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posterior distributions is used as an importance sampling function is investigated. The
approach is generally applicable tomulti-block parameter vector settings, does not require
additional Markov Chain Monte Carlo (MCMC) sampling and is not dependent on the type
of MCMC scheme used to sample from the posterior. The proposed approach is applied to
normal regression models, finite normal mixtures and longitudinal Poisson models, and
leads to accurate marginal likelihood estimates.
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1. Introduction

The problem of estimating the marginal likelihood has received considerable attention during the last two decades.
The topic is of importance in Bayesian statistics as it is associated with the evaluation of competing hypotheses or models
via Bayes factors and posterior model odds. Consider, briefly, two competing models M1 and M2 with corresponding prior
probabilities π(M1) and π(M2) = 1 − π(M1). After observing a data vector y, the evidence in favor ofM1 (or againstM2) is
evaluated through the odds of the posterior model probabilities p(M1|y) and p(M2|y), that is,

p(M1|y)
p(M2|y)

=
m(y|M1)

m(y|M2)
×

π(M1)

π(M2)
.

The quantity B12 = m(y|M1)/m(y|M2) is the ratio of the marginal likelihoods or prior predictive distributions ofM1 andM2
and is called the Bayes factor of M1 versus M2. The Bayes factor can also be interpreted as the ratio of the posterior odds to
the prior odds. WhenM1 andM2 are assumed to be equally probable a-priori, the Bayes factor is equal to the posterior odds.

Themarginal likelihood of a givenmodelMk associatedwith a parameter vector θk is essentially the normalizing constant
of the posterior p(θk|y,Mk), obtained by integrating the likelihood function l(y|θk,Mk) with respect to the prior density
π(θk|Mk), i.e.

m(y|Mk) =


l(y|θk,Mk)π(θk|Mk)dθk. (1)
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The integration in (1) may be evaluated analytically for some elementary cases. Most often, it is intractable thus giving rise
to the marginal likelihood estimation problem. Numerical integration methods can be used as an approach to the problem,
but such techniques are of limited use when sample sizes are moderate to large or when vector θk is of large dimensionality.
In addition, the simplest Monte Carlo (MC) estimate, which is given by

m(y|Mk) = N−1
N

n=1

l(y|θ(n)
k ,Mk), (2)

using draws {θ
(n)
k : n = 1, 2, . . . ,N} from the prior distribution, is extremely unstable when the posterior is concentrated

in relation to the prior. This scenario is frequently met in practice when flat, low-information prior distributions are used
to express prior ignorance. A detailed discussion regarding Bayes factors and marginal likelihood estimation is provided by
Kass and Raftery (1995).

It is worth noting that the problem of estimating (1) can be bypassed by considering model indicators as unknown
parameters. This option has been investigated by several authors (e.g. Green, 1995, Carlin and Chib, 1995 and Dellaportas
et al., 2002) who introduce MCMC algorithms which sample simultaneously over parameter and model space and deliver
directly posterior model probabilities. However, implementation of thesemethods can get quite complex since they require
enumeration of all competing models and specification of tuning constants or ‘‘pseudopriors’’ (depending upon approach)
in order to ensure successful mixing in model space. Moreover, since these methods focus on the estimation of posterior
model probabilities, accurate estimation of the marginal likelihoods and/or Bayes factors will not be feasible in the cases
where a dominating model exists in the set of models under consideration; tuning, following the lines of Ntzoufras et al.
(2005), might be possible but is typically inefficient and time consuming.

In contrast, ‘‘direct’’ methods provide marginal likelihood estimates by utilizing the posterior samples of separate
models. These methods are usually simpler to implement and are preferable in practice when the number of models under
consideration is not large, namely when it is practically feasible to obtain a posterior sample for each of the competing
models. Work along these lines includes the Laplace–Metropolis method (Lewis and Raftery, 1997), the harmonic-mean
and the prior/posterior mixture importance sampling estimators (Newton and Raftery, 1994), bridge-sampling methods
(Meng and Wong, 1996), candidate’s estimators for Gibbs sampling (Chib, 1995) and Metropolis–Hastings sampling (Chib
and Jeliazkov, 2001), annealed importance sampling (Neal, 2001), importance-weightedmarginal density estimators (Chen,
2005) and nested sampling approaches (Skilling, 2006). More recently, Raftery et al. (2007) presented a stabilized version of
the harmonic-mean estimator,while Friel and Pettitt (2008) andWeinberg (2012) proposednewapproaches based onpower
posteriors and Lebesgue integration theory, respectively. It is worth mentioning that Bayesian evidence evaluation is also of
particular interest in the astronomy literature where nested sampling is commonly used for marginal likelihood estimation
(e.g. Feroz et al., 2009 and Feroz et al., 2011). Recent reviews comparing popular methods based on MCMC sampling can be
found in Friel and Wyse (2012) as well as in Ardia et al. (2012). Alternative approaches for marginal likelihood estimation
include sequential Monte Carlo (Del Moral et al., 2006) and variational Bayes (Parise and Welling, 2007) methods.

In this paper we propose using the marginal posterior distributions on importance sampling estimators of the marginal
likelihood. The proposed approach is particularly suited for the Gibbs sampler, but it is also feasible to use for other types of
MCMC algorithms. The estimator can be implemented in a straightforward manner and it can be extended to multi-block
parameter settings without requiring additional MCMC sampling apart from the one used to obtain the posterior sample.

The remainder of the paper is organized as follows. The proposed estimator and its variants are discussed in Section 2. In
Section 3 the method is applied to normal regression models, to finite normal mixtures and also to hierarchical longitudinal
Poisson models. Concluding remarks are provided in Section 4.

2. The proposed estimator

In the following we first introduce the proposed estimator in a two block setting. The more general multi-block case
is considered next, explaining why the estimator will be useful in such cases. We further present details concerning the
implementation of the proposed approach when the model formulation includes latent variables or nuisance parameters
that are not of prime interest for model inference. The section continues with a description of the different estimation
approaches of the posterior marginal distributions used as importance functions. We conclude with a note on a convenient
implementation of the estimator for models where the posterior distribution becomes invariant under competing diffuse
priors and brief remarks about the calculation of numerical standard errors. In the remaining of the paper, the dependence
to the model indicatorMk (introduced in the previous section) is eliminated for notational simplicity.

2.1. Introducing the estimator in a two-block setting

Let us consider initially the 2-block setting where l(y|θ, φ) is the likelihood of the data conditional on parameter vectors
θ = (θ1, θ2, . . . , θp)

T and φ = (φ1, φ2, . . . , φq)
T , which can be either independent, i.e. π(θ, φ) = π(θ)π(φ), or dependent,

e.g. π(θ, φ) = π(θ|φ)π(φ), a-priori. In general, one can improve the estimator in (2) by introducing a proper importance
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sampling density g and then calculate the marginal likelihood as an expectation with respect to g instead of the prior, i.e.

m(y) =


l(y|θ, φ)π(θ, φ)

g(θ, φ)
g(θ, φ)d(θ, φ) = Eg


l(y|θ, φ)π(θ, φ)

g(θ, φ)


.

This quantity can be easily estimated as

m(y) = N−1
N

n=1

l(y|θ(n), φ(n))π(θ(n), φ(n))

g(θ(n), φ(n))
,

where θ(n) and φ(n), for n = 1, 2, . . . ,N , are draws from g . Theoretically, an ideal importance sampling density is
proportional to the posterior. In practice, we seek densities which are similar to the posterior and easy to sample from.

Given this consideration, we propose to use the product of the marginal posterior distributions as importance sampling
density, i.e. g(θ, φ) ≡ p(θ|y)p(φ|y). Under this approach

m(y) =


l(y|θ, φ)π(θ, φ)

p(θ|y)p(φ|y)
p(θ|y)p(φ|y)dθdφ,

which yields the estimator

m(y) = N−1
N

n=1

l(y|θ(n), φ(n))π(θ(n), φ(n))

p(θ(n)
|y)p(φ(n)

|y)
. (3)

Note that the only twist in (3) is that the draws θ(n) and φ(n), for n = 1, 2, . . . ,N , are draws from the marginal posteriors
p(θ|y) and p(φ|y) and not from the joint posterior p(θ, φ|y). In most cases the marginal posterior distributions will not be
known, nevertheless, this does not constitute a major obstacle neither for sampling from the marginal posteriors nor for
calculating the marginal probabilities which appear in the denominator of (3); the former issue is discussed here, the latter
is handled in Section 2.4.

It is straightforward to see that the product marginal posterior is the optimal importance sampling density when θ and
φ are independent a-posteriori, since in this case p(θ|y)p(φ|y) = p(θ, φ|y) leading to the zero-variance estimator. Although
posterior independence is not frequently met in practice, the product marginal posterior can serve as a good approximation
to the joint posterior even if θ and φ are not completely independent a-posteriori. First, it has exactly the same support as
the joint posterior. Second, the blocking of the parameters can be such that the parameter blocks are close to orthogonal
regardless whether the elements within θ and φ are strongly correlated. Furthermore, appropriate reparameterizations
can be used in order to form parameter blocks which are orthogonal or close to orthogonal (see e.g. Gilks and Roberts,
1996). Moreover, in generalized linear models the augmentation scheme of Ghosh and Clyde (2011) can be used to obtain
orthogonal parameters.

It is worth noting that the estimator in (3) is similar to the Markov chain importance sampling approach described
in Botev et al. (2013) and the marginal likelihood estimator proposed in Chan and Eisenstat (2013) based on the
cross-entropy method. Botev et al. (2013) show that the product of the marginals is the best importance sampling
density – in the sense ofminimizing the Kullback–Leibler divergencewith respect to the zero-variance importance sampling
density – among all product form importance sampling densities, given that the zero-variance density is also decomposable
in product form. Similarly, Chan and Eisenstat (2013) locate the importance sampling density minimizing Kullback–Leibler
divergence with respect to block-independent factorizations of the joint posterior from distributions belonging to the same
parametric families as the priors. The approach presented here differentiates from the above estimators since we consider
directly the marginal posteriors and ‘‘manipulate’’ the joint MCMC sample in order to construct marginal samples, thus
avoiding further importance sampling and leaving estimation of marginal densities as the main issue to deal with.

In general, marginal posterior samples can be obtained from any MCMC algorithm. The only problem is that a single
MCMC chain corresponds to a sample from the joint distribution, with non-zero covariance between parameter blocks. One
option is to use a differentMCMC run for each block of parameters. In this case, one can calculate the estimator in (3) by using
draws θ(n), φ(n) coming from two independentMCMC samples of equal size N . Nevertheless, this approach can considerably
increase the number of MCMC iterations, especially for a large number of parameter blocks. In addition, the approach is not
economical in the sense that only N posterior draws are used from a total sample of 2N draws.

A simple and more efficient solution is to re-order a single MCMC chain in such a way that it does not correspond to
a sample from the joint posterior distribution. This can be easily implemented by systematically permuting either the
sampled values of θ or those of φ. For instance, consider one MCMC chain where the initial MCMC draws are indexed as
{θ(n), φ(n)

: n = 1, 2, . . . ,N1,N1 + 1,N1 + 2, . . . ,N} where N1 = N/2. Then, one can simply re-order the sample of
φ as {φ(n1) : n1 = N1 + 1,N1 + 2, . . . ,N, 1, 2, . . . ,N1} and join the set of draws {θ(n), φ(n1)}, thus forming a sample of
paired realizations from the distribution g(θ, φ) = p(θ|y)p(φ|y). Obviously, when the paired sample has been formed, the
distinction between the two sets of indices becomes irrelevant and a common indexmay be adopted as presented in Eq. (3).
Re-ordering is trivial in implementation regardless of the number of parameter blocks; the only initial requirement is that
the size of the final MCMC sample N must be dividable with the number of blocks, say B, so that B independent re-orderings
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of the MCMC chain can be formed. This line of reasoning also holds for cases of multiple-chain MCMC sampling, which is a
frequent MCMC strategy favored mainly on the basis of MCMC convergence checks (e.g. Gelman and Rubin, 1992). For such
cases, one can re-order the within-chain posterior samples in a similar manner to that previously described, and then form
a joined sample from the multiple re-ordered chains.

Another, even simpler, alternative for removing correlations between marginal samples is to randomly permute each
sample. Results using this approach will be similar to the above systematic re-ordering, except in extreme, unlikely
cases where randomly permuted samples with non-zero sample correlation are generated by chance. Irrespective of the
re-ordering scheme used, for the remainder of this paper we use a common index n across parameter blocks, referring to
joined independent block samples.

2.2. Extension to multi-block settings

Generalization to multi-block hierarchical settings is straightforward. Consider B blocks θ1, θ2, . . . , θB; in this case the
product of the Bmarginal posteriors is used as importance sampling density and

m(y) =


. . .


l(y|θ1, . . . , θB)π(θ1, . . . , θB)

B
i=1

p(θi|y)

B
i=1

p(θi|y)dθi,

which yields the following estimator

m(y) = N−1
N

n=1

l(y|θ(n)
1 , . . . , θ

(n)
B )π(θ

(n)
1 , . . . , θ

(n)
B )

B
i=1

p(θ(n)
i |y)

. (4)

Note that the estimator in (4) may also refer to multiple unidimensional blocks where each parameter forms one block.
The advantage of such an estimator raises from the fact that it is easy to construct good approximations of univariate
marginal posterior distributions. On the other hand, any possible gain in the efficiency earned from the construction of
good approximating densities for the marginal posteriors might be moderated by the use of an importance function which
assumes overall independency. Therefore, the most efficient strategy is to choose blocks of minimal size constituted only
by highly correlated parameters, which have at the same time weak between-block correlations. Of course, quite often the
model design is such that this condition is already met, e.g. for reasons of efficient MCMC mixing. In addition, for cases of
Gibbs sampling the natural blocking is the most convenient to use, since in such cases marginal posterior densities can be
estimated accurately even for high-dimensional parameter blocks (see Section 2.4 for more details).

2.3. Handling latent variables and nuisance parameters

Many hierarchical models include a block component u, usually not of main inferential interest, which is associated
with a hyperparameter vector ω through the relationship π(u, ω) = π(u|ω)π(ω). For instance, u may be a random effect
vector or a latent vector used to facilitate posterior simulation through Gibbs sampling as in the data augmentation setting
introduced in Tanner and Wong (1987). In such hierarchical settings inference usually focuses on the marginal sampling
likelihood by integrating out u. For example, when there is only one parameter block θ, the marginal sampling likelihood
is l(y|θ, ω) =


l(y|θ,u)π(u|ω)du. In this case, a marginal likelihood estimate is obtained through Eq. (3), where φ is

simply replaced by ω. The extension to the multi-block setting is essentially the same as in (4), only with the addition of ω,
specifically

m(y) = N−1
N

n=1

l(y|θ(n)
1 , . . . , θ

(n)
B , ω(n))π(θ

(n)
1 , . . . , θ

(n)
B )π(ω(n))

B
i=1

p(θ(n)
i |y)p(ω(n)|y)

. (5)

Alternatively, there is also the option of working with the hierarchical likelihood and including u in the estimation process,
i.e.

m(y) = N−1
N

n=1

l(y|θ(n)
1 , . . . , θ

(n)
B ,u(n))π(θ

(n)
1 , . . . , θ

(n)
B )π(u(n)

|ω(n))π(ω(n))

B
i=1

p(θ(n)
i |y)p(u(n)|y)p(ω(n)|y)

. (6)

The latter approach is less practical to implement as it requires evaluation of p(u|y). In addition, marginalization over uwill
in general lead to more precise marginal likelihood estimates due to scaling down the parameter space; see Vitoratou et al.
(2013) for further details. Therefore, estimator (5) is overall preferable to estimator (6), except perhaps in cases where the
likelihood in (5) is not available analytically and also estimation of p(u|y) is easy to handle based on the methods discussed
next.
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2.4. Estimating marginal posterior densities

As seen so far, the proposed approach is fairly simple to implement. The only remaining issue is the evaluation of
the marginal posterior probabilities appearing in the denominators of estimators (3)–(6). Here we discuss some different
approaches that can be adopted.

A first simple approach is to assume normality either directly or indirectly. Let us consider, for instance, the 2-block
setting of Section 2.1 with parameter blocks θ and φ. Suppose, for instance, that θ relates to a vector of means or a vector of
regression parameters. Then, formoderate to large sample sizes, a reasonable option is to assume that θ|y ∼ N(θ, Σθ), where
θ and Σθ are the estimated posterior mean vector and variance–covariance matrix from the MCMC output, respectively.
Vector φ, on the hand, may refer to a vector of dispersion parameters, where the assumption of normality may not be
suitable. One strategy, often sufficient in many cases, is to assume that a transformation x = t(φ) is approximately normal,
i.e. x|y ∼ N(x, Σx), and consequently p(φ|y) = p(x|y)| dt

−1(x)
dx |

−1 for an appropriate invertible function t(·).
An alternative is to mimic the marginal posteriors by adopting appropriate distributional assumptions and matching

parameters to posterior moments. This option is more suitable when the assumption of normality is not particularly
supported and appropriate transformation functions are hard to find. In such cases, one can also consider a wide range
of options based on multivariate kernel methods (e.g. Scott, 1992) as an efficient alternative.

Moreover, when implementing Gibbs sampling where the normalizing constants of the full conditional distributions
are known, marginal posterior densities can be estimated through an efficient, simulation-consistent technique referred as
Rao–Blackwellization by Gelfand and Smith (1990). Consider, for instance, the B parameter block setting of Section 2.2; the
Rao–Blackwell estimates in this case are

p(θ1|y) = L−1
L

l=1

p(θ1|θ
(l)
2 , . . . , θ

(l)
B , y),

p(θb|y) = L−1
L

l=1

p(θb|θ
(l)
1 , . . . , θ

(l)
b−1, θ

(l)
b+1, . . . , θ

(l)
B , y) for b = 2, . . . , B − 1,

p(θB|y) = L−1
L

l=1

p(θB|θ
(l)
1 , . . . , θ

(l)
B−1, y).

Note that not all N posterior draws need to be used; usually a sufficiently large sub-sample of L posterior draws is adequate.
For instance, in the examples presented next we find that samples between 200 and 500 draws are sufficient, which
significantly reduces computational expense. It should also be noted that Rao–Blackwell estimates must be based on draws
from the joint posterior distribution, that is draws from the initial non-permuted MCMC sample.

Finally, for cases of hybrid Gibbs samplingwhere only some full conditionals are known, one can use a combination of the
methods discussed here. Rao–Blackwellization may be used for parameter blocks with known full conditional distributions,
whereas for the remaining blocks one can choose among distributional approximations based onmoment-fitting and kernel
methods.

Estimators (3)–(6) will not be unbiased when approximating the marginal posterior densities using moment-matching
strategies. Nevertheless, in practice such ‘‘proxies’’ can be very accurate for univariate as well as multivariate distributions.
For instance, as illustrated in Section 3.3, high-dimensional marginal posteriors are approximated efficiently through
multivariate normal distributions. In addition, the degree of bias can be empirically checked by comparing such estimates
to the corresponding ones using importance samples from the moment-matched approximating distributions. The latter
procedure yields an unbiased estimator of themarginal likelihood and, therefore, small observed differences will imply that
the bias introduced is negligible.

2.5. Marginal likelihood estimation for diffuse priors

As known, themarginal likelihood is very sensitive to changes in the prior distribution,whereas the posterior distribution
(after a point) is insensitive to the prior as the latter becomesmore andmore diffuse. Therefore, a usual drawback ofmarginal
likelihood estimators that are based solely on draws from the posterior distribution is that they are typically not reliable for
evaluating the marginal likelihoods of different models when considering diffuse priors (see e.g. Friel and Wyse, 2012).

Nevertheless, this is not the case for the proposed estimator as it incorporates the prior in the estimation of the marginal
likelihood. In fact, we can easily adopt estimator (3) in order to estimate the marginal likelihood under different diffuse
priors (that have no essential effect on the posterior distribution) using a sample from a single MCMC run. To illustrate this,
consider the 2-block setting of Section 2.1 and two diffuse priors π0, π1 under which the posterior distribution remains
unchanged, i.e. p0 ≡ p1. Let us assume that draws {θ(n), φ(n)

: n = 1, 2, . . . ,N} are available from an initial MCMC run and
that the marginal likelihood m0 under π0 has already been estimated through (3). Then, the marginal likelihood under π1
can be accurately estimated by

m1(y) = N−1
N

n=1

l(y|θ(n), φ(n))π1(θ
(n), φ(n))

p0(θ(n)
|y)p0(φ(n)

|y)
. (7)
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The estimator in (7) does not require additional MCMC sampling, likelihood evaluations or evaluations of the marginal
posterior densities since the posterior distributions p1 and p0 are the same under π1 and π0, respectively; the only extra
effort involved is calculation of the prior probabilities π1(θ

(n), φ(n)), for n = 1, 2, . . . ,N .

2.6. Calculating the numerical standard error

The method of batch means provides a straightforward way for calculating the numerical or MC error of the estimator.
Consider for instance the 2-block setting of Section 2.1; in this case the block-independent posterior sample ζ(n)

≡

(θ(n), φ(n)) is divided into K batches ζ
(nk)
1 , ζ

(nk)
2 , . . . , ζ

(nk)
K of size NK , i.e. nk = 1, 2, . . . ,NK and N = KNK , and one calculates

mk(y) = N−1
K

NK
nk=1

l(y|θ(nk)
k , φ

(nk)
k )π(θ

(nk)
k , φ

(nk)
k )

p(θ(nk)
k |y)p(φ(nk)

k |y)
, (8)

for k = 1, 2, . . . , K . Then, an estimate of the standard error is given by

s.e. (m(y)) =

 1
K(K − 1)

K
k=1

[mk(y) − m(y)]2, (9)

where m(y) = K−1K
k=1mk(y) is the average batch mean estimate. Note that K must be large enough to ensure proper

estimation of the variance (the usual choice is 30 ≤ K ≤ 50) and NK must also be sufficiently large so that the mk’s are
roughly independent (see e.g. Carlin and Louis, 1996).

Alternatively, we can consider the variance estimators of Newey andWest (1987) and Geyer (1992) for dependentMCMC
draws. Such estimators are suited when systematic re-ordering is used to form the block-independent posterior sample,
since, in this case the posterior dependency patterns will be the same as those of the initial MCMC sample. This is due to
the fact that the number of parameter blocks Bwill be usually much smaller than the size of the posterior sample (B ≪ N).
Therefore, serial auto-correlations for lags greater than N/B are expected to be negligible (for convergedMCMC runs), while
auto-correlations of lower order are not affected by the re-ordering.

Finally, checking whether the variance is finite or not can be investigated empirically; if the variance is finite then one
should expect that increasing the MCMC sample by a factor of d should lead to a decrease of the standard error estimate
by a factor approximately equal to

√
d. As illustrated in Section 3.4, the variance of the proposed estimator is finite for the

examples presented in Section 3.

3. Examples

In this section we apply our method to three common classes of models. First, we consider normal linear regression
where the true marginal likelihood can be calculated analytically, and compare the proposed estimator to other estimators
commonly used in practice. The second example concerns finite normal mixture models where marginal likelihood
estimation has proven particularly problematic due to non-identifiability. In the third example, we apply the proposed
methods to an hierarchical longitudinal Poisson model where the integrated sampling likelihood is analytically unavailable
and, furthermore, standard Gibbs sampling cannot be implemented. The section closes with an empirical diagnostic for
checking the assumption of finite variance by comparing the corresponding errors from samples of size N and 2N .

In all illustrations, we denote the likelihood functions with l(·), prior densities with π(·) and posterior or full conditional
distributions with p(·). Concerning specific distributional notation, the inverse-gamma density defined in terms of shape α
and rate β is denoted by IG(α, β), the Dirichlet distribution with k concentration parameters by Dir(α1, α2, . . . , αk) and
the p-dimensional inverse-Wishart distribution with ν degrees of freedom and scale matrix 9 by IWp(ν, 9).

3.1. Normal regression models

Here we consider the data set presented in Montgomery et al. (2001, p. 128) concerning 25 direct current (DC) electric
charge measurements (volts) and wind velocity measurements (miles/hour). The goal is to infer about the effect of wind
velocity on the production of electricity from a water mill. The models under consideration are;
(i) M0: the null model with the intercept,
(ii) M1: intercept + (x1 − x1),
(iii) M2: intercept + (x2 − x2) and
(iv) M3: intercept + (x1 − x1) + x21,
where x1 is wind velocity and x2 is the logarithm of wind velocity. Let j denote the model indicator, i.e. j = 0, 1, 2, 3. The
likelihood and prior assumptions are the following

y|βj, σ
2
j ∼ N (Xjβj, Iσ

2
j )

βj|σ
2
j ∼ N (0,Vjσ

2
j )

σ 2
j ∼ IG(10−3, 10−3)
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Table 1
Estimatedmarginal log-likelihood values comparedwith true values for Example 1; average batchmean estimates (MC errors in parentheses) are presented
using 30 batches of size 300.

Estimator Model
M0 M1 M2 M3

Laplace–Metropolis logm(y)LM −35.1381 −12.3676 −0.4044 −0.9044
(0.0092) (0.0124) (0.0092) (0.0112)

Importance-weighted logm(y)Chen −34.8815 −13.1407 −1.5979 −2.2277
(0.0029) (0.0039) (0.0031) (0.0068)

Candidate’s logm(y)Chib −34.8789 −13.1420 −1.5962 −2.2337
(0.0020) (0.0028) (0.0023) (0.0067)

Optimal bridge-sampling logm(y)obs −34.8807 −13.1412 −1.5979 −2.2294
(0.0011) (0.0019) (0.0022) (0.0030)

Proposed method

Exact marginals logm(y)mp −34.8786 −13.1420 −1.5932 −2.2302
(0.0023) (0.0035) (0.0030) (0.0030)

Rao–Blackwellization logm(y)RB −34.8782 −13.1405 −1.5919 −2.2280
(0.0023) (0.0030) (0.0030) (0.0033)

Target value logm(y) −34.8797 −13.1429 −1.5953 −2.2270

where βj and Xj correspond to the regression vector and design matrix of model j, respectively, and Vj = n2(XT
j Xj)

−1 with
n = 25. In relation to the context of Section 2 this is a 2-block setting where β ≡ θ and σ 2

≡ φ. Under this conjugate
prior design the distributions p(βj|σ

2
j , y), p(σ 2

j |βj, y), p(βj|y) and p(σ 2
j |y) are all of known form. We treat the posterior

distribution as unknown and implement a Gibbs sampler in R. Specifically, one Gibbs chain is iterated 10,000 times and
the first 1000 iterations are discarded as burn-in, resulting in a final posterior sample of 9000 draws for each model. We
calculate two variations of estimator (3) considering: (i) the truemarginals p(βj|y), p(σ 2

j |y) and (ii) Rao–Blackwell estimates
of p(βj|y), p(σ 2

j |y) based on reduced samples of 200 posterior draws. The two variants are denoted by m(y)mp and m(y)RB,
respectively.

For comparison reasons, we also consider the following commonly used marginal likelihood estimators: the
Laplace–Metropolis estimator (Lewis and Raftery, 1997), the importance-weighted marginal density estimator of Chen
(2005), the candidate’s estimator from Gibbs sampling (Chib, 1995) and the optimal bridge-sampling estimator (Meng
and Wong, 1996). For the Laplace–Metropolis we require only the MCMC estimated posterior mean vector and posterior
covariance matrix. For the second estimator, which requires specification of approximating densities, we use normal
distributions for theβj’s and inverse gammadistributions for theσ 2

j ’swhichmimic the respective component-wisemarginal
posteriors through moment-fitting. In addition, the points which maximize the unnormalized posterior density of each
model are used as posterior ordinates. In order to apply Chib’s estimator in a realistic context (using reducedGibbs sampling)
the posterior ordinates (the points maximizing the unnormalized posterior) are decomposed according to the univariate
densities. The reduced posterior ordinates are calculated via Rao–Blackwellization based on 9000 draws from further Gibbs
updating (additional sampling is not needed for the simple intercept-model). Finally, for the optimal bridge-sampling
estimator, which is calculated iteratively, we utilize the same approximating densities as in the implementation of Chen’s
estimator and iterate 1000 times using the geometric bridge-sampling estimates, also presented in Meng andWong (1996),
as starting values. The three additional estimators are denoted bym(y)LM,m(y)Chen,m(y)Chib andm(y)obs, respectively.

In order to calculateMC errors the posterior samples are divided into 30 batches of 300 draws. Batchmean estimates, MC
errors and the true marginal log-likelihoods are presented in Table 1. In practical terms, we foundm(y)LM being the easiest
to compute. On the other hand, this estimator performs poorly in comparison to the others, as seen in Table 1. Variations
of m(y)LM based on multivariate medians (L1 centers) and maximum density points of the unnormalized posteriors (not
presented here) did not yield substantially different estimates. In contrast, estimatorsm(y)Chen,m(y)Chib andm(y)obs perform
substantially better. Implementation for m(y)obs is in general somewhat more complicated in comparison to m(y)Chen as it
requires an iterative solution in addition to specification of approximating densities, whereas m(y)Chib requires additional
Gibbs sampling for models M1,M2 and M3. The estimators proposed here, m(y)mp and m(y)RB, only require as input the
posterior marginal samples and yield comparable batched mean estimates, with MC errors lower than those of m(y)Chen
and just slightly higher than those of estimatorm(y)obs. Also, note thatm(y)Chen andm(y)Chib yield higher MC errors forM3.
In addition, the estimates derived through Rao–Blackwellization are very similar to the estimates obtained from the true
marginal posteriors, while the MC errors are similar across models.

We proceed by testing the ability of the proposed estimator to capture the sensitivity of the marginal likelihood over
different diffuse prior distributions which have minimal effect on the posterior distributions of the regression coefficients
βj. The prior used, with Vj = n2(XT

j Xj)
−1, corresponds to a Zellner g-prior (Zellner, 1986) with g set equal to n2. For this

particular data set the posterior distribution of βj is sensitive to the prior when setting g equal to
√
n and n, which are

among the commonly used options (see Fernández et al., 2001). Therefore, we assume more diffuse priors and use the
values of 1000, 1500 and 2000 for g; for these choices the posterior distributions are essentially equivalent with posterior
expectations (means, standard deviations etc.) being exact up to the 3rd decimal place. We adopt the approach discussed in
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Table 2
Estimated marginal log-likelihood Rao–Blackwell estimates compared with the true values for Example 1 for the initial g-prior and three diffuse g-priors
for the regression vector; average batchmean estimates (MC errors in parentheses) are presented using 30 batches of size 300. The estimates for g = 1500
and g = 2000 are based on posterior samples from the models with g = 1000.

g-prior Target vs. Model
Estimate M0 M1 M2 M3

g = n2
= 625

logm(y) −34.8797 −13.1429 −1.5953 −2.2270
logm(y)RB −34.8782 −13.1405 −1.5919 −2.2280

(0.0023) (0.0030) (0.0030) (0.0033)

g = 1000
logm(y) −35.0673 −13.2125 −1.0198 −1.6312
logm(y)RB −35.0696 −13.2063 −1.0189 −1.6368

(0.0022) (0.0043) (0.0024) (0.0036)

g = 1500
logm(y) −35.2437 −13.3897 −0.8038 −1.4529
logm(y)RB −35.2461 −13.3836 −0.8040 −1.4569

(0.0022) (0.0043) (0.0032) (0.0051)

g = 2000
logm(y) −35.3743 −13.5616 −0.7686 −1.4716
logm(y)RB −35.3767 −13.5556 −0.7694 −1.4754

(0.0022) (0.0044) (0.0040) (0.0067)

Section 2.5 using estimator (7) and the model with g = 1000 as the base model from which we sample from the posterior
10,000 draws discarding the first 1000 as burn-in. Batch mean estimates from the Rao–Blackwell estimator and MC errors,
based on 30 batches 300 draws, along with the true marginal log-likelihoods are presented in Table 2.

As seen in Table 2, the estimates are accurate despite the fact that the posterior distributions remain the same. In addition,
using estimator (7) based on draws from the model with g = 1000 required only calculation of prior probabilities for the
models with g equal to 1500 and 2000, and led to consistentmarginal likelihood estimates. The estimates based on the exact
marginal posteriors (not presented here) are equivalent.

3.2. Finite normal mixture models

In this example we consider the well-known galaxy data which where initially presented by Postman et al. (1986). The
data are velocities (km’s per second) of 82 galaxies from six separated conic sections of the Corona Borealis region. The data
set is taken from MASS library in R which contains a ‘‘typo’’; the value of the 78th observation was corrected to 26960. The
goal is to investigate whether the galaxies can be classified into different clusters according to their velocities, as suggested
in astronomical theories. Gaussian finite mixture models are used in the related literature with the purpose of finding the
most plausible number of clusters or components. Under this modeling assumption, the likelihood of the velocity data
y = (y1, y2, . . . , yn)T for a model with k components wj ∈ (0, 1), such that


j wj = 1 for j = 1, 2, . . . , k, is given by

l(y|µ, σ2,w) =

n
i=1

k
j=1

wjφ(yi|µj, σ
2
j ), (10)

where w = (w1, w2, . . . , wk)
T , µ = (µ1, µ2, . . . , µk)

T , σ2
= (σ 2

1 , σ 2
2 , . . . , σ 2

k )T and φ(·) is the p.d.f. of the normal
distribution. Vectors µ and σ2 consist of the component-specific means and variances, respectively. As originally shown in
Dempster et al. (1977), anymixture model can be expressed in terms of missing or latent data; if zi ∈ {1, 2, ..k} represents a
latent indicator variable associated with observation yi, so that Pr(zi = j) = wj and l(yi|zi = j, µj, σ

2
j ) = φ(yi|µj, σ

2
j ), then

we have that

l(yi, zi = j|µj, σ
2
j ) = l(yi|zi = j, µj, σ

2
j ) Pr(zi = j) = φ(yi|µj, σ

2
j )wj.

Summation over the components wj results in the complete marginalized data likelihood presented in (10).
As illustrated in West (1992) and Diebolt and Robert (1994), data-augmentation facilitates posterior simulation via

Gibbs sampling from the full conditional densities of w, µ, σ2 and z. The conjugate priors are µj ∼ N (µ0, σ
2
0 ), σ 2

j ∼

IG(ν0/2, δ0/2) andw ∼ Dir(α1, α2, . . . , αk). The prior for z is fixed by model design, since Pr(zi = j) = wj. Gibbs sampling
is straightforward to implement, given these prior assumptions; let Tj = {i : zi = j} be the set of observation indices for
those yi classified into the jth cluster and let nj denote the number of observations falling into the jth cluster. Then, we
sample sequentially

zi|y, µj, σ
2
j , wj ∼ Pr(zi = j|y, wj, µj, σ

2
j ) ∝ wjφ(yi|µj, σ

2
j ),

µj|y, σ 2
j , z ∼ N (µj,s 2j ),

σ 2
j |y, µj, z ∼ IG


ν0 + nj

2
,
δ0 + δj

2


,

w|y, z ∼ Dir(α1 + n1, α2 + n2, . . . , αk + nk),
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where µj = s 2j (σ−2
0 µ0 + σ−2

j


i∈Tj
yi),s 2j = (σ−2

0 + σ−2
j nj)

−1 and δj =


i∈Tj
(yi − µj)

2. We are also interested

in models which have a common variance term in (10); in this case the full conditional of σ 2 is IG(
ν0+n

2 ,
δ0+δ

2 ) with
δ =

k
j=1


i∈Tj
(yi − µj)

2.
A central point in the discussion that follows is the identifiability problem which is present in mixture models, known

as ‘‘label-switching’’. Non-identifiability arises from the fact that relabeling the mixture components wj does not change
the likelihood in (10). Therefore, when the priors are also invariant to label permutations, the posterior distribution has
k! symmetrical modes. In terms of posterior sampling this implies that common MCMC samplers will most probably fail
to explore adequately all k! modes as it is very likely that an MCMC chain will get ‘‘trapped’’ in one particular mode thus
leaving the remaining k! − 1 modes unvisited. A first suggestion proposed in the early literature is to impose prior ordering
constraints, e.g. w1 < w2 < · · · < wk or µ1 < µ2 < · · · < µk, which translate to truncated priors that restrict inference
to constrained unimodal posteriors. Robert and Mengersen (1999) further extended this strategy to the use of improper
priors through reparameterization. Nevertheless, other authors object to the use of prior identifiability constraints and
recommend sampling from the unconstrained posterior. Among them, Celeux et al. (2000) propose tempered transition
algorithms and appropriate loss functions for permutation invariant posteriors, while Marin et al. (2005) suggest ex-post
re-ordering schemes.

Chib (1995) was the first who estimated directly the marginal likelihoods of these data for two and three component
models via the candidate’s formula and Gibbs updating for the estimation of reduced posterior ordinates. Nevertheless,
as pointed out in Neal (1998), Chib’s use of the Gibbs sampler for mixture models results in biased marginal likelihood
estimates due to lack of label-switching within the Gibbs sampler. A simple approach to correct for bias is to multiply the
marginal likelihood estimates with a factor of k!, but as Neal remarked the bias correction will only be valid when the
symmetrical modes are well-separated (i.e. when label-switching is not likely to occur). Therefore, Neal (1998) suggests
either to introduce special relabeling transitions into the Gibbs sampler or to enforce constrained priors during Gibbs
updating which will be k! times larger than the unconstrained priors, as general but computationally demanding solutions.
Motivated by the practical bias-correction approach, Berkhof et al. (2003) present simulation consistent marginal likelihood
estimators based on a stratification principle and ex-post randomly permuted samples. Frühwirth-Schnatter (2004), on the
other hand, recommends to use MCMC samplers which adequately explore all k! labeling posterior subspaces and presents
bridge-sampling estimators based on draws from the unconstrained randompermutation sampler introduced in Frühwirth-
Schnatter (2001).

We consider the same models as Chib (1995) and show that the estimator proposed here can accurately estimate
the marginal likelihoods either by taking into account the bias-correction of Neal (1998) or through the use of MCMC
samplers which explore effectively the unconstrained posterior space. Specifically, interest lies in the 2-component equal-
variance model and 3-component models with equal and unequal variances (i.e. k = 2, 3), under the prior assumptions
µ0 = 20, σ 2

0 = 100, ν0 = 6, δ0 = 40 and αj = 1 for j = 1, 2, . . . , k. We further take into account a 4-component equal
variance model (k = 4) with the same prior assumptions. Models with more than four clusters are not considered due to
the fact that there is not enough information in the data to support k > 3, which gives rise to serious convergence problems
due to non-identifiability of parameters for more than four clusters; see Carlin and Chib (1995).

The Gibbs sampler for thesemodels can be easily implemented through package bayesmix (Grün, 2011) in R, which also
allows for ex-post re-ordering and random permutation sampling. We iterate the Gibbs sampler 13,000 times and discard
the first 1000 iterations as burn-in. In the context of Section 2 this is a multi-block problem (θ1 ≡ µ, θ2 ≡ σ2, θ3 ≡ w)
including a latent vector (u ≡ z) which is integrated out. We divide the re-ordered product marginal posterior sample into
K = 30 batches of NK = 400 draws and calculate the marginal likelihood for each batch as

m(y) = N−1
K

NK
n=1

l(y|µ(n), σ2(n),w(n))π(µ(n))π(σ2(n))π(w(n))

p(µ(n)|y)p(σ2(n)|y)p(w(n)|y)
.

Marginal posterior densities are estimated through Rao–Blackwellization based on reduced samples of size L = 500,
i.e. p(µ|y) =


j

 1
L

L
l=1 p(µj|y, σ

2(l)
j , z(l))


, p(σ2

|y) =


j

 1
L

L
l=1 p(σ

2
j |y, µ(l)

j , z(l))

and p(w|y) =

1
L

L
l=1 p(w|y, z(l)),

for j = 2, 3, 4. For the equal-variance models we have that p(σ 2
|y) =

1
L

L
l=1 p(σ

2
|y, µ(l)

j , z(l)). Table 3 shows batch mean
estimates on log scale and the corresponding MC errors for the simple estimatorm(y), the bias-corrected estimatormbc(y)
(obtained by adding the constant log k! to logm(y)) and the estimator based on ex-post random permutation samplingmrp(y).

The benchmark results reported by Neal (1998), based on 108 draws from the prior distributions, are also included
in Table 3; the corresponding standard errors are 0.005 for the 2 component equal-variance model, 0.040 for the three
component equal-variance model and 0.089 for the three component unequal-variance model. It is obvious, that the simple
estimator m(y) results in biased estimates, which are very similar to the ones presented in Chib (1995); see Neal (1998)
for the ‘‘typo-corrected’’ estimate of Chib for the 3rd model. On the other hand, as reflected in the bias-corrected estimatormbc(y), simply adding the term log k! results in accurate marginal likelihood estimates which are in agreement with the
estimates of Neal. Interestingly, the MC errors of mbc(y) are similar to the ‘‘coefficients of variation’’ in Steele et al. (2006)
who handle marginal likelihood estimation through an incremental mixture importance sampling approach based on
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Table 3
Estimated marginal log-likelihood values for Example 2; average batch mean estimates (MC errors in parentheses) are presented using 30 batches of size
400.

Estimator Model
2 clusters equal variance 3 clusters equal variance 3 clusters unequal variance 4 clusters equal variance

logm(y)a −240.458 −228.597 −228.595 −229.027
(0.002) (0.003) (0.029) (0.045)

logmbc(y)b
−239.765 −226.805 −226.803 −225.849
(0.002) (0.003) (0.029) (0.045)

logmrp(y)c
−239.762 −226.778 −226.771 −225.922
(0.010) (0.018) (0.051) (0.060)

Neal (1998) estimates −239.764 −226.803 −226.791 –
a m(y): Simple (biased) estimator.
b mbc(y): Bias-corrected estimator.
c mrp(y): Random permutation sampling estimator.

Fig. 1. Histograms of posterior means for the three models from Gibbs sampling.

marginalization. Nevertheless, Steele et al. (2006) adopt different prior assumptions and, therefore, theirmarginal likelihood
estimates are not comparable to the ones in Table 3.

Histograms of posterior means from Gibbs sampling are presented in Fig. 1. As seen, the Gibbs sampler remains in one
particular mode for the 2-component and 3-component equal variance models. This is not the case for the 3-component
unequal variance model, where label-switching does actually occur for parameters µ1 and µ2. For the 4-component model
label-switching is noticeable for all posterior means. Despite that fact, the bias-corrected estimator still performs well for
these models. Nevertheless, we would not warrant to guarantee that the bias-corrected estimator will always performwell,
especially as the number of clusters gets larger and the posterior modes are not well separated.

Alternatively, one can simply use random permutation sampling and estimate themarginal likelihoods without the need
to account for bias-correction. In addition, random permutation sampling will probably prove to be a more reliable solution
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Fig. 2. Histograms of posterior means for the three models from random permutation sampling.

for models with many components, since the marginal posteriors from random permutation sampling capture all possible
modes. The estimates from mrp(y) are indeed very similar to Neal’s estimates and to the bias-corrected estimates. The MC
errors are slightly higher for the random permutation estimates, nevertheless, this is understandable since ex-post random
permutation artificially increases MCMC variability. Histograms of posterior means from random permutation sampling are
presented in Fig. 2; the symmetries in the posterior distributions due to non-identifiability are now apparent. In accordance
to the discussion in Carlin and Chib (1995), the histograms for the 4-component model show that only three modes are
estimated efficiently as there is a significant overlap between the 2nd and 3rd mode.

In conclusion, bothmbc(y) andmrp(y) yield satisfactory results. Formodelswith a small number of components (i.e. when
label-switching is not likely to occur) the bias-corrected estimator will most probably be sufficient. For more complicated
models andwhen the two estimators result in estimates which are in disagreement, wewould recommend to use either the
correction for the candidate estimator proposed by Marin and Robert (2008) or the estimator based on alternative MCMC
strategies (e.g. Frühwirth-Schnatter, 2001; Geweke, 2007).

3.3. Longitudinal Poisson models

As a last example, we consider a data set taken from Diggle et al. (1995), consisting of seizure counts yit from a group
of epileptics (i = 1, 2, . . . , 59) which is monitored initially over an 8-week baseline period (t = 0) and then over four
subsequent 2-week periods (t = 1, 2, 3, 4). Each patient is randomly assigned either a placebo or the drug progabide after
the baseline period. This example is chosen mainly because standard Gibbs sampling is not possible to implement for the
model presented next. In addition, the epilepsy data is also considered by Chib et al. (1998) and Chib and Jeliazkov (2001)
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who present marginal likelihood estimates based on the candidate’s formula and Metropolis–Hastings sampling. Reduced
posterior ordinates are calculated through kernel density estimation in Chib et al. (1998), whereas Chib and Jeliazkov (2001)
employ Metropolis–Hastings updating. For the sake of comparison, we adopt exactly the same modeling assumptions.

The main model under consideration is

yit |β, bi ∼ Poisson(λit),

log λit = log τit + β1xit1 + β2xit1xit2 + bi1 + bi2xit2,
bi ∼ N2(η,D),

where τit is the offset which equals 8 when t = 0 and 2 otherwise, xit1 is an indicator of treatment (0 for placebo, 1 for
progabide treatment), xit2 is an indicator of time period (0 for baseline, 1 otherwise) and bi = (bi1, bi2) are latent random
effects for i = 1, 2, . . . , 58 (subject 49 is removed from the analysis due to unusually high pre and post randomization
seizure counts). The prior assumptions are bivariate normal distributions for β and η and a bivariate inverse-Wishart for D,
namely β ∼ N2(0, 100I2), η ∼ N2(0, 100I2) andD ∼ IW2(4, I2), where I2 is the 2×2 identity matrix. The full conditionals
of η and D are known, specifically we have that

η|D, b1, . . . , b58 ∼ N2(η,V),

D|η, b1, . . . , b58 ∼ IW2


58 + 4, I2 +

58
i=1

(bi − η)(bi − η)T


,

whereη = V
58

i=1 D
−1bi and V = (100−1I2 +58D−1)−1. The full conditionals for β and the bi’s are not known distributions

and thus standard Gibbs sampling is not feasible. Another complication is that the integrated sampling likelihood
l(y|β, η,D) =

58
i=1


l(yi|β, bi)π(bi)dbi, with l(yi|β, bi) =

4
t=0 l(yit |β, bi), is also not available analytically. Therefore,

evaluating l(y|β, η,D) requires either numerical integration or some other efficient technique, such as importance sampling
for instance.

We utilize WinBUGS software (Spiegelhalter et al., 2003) to sample from the posterior. Specifically, one chain is iterated
31,000 times and the first 1000 iterations are discarded as burn-in, resulting in a final sample of 30,000 draws. Posterior
means and standard deviations, for the parameters of scientific interest, are presented in Table 4. The estimates for the
main model are comparable to the Metropolis–Hastings estimates presented in Chib et al. (1998). Table 4 also includes
the estimates for the simpler model without the random effects related to time. For this model we assume a-priori that
bi ∼ N (η1,D11), for i = 1, 2, . . . , 58. In order to keep equivalent prior assumptions to themainmodel, we define the priors
as η1 ∼ N (0, 100) and D11 ∼ IG(2, 1/2).

As discussed in Section 2.3, there are two approaches for estimating the marginal likelihood of this model. The first is to
treat it as a 3-block setting, i.e. consider the product of the marginal posteriors of β, η,D as importance sampling density. In
this case one needs to estimate the integrated likelihood which is unknown. The second approach is to treat the problem as
a 4-block setting, i.e. also include the joint marginal posterior of the bi’s in the importance sampling density. The advantage
with this approach is that we can work directly with the hierarchical Poisson likelihood.

Initially, let us consider the first approach which corresponds to estimator (5) of Section 2.3; in this case the parameters
of scientific interest are θ1 ≡ β, θ2 ≡ η, θ3 ≡ D, while u ≡ {b1, . . . , b58} is used only for Rao–Blackwellization. First, we
appropriately re-order the posterior sample in order to correspond to a sample from the product marginal posterior and
then we split the sample into K = 30 batches of NK = 1000 draws. The marginal likelihood estimate for each batch is
calculated as

mb3(y) = N−1
K

NK
n=1

l(y|β(n), η(n),D(n))π(β(n))π(η(n))π(D(n))

p(β(n)
|y)p(η(n)|y)p(D(n)|y)

.

Marginal posterior probabilities for η and D are estimated via Rao–Blackwellization based on reduced posterior samples of
L = 200 draws which are randomly re-sampled from the initial MCMC sample, i.e. p(η|y) =

1
L

L
l=1 p(η|D(l), b(l)

1 , . . . , b(l)
58)

and p(D|y) =
1
L

L
l=1 p(D|η(l), b(l)

1 , . . . , b(l)
58). For the marginal posterior of β we assume that p(β|y) ≈ N2(β̃, Σ̃), where β̃

and Σ̃ are estimated from theMCMC output. Similarly to Chib et al. (1998) and Chib and Jeliazkov (2001), we employ further
importance sampling to evaluate the likelihood l(y|β, η,D). We employ multivariate normals as importance sampling
functions, namely pIS(b1, . . . , b58|y) ≈ N116(b̃, B̃) for the main model and pIS(b1, . . . , b58|y) ≈ N58(b̃, B̃) for the reduced
model, where b̃, B̃ are the vector of means and the complete covariance matrix of the random effects estimated from the
MCMC output. Likelihood estimation is based on 100 importance sampling draws.

Based on the alternative 4-block approach, corresponding to estimator (6) of Section 2.3, the batchedmarginal likelihood
estimates are calculated as

mb4(y) = N−1
K

NK
n=1


l(y|β(n), b(n)

1 , . . . , b(n)
58 )π(β(n))π(b(n)

1 , . . . , b(n)
58 |η(n),D(n))π(η(n))π(D(n))

×


p(β(n)

|y)p(b(n)
1 , . . . , b(n)

58 |y)p(η(n)
|y)p(D(n)

|y)
−1


.



Author's personal copy

66 K. Perrakis et al. / Computational Statistics and Data Analysis 77 (2014) 54–69

Table 4
Posterior means and standard deviations from 30,000 posterior draws for the parameters of two epilepsy models and average batch mean marginal
likelihood estimates (MC errors in brackets) from 30 batches of size 1000 for the 3-block and 4-block estimators for Example 3.

Parameter Model with time effect Model without time effect
Mean St.Dev. Mean St.Dev.

Constant η1 1.065 0.146 1.095 0.138
Treatment β1 −0.0003 0.209 −0.071 0.190
Time η2 0.005 0.111 – –
Interaction β2 −0.349 0.156 −0.191 0.052
D11 0.474 0.100 0.531 0.105
D12 0.017 0.057 – –
D22 0.243 0.063 – –

Log-marginal likelihood estimates

logmb3 (y) −914.992 (0.035) −966.971 (0.018)
logmb4 (y) −914.485 (0.137) −966.814 (0.064)

Chib et al. (1998) −915.404 −969.824
Chib and Jeliazkov (2001) −915.230

With this approach, there is no need to implement further importance sampling for evaluating the likelihood function since
the data conditional on the random effects parameters follow the Poisson distribution. Despite this convenient aspect, the
downside of the 4-block estimator is that it requires estimation of the high-dimensional joint marginal p(b1, . . . , b58|y).
Given that theRao–Blackwell device cannot be used,we adopt a simple assumption andnamely use the importance sampling
functions used for likelihood evaluation in estimatormb3(y), i.e. we assume that p(b1, . . . , b58|y) ≈ N116(b̃, B̃) for themodel
with time effects and p(b1, . . . , b58|y) ≈ N58(b̃, B̃) for the model not including time effects.

Average batch mean marginal likelihood estimates and MC errors for the two models in question are presented in
Table 4. The 3-block approach provides accurate estimates with MC errors being very low in comparison to the magnitude
of the batched means. The 4-block estimates are in agreement with the 3-block estimates, but have higher Monte Carlo
errors; approximately four times higher than the MC errors ofmb3(y). Nevertheless, this is expected due to the much larger
augmented parameter space and the use of the normal approximation of the high-dimensional joint posterior of the random
effects. Overall, estimator mb4(y) is computationally less demanding than mb3(y) and the resulting MC errors, although
higher than those ofmb3(y), are still relatively low in comparison to the batched mean marginal likelihood values.

Table 4 also includes the estimates presented in Chib et al. (1998) and Chib and Jeliazkov (2001) from 10,000
posterior draws. Both latter studies report standard errors, based on the variance estimator of Newey and West (1987),
of approximately 0.1 for the main model. The reduced model is briefly considered in Chib et al. (1998) without reporting
a standard error. Our 3-block and 4-block estimates are comparable to those of Chib et al. (1998) and Chib and Jeliazkov
(2001) but not in strict agreement. Our experience from this particular example is that a long MCMC chain is needed in
order to obtain accurate posterior estimates; initial 3-block estimates based on 10,000 posterior draws were actually closer
to the estimates of Chib et al. (1998) and Chib and Jeliazkov (2001), namely −915.566 for the main model and −969.580 for
the reduced model, but with considerably higher MC errors.

3.4. MC errors for different number of iterations

Here we briefly investigate the issue of finite variance for the illustrated examples presented in this section. Following
the discussion in Section 2.6, an informal empirical diagnostic for checking whether the variance is finite can be performed
by comparing the MC errors from MCMC samples of different sizes. In general, increasing the MCMC sample by a factor of
d should lead to a decrease of MC errors by a factor of

√
d for estimators which have finite variance. Table 5 depicts the

estimated MC errors for the Rao–Blackwell estimator for Example 1, the estimator based on random-permutation sampling
for Example 2 and the 4-block estimator for Example 3. In all cases, the MC errors from the original posterior samples of
size N are compared with the corresponding errors from samples of size 2N and with the errors from the original samples
scaled down by a factor of

√
2, which are the expected MC errors under the assumption of finite variance. From this table,

it is evident that the MC errors from the MCMC runs with length equal to 2N are roughly equal to the MC errors from the
chains with length N divided by

√
2, for all models, indicating that the variance of the corresponding estimators is finite.

4. Concluding remarks

In this paper we have presented a method of marginal likelihood estimation based on utilizing the product marginal
posterior as importance sampling density. The approach is in general straightforward to implement even for multi-block
parameter settings as it is non-iterative and does not require adaptations in MCMC sampling. As illustrated, the estimator is
accurate in capturing changes in the marginal likelihood due to different diffuse prior setups that do not affect the posterior
distribution. For such cases, the computational demands for estimating marginal likelihoods of competing models under
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Table 5
MC errors of marginal log-likelihood estimates for MCMC runs of lengths N and 2N; the number of batches is 30 for all models. The expected MC errors for
samples of size 2N under the assumption of finite variance are presented in parentheses.

Examples and models MCMC length MC error

Example 1: Normal regression modelsa (N = 9000)

Intercept
N 0.0023
2N 0.0018

(0.0016)

Intercept+wind speed
N 0.0030
2N 0.0021

(0.0021)

Intercept + log(wind speed)
N 0.0030
2N 0.0023

(0.0021)

Intercept + wind speed + (wind speed)2
N 0.0033
2N 0.0026

(0.0023)

Example 2: Gaussian mixture modelsb (N = 12000)

2 clusters equal variance
N 0.010
2N 0.007

(0.007)

3 clusters equal variance
N 0.018
2N 0.015

(0.013)

3 clusters unequal variance
N 0.051
2N 0.039

(0.036)

4 clusters equal variance
N 0.060
2N 0.047

(0.042)

Example 3: Longitudinal Poisson modelsc (N = 30000)

Model with time effect
N 0.137
2N 0.105

(0.097)

Model without time effect
N 0.064
2N 0.040

(0.045)
a MC errors for the Rao–Blackwell estimator for g = n2 .
b MC errors for the random permutation estimator.
c MC errors for the 4-block estimator.

diffuse priors are reduced significantly, since only one MCMC run is required. In general, the overall performance of the
estimator depends on; (i) the efficiency of approximating the joint posterior through independent univariate ormultivariate
marginals and (ii) the accuracy in estimating marginal posterior densities.

Arguably, the method can fail when the product of marginal posteriors is a poor approximation to the joint posterior.
Nevertheless, appropriate parameter blocking and reparameterizations can always improve the performance of themethod,
so that it will be feasible to work with a few parameter blocks that are close to orthogonal regardless whether the elements
within the blocks are highly correlated. In the three, relatively diverse, examples handled in this paper the natural blocking
of the parameters proved to be sufficient in delivering accurate estimates. It is worth noting that similar estimators based
on importance sampling from independent posterior factorizations have shown to perform well (Botev et al., 2013; Chan
and Eisenstat, 2013). Moreover, independent posterior factorization is also extensively used for the variational Bayes
(Bishop, 2006) and expectation-propagation (Minka, 2001) approaches in the machine-learning literature. As a last remark
concerning this topic, Ghosh and Clyde (2011) present amethodology for linear and binary regressionmodels that augments
non-orthogonal designs to obtain orthogonal designs based on Gibbs sampling for the ‘‘missing’’ response variables. With
some additional effort one could consider this orthogonalization approach which would guarantee an optimal importance
sampling density, thus leaving estimation of univariate marginal posterior densities as the only remaining source of error.

With respect to estimating marginal probabilities, the approach proposed here is particularly suited for Gibbs sampling
settings where Rao–Blackwellization can be used to obtain simulation-consistent marginal posterior density estimates.
Practically, the proposed estimator can get computationally demanding when using Rao–Blackwellization for the entire
posterior sample. Nevertheless, the related coding work basically requires averaging and is straightforward, without
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requiring any special effort in implementation or fine-tuning of parameters in trial and error runs. In addition, as illustrated
in the examples, the sample needed for Rao–Blackwellization is substantially smaller than the total MCMC sample and is
obtained once as a random sub-sample of the MCMC chain.

The approach can also be applied under other types of MCMC schemes by adopting other strategies for estimating the
marginal posterior densities such as normal approximations, fitting posteriormoments, kernelmethods and so forth. In strict
theory, the method will not yield unbiased estimates when using such approximating strategies, nevertheless, in practical
terms such approaches can often be sufficient and can lead to accurate estimates even for high dimensional multivariate
approximations, as demonstrated in Section 3.3. In addition, the degree of bias can be checked indirectly by using the
approximating densities as importance sampling densities. It is worth noting, that more elaborated strategies can also be
considered, for instance the methods discussed in Oh (1999) based on importance-weighted marginal density estimation
(Chen, 1994) or the integrated nested Laplace approximations (INLAs) presented in Rue et al. (2009).

The advantage of not depending on the type of MCMC scheme used to sample from the posterior becomes obvious for
classes of models like the finite normal mixtures, considered here, where conventional Gibbs sampling fails to explore
multi-modal posterior surfaces. This implies that the proposed method will also work well for models with similar
posterior symmetries, based on alternative samplers (e.g. Frühwirth-Schnatter, 2001 and Geweke, 2007), without increased
complexity in estimation.

A possibly interesting extension of the idea presented here is to incorporate it within bridge-sampling estimation by
using the product marginal posterior as approximating density.
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