosing
an optimal subset of variables from the set of all available covariates; see Brown[2] for a concise overview of
variable selection methods. Within the Bayesian framework, variable selection is based on the evaluation of
the weight of evidence quantified by Bayes factors and posterior model probabilities; see Kass and Raftery[3]
and Berger[4] for more details concerning Bayes factors, Good[5] for measures of statistical evidence, and
George[6] and Rice[7] for Bayesian model selection and comparison.

In regression analysis, when p predictors are available, the number of potential models is equal to 2p,
assuming that the intercept is always included and that no interactions between covariates are considered.
Therefore, even for moderate values of p, the model space can be extremely large, thus rendering practically
infeasible the full enumeration of all potential models and the analytic evaluation of the corresponding
posterior probabilities or their approximation using information criteria such as BIC. For this reason, the
development of model search algorithms, which can efficiently explore large model spaces, was of crucial
importance in the early years of the Bayesian data analysis explosion, owing to the advent of Markov chain
Monte Carlo (MCMC) methods in statistical science. Such algorithms should be able to detect quickly
the most probable a posteriori models and deliver accurate estimates of their corresponding posterior
probabilities, which can be used either for model selection or for model averaging.

A pioneering step toward this direction was achieved via the seminal paper of George and McCulloch[1],
who introduced the stochastic search variable selection (SSVS) method that founded the main principles
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of modern Bayesian variable selection. SSVS was the first method appearing in the statistical literature
of that time that creatively fused ideas used in hierarchical prior designs[8] and Gibbs sampling under
data augmentation[9]. The main innovations of the method were: (i) the introduction of a vector of binary
parameters, denoted by 𝜸, which was used to indicate if a variable should be included or excluded from the
model (active or inactive) and (ii) that each regression coefficient was not set exactly equal to zero when
a covariate was assumed to be inactive, but it was a posteriori restricted to a small neighborhood around
zero via very informative zero-centered priors.

The first characteristic, that is, the binary inclusion indicators, allowed to setup a Gibbs-based algorithm
for searching the model space by implementing local changes to a single covariate at a time. In this way,
SSVS set the standard way of handling model uncertainty problems using MCMC algorithms. The second
innovation solved an even more difficult problem concerning the implementation of MCMC methods for
Bayesian model comparison. All MCMC methods until then were designed for cases where the posterior
was of fixed dimension, while model selection problems involve posterior distributions of models with
varying dimensions. With the simple idea of restricting inactive coefficients to small areas close to zero
(instead of setting them equal to zero), George and McCulloch kept the dimension of the problem fixed
across all models allowing for the standard implementation of Gibbs sampling. Thus, through SSVS one
can use Gibbs sampling to explore large model spaces and directly estimate the posterior model proba-
bilities without having to evaluate (exactly, numerically, or approximately) the marginal likelihood of each
model. Moreover, Bayesian model averaging (BMA) estimates and posterior inclusion probabilities for
each covariate are readily available and can be computed in a straightforward manner.

Soon after, several similar methods based on Gibbs sampling emerged, such as the Carlin and Chib[10]

algorithm, the sampler of Kuo and Mallick[11], and the Gibbs variable selection method of Dellaportas
et al.[12]. The aforementioned methods are based on similar principles and share common characteris-
tics. An analytic review of these algorithms is outside the scope of this article as we focus on the SSVS
approach; however, detailed reviews can be found in Dellaportas et al.[12] and more recently in O’Hara and
Sillanpää[13]. Finally, Green[14] introduced the reversible-jump Metropolis–Hastings algorithm, which can
be thought of as a general framework for model-search algorithms that are used in Bayesian model selec-
tion and/or averaging.

2 SSVS for the Normal Linear Model

Normal linear regression involves the setting, where we have n observations of a dependent variable Y ,
a set of potential predictors X1,X2, … ,Xp, and we assume that

Y ∼ Nn(𝐗𝜷, 𝜎2𝐈) (1)

where Y is n × 1, 𝐗 = [X1,X2, … ,Xp] is the n × p design matrix, 𝜷 = (𝛽1, 𝛽2, … , 𝛽p)T is the vector of
regression parameters, and 𝜎2 is a scalar. Selecting a subset of the predictors in 𝐗 is essentially equivalent
to assume that the corresponding 𝛽j’s of the predictors, which are not included in the model in Equation
(1), are equal to zero; see Trader[15] for a smooth introduction in Bayesian regression.

The main characteristic of SSVS is that 𝐗 contains all possible predictors and 𝜷 is of fixed dimensional-
ity p, for all 2p models under consideration. Under this approach, no parameter is considered to be exactly
equal to zero because a covariate is considered as “absent” or “inactive” when the corresponding parameter
lies in a small “neighborhood of zero”, thus, being practically negligible. This can be achieved by using a
mixture of normal distributions as a prior distribution for each model coefficient 𝛽j. Hence, the prior of
each 𝛽j given the latent binary inclusion indicator 𝛾j is given by the following hierarchical form

𝛽j|𝛾j ∼ (1 − 𝛾j)N(0, 𝜏2
j ) + 𝛾jN(0, 𝜏2

j c2
j ) (2)

Wiley StatsRef: Statistics Reference Online, © 2014–2015 John Wiley & Sons, Ltd.
This article is © 2015 John Wiley & Sons, Ltd.
DOI: 10.1002/9781118445112.stat07829

2



Stochastic Search Variable Selection (SSVS)

with
P(𝛾j = 1) = 1 − P(𝛾j = 0) = 𝜋j (3)

for j = 1, 2, … , p. Such kind of mixture priors based on the idea of facilitating Gibbs sampling via data
augmentation were initially introduced in Tanner and Wong[9]. The reasoning in the prior formulation
presented in Equation (2) is to choose 𝜏2

j to be “small” and 𝜏2
j c2

j to be “large” in comparison. This way, when
𝛾j = 1, 𝛽j is present in the model with a prior distribution that is vague so that the posterior distribution will
be mainly determined by the data. In contrast, when 𝛾j = 0, 𝛽j is considered to be absent from the model,
and the prior becomes more concentrated around the null hypothesis, forcing this parameter to be shrunk
toward zero. In a general multivariate form, the prior in Equation (2) can be expressed as

𝜷|𝜸 ∼ Np(𝟎 ,𝐃𝛄𝐑𝐃𝛄) (4)

where 𝜸 = (𝛾1, 𝛾2, … , 𝛾p)T, 𝐃𝛾 ≡ diag(𝛼1𝜏1, 𝛼2𝜏2, … , 𝛼p𝜏p, ) with 𝛼j = 1 if 𝛾j = 0 and 𝛼j = cj if 𝛾j = 1, and
𝐑 is the prior correlation matrix that can be defined accordingly (see next section).

The conditional prior of 𝛽j given that it is “inactive” (i.e., 𝛾j = 0) is the one that essentially restricts the
posterior distribution of 𝛽j to lie in a “small” area around zero instead of setting it exactly equal to zero.
This is implemented using a “ridge regression” type of shrinkage. This property is also the main feature that
differentiates SSVS from the other Gibbs-based model search algorithms such as the ones proposed by Kuo
and Mallick[11] and Dellaportas et al.[12]. Moreover, the SSVS posterior probabilities and Bayes factors will
not be the same as the ones that result from using equality-to-zero constraints as the underlying models are
slightly different. Nevertheless, the two approaches will tend to converge to the same results as the prior
variance of the inactive effects approaches zero. The “spike and slab” prior of Mitchell and Beauchamp[8]

can be considered as an ancestor of SSVS as the two approaches share some common ideas.
In the above-mentioned model formulation, we have not discussed about the constant term that is usu-

ally included in all regression models. Without loss of generality, we do not need to treat the constant term
separately but as a simple covariate with all values equal to one, that is, X1 = (1, 1, … , 1)T . In such case,
we can retain the constant term in all models by simply specifying the corresponding prior probability of
inclusion equal to one, that is, 𝜋1 = 1. Equivalently, the constant can be eliminated from the model formu-
lation without changing the interpretation of the model coefficients if we center both the response and the
explanatory variables at their sample means.

SSVS is completed by specifying the prior distributions of 𝜎2 and 𝜸. For the variance component, the
most convenient option is the conjugate inverse-gamma prior, that is

𝜎2|𝜸 ∼ IG(𝜈𝜸∕2, 𝜈𝜸𝜆𝜸∕2) (5)

As noted in George and McCulloch[1], conditioning upon 𝜸 provides flexibility, in the sense that one can
incorporate dependency between 𝜷 and 𝜎2; for instance, one may want to allow the variance to decrease
as the dimension of 𝜷 increases. Finally, for 𝜸, the authors suggest that a reasonable option is to consider
the 𝛾j’s to be independent so that

𝜋(𝜸) =
p∏

j=1
𝜋
𝛾j

j (1 − 𝜋j)(1−𝛾j) (6)

The prior in Equation (6) implies that the inclusion of X𝓁 is independent of the inclusion of Xj for all 𝓁 ≠ j.
This prior is a standard option that facilitates Gibbs sampling. Nevertheless, alternative prior forms that
allow incorporating structural information about the design matrix are also available; see Section 5 for
some details.

Given the priors in Equations (4)–(6), the corresponding full conditional distributions of 𝜷 , 𝜎2, and 𝜸 are
all known in closed form (normal for 𝜷 , inverse-gamma for 𝜎2, and Bernoulli for 𝛾j), allowing for fast and
efficient Gibbs sampling; see George and McCulloch[1] for details. Because of its simplicity, SSVS can also
be used in cases where the marginal likelihood can be evaluated analytically but the model space is large,
that is, as a better alternative to full enumeration (which may not be feasible) or to an MC3 algorithm (see
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Ref. 3, for details), both of which involve inversion of (possibly) large matrices depending on the dimension
of the models under consideration. Finally, SSVS can be easily implemented in WinBUGS and other related
software (e.g., OpenBUGS or JAGS); see Refs 16 and 17 for detailed examples.

It is worth noting that in subsequent work, George and McCulloch[18] also proposed an alternative prior
for 𝜷 , which is further conditioned upon 𝜎2, namely 𝜷|𝜎2, 𝜸 ∼ Np(𝟎, 𝜎2𝐃𝛄𝐑𝐃𝛄). This prior on 𝜷 , combined
with the priors in Equations (5) and (6), results in a conjugate design that simplifies calculations as the
only requirement in this case is to evaluate 𝜋(𝜸|Y ), which is known up to a proportionality constant; this
can done analytically for small or moderate p and through MCMC methods for large p; see George and
McCulloch[18] for details.

The output of SSVS is a posterior sample {𝜷 (t), 𝜎(t), 𝜸(t)} for t = 1, … ,T . Focus is placed on 𝜸 as the
relative frequencies of all sampled combinations of 𝜸 will provide estimates of the posterior model prob-
abilities. The posterior inclusion probability of each covariate Xj can be easily estimated as P̂(𝛾j = 1|Y ) =
T−1 ∑T

t=1 𝛾
(t)
j . Furthermore, for any quantity of interest 𝜃, the BMA estimate is simply the sample mean 𝜃

obtained from the SSVS output as 𝜃(t) is generated at each iteration t from the full conditional posterior
distribution of model 𝜸(t).

3 Specification of Hyperparameters

From the simple version of SSVS, which uses independent priors in Equation (2), we can obtain results
comparable to the ones obtained from standard Bayesian variable selection methods that assume 𝛽j = 0
for nonimportant effects and a normal N(0, 𝜎2

𝛽j
) prior when 𝛽j ≠ 0. That occurs when the “large” prior

variance c2
j 𝜏

2
j of SSVS is set equal to 𝜎2

𝛽j
and 𝜏2

j is chosen to be suitably low. Note that for 𝜏2
j → 0, the

underlying posterior model probabilities of the two approaches will coincide, however, in this case SSVS
will be less and less efficient and mobile in model space. Therefore, 𝜏2

j must be tuned carefully in order to
keep SSVS efficient and at the same time have a good proxy for posterior model probabilities of variable
selection based on point-zero null hypotheses.

For the specification of 𝜏2
j and c2

j , George and McCulloch[1] describe a “semiautomatic” procedure in
order to select reasonable values. The idea relies first on the fact that cj can be interpreted as the odds ratio
of excluding Xj when 𝛽j is very close to zero and second on fine-tuning the ratio of statistical over practical
significance measured by the quantity 𝜎𝛽j

∕𝜏j, with 𝜎𝛽j
being the observed standard error of the least squares

estimate of 𝛽j. On the basis of sensitivity analyses in George and McCulloch[1], fixed values of 𝜎𝛽j
∕𝜏j and

cj set to (1,5), (10,100) usually perform well under most situations, although some caution may be needed
depending on the characteristics of the data set, such as sample size, number of predictors, and so forth.
Guidelines for specifying these parameters using logical arguments based on the size of the coefficient can
be found in Ntzoufras[16] for log-linear models for contingency tables and in Mavridis and Ntzoufras[19]

for the loadings in factor analysis models.
Regarding the prior correlation matrix 𝐑, two prior choices, representing two extremes, are of particular

interest; namely, 𝐑 = 𝐈, which means that the components in 𝜷 are considered independent a priori, and
𝐑 ∝ (𝐗T𝐗)−1, which corresponds to the g-prior of Zellner[20], where the prior correlation is identical to
the design correlation multiplied by a scalar.

For parameter 𝜎2, prior ignorance can be expressed through the choice 𝜈𝜸 ≡ 0, and any value of 𝜆𝜸 as in
this case the prior in Equation (5) does not contribute any information to the posterior. Alternatively, one
can regard [𝜈𝜸∕(𝜈𝜸 − 2)]𝜆𝜸 as a prior estimate of 𝜎2 (from an imaginary experiment of 𝜈𝜸 data points) and
define this quantity as a decreasing function of p𝜸 =

∑p
j=1 𝛾j, so that higher-dimensional models will be a

priori expected to have a lower residual variance.
Lastly, for the product-Bernoulli distribution in Equation (6), assigned to 𝜸, a usual choice is the uni-

form prior, where each X j has an equal chance (𝜋j = 0.5) of being included or excluded from the model,
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so that 𝜋(𝜸) ≡ 2−p. Alternatively, one can use mixtures of beta-binomial priors that result in marginal pri-

ors of the form 𝜋(𝜸) = wp
𝜸

(
p
p𝜸

)−1

, where wp
𝜸

is a prior weight for a model of size p𝜸 . A typical option is

wp
𝜸

= 1∕(p + 1), which results from a beta mixture distribution with parameters a and b equal to one, that
is, a uniform prior on 𝜋j; see Scott and Berger[21].

4 Extensions of SSVS

Ever since the initial development of SSVS for normal linear models, the applicability of the method has
been extended to a wide variety of models. George et al.[22] considered SSVS for generalized linear mod-
els (GLMs) and demonstrated its use for probit regression. Brown et al.[23] extended SSVS to multivariate
normal regression providing fast and efficient algorithms for problems that may involve a large number of
predictors. Ntzoufras et al.[24] focused on log-linear models for multiway contingency tables. This special
case of GLMs has some features, which make implementation of SSVS challenging; specifically, (i) for prob-
lems involving factors with more than two levels the terms for main and interaction effects are represented
by more than one parameter, so that the prior in Equation (2) can be multivariate and (ii) the 𝛾j’s should not
be considered independent a priori, as in Equation (6), owing to the fact that values of 𝜸 corresponding to
nonhierarchical models are prohibited. Further extensions of SSVS have been developed for factor analy-
sis models, where the goal is to interpret and quantify the interrelationships between observed variables
(items) and latent variables (factors). Within the factor analytic framework, Dunson[25] introduced the
stochastic search factor selection (SSFS) approach, while Mavridis and Ntzoufras[19] further generalized
the methodology by developing models and algorithms for stochastic search of item selection (SSIS) as
well as stochastic search factor and item selection (SSFIS). Further extensions and modifications of SSVS
are used in genetics, especially in gene-mapping applications Refs 26–28, in time series and econometric
models Refs 29 and 30 and, recently, in quantile regression[31].

5 SSVS: Toward the Future

Ročková and George[32] have recently introduced the expectation-maximization variable selection (EMVS)
algorithm. EMVS is actually founded on the hierarchical model specification of SSVS assuming ridge type
of shrinkage for the “inactive” covariates and independent mixtures of normals for the model coefficients.
These are the main features that make the EM algorithm applicable in the Bayesian variable formulation. If
the sharp point-null restriction to zero is assumed or multivariate-dependent priors are adopted, then the
EM cannot be implemented (at least in an obvious and efficient way) as computations require calculations
over the whole model space. EMVS is naturally much faster than its stochastic counterpart and is especially
suited for high-dimensional problems with large p or even p > n. Especially for the latter situation, EMVS
is particularly flexible as it allows incorporating shrinkage hyper-priors for the “slab” part of the hierarchi-
cal prior in Equation (2). Furthermore, structured information about the design matrix can be naturally
incorporated into EMVS through the use of independent logistic regression priors or Markov random field
priors for 𝜸 instead of the product Bernoulli prior in Equation (6). According to Ročková and George[32],
future directions include, among others, extending the EMVS methodology to GLM’s, Gaussian graphical
models, factor analysis models, and multivariate regression models.

Related Articles

Bayes Factors; Bayesian Model Selection; Regression, Bayesian; Statistical Evidence; Bayesian Meth-
ods for Model Comparison; Variable Selection.
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