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7 Reflection groups

7.1 Linear reflections and reflection groups

We consider Rn with standard Euclidean scalar product (·, ·) (i.e., dot product).

Definition 7.1. Let α ∈ Rn. A reflection with respect to α is a linear map rα : Rn → Rn defined by

rα(v) = v − 2(v, α)

(α, α)
α

for v ∈ Rn.

It is easy to see that rα is characterized by the following two properties: it takes α to −α and preserves
pointwise the orthogonal complement α⊥.

Exercise 7.2. rα ∈ On(R), i.e. (rα(u), rα(v)) = (u, v); also, rα is an involution, i.e. r2α = id.

Definition 7.3. A reflection group is a group generated by reflections.

Remark. Usually “reflection group” means a discrete reflection group, which requires some additional
geometrical properties to hold (namely, the orbit of any point should not have limit points). We will
mainly be interested in finite reflection groups, and for these there are no extra requirements.

Example 7.4. · Consider vectors α = (1, 0) and β = (cos (m−1)π
m , sin (m−1)π

m ). Then rαrβ is a rotation
by 2π/m, and the group generated by rα and rβ is a dihedral group of order 2m (denoted by I2(m)).

· The symmetric group Sn+1 acts on Rn+1 by permutation of coordinates, preserving the hyperplane
V0 = {(x1, . . . , xn+1) ∈ Rn+1 |

∑
xi = 0}. Every transposition (ij) is a reflection in a plane

xi − xj = 0, i.e. with respect to the vector ei − ej . As Sn+1 is generated by transpositions, it is a
reflection group in V0 = Rn.

One can also note that the action of Sn+1 by permutation of coordinates of Rn+1 preserves the
affine hyperplane V1 = {(x1, . . . , xn+1) ∈ Rn+1 |

∑
xi = 1}, and it also preserves the positive

orthant C+ = {(x1, . . . , xn+1) ∈ Rn+1 | xi ≥ 0 ∀i ∈ [n + 1]}. Thus, Sn+1 preserves the regular
n-dimensional simplex V1 ∩ C+, acting on it by permutations of its vertices.

Definition 7.5. For reflection rα, α ∈ Rn, the orthogonal complement α⊥ is called the mirror of rα.

Lemma 7.6. Let g ∈ On(R), α ∈ Rn. Then grαg
−1 = rgα.

Proof. We need to prove that grαg
−1 fixes every point of ⟨gα⟩⊥ and takes gα to −gα.

Let (v, gα) = 0. Since g ∈ On(R), this implies that (g−1v, α) = 0. Then

grαg
−1(v) = g(rα(g

−1(v)) = g((g−1(v)) = v,

so grαg
−1 preserves ⟨gα⟩⊥ pointwise.

Also, grαg
−1(gα) = grα(α) = g(−α) = −gα, as required.
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In general, what can we say about finite reflection groups in Rn?
First, since every reflection is orthogonal, any reflection group is a subgroup of On(R). Given a finite

reflection group G in Rn, Lemma 7.6 implies that the set of mirrors of reflections of G is invariant under
the action of G (i.e., G permutes its mirrors).

The set of mirrors of G decomposes Rn into polyhedral cones – we call them chambers, and the mirrors
bounding a chamber are called its walls.

Remark. Note that, due to the invariance of the set of mirrors under G, any two chambers sharing a
wall are taken to each other by the reflection in the common wall. Indeed, if we take chambers C1 and C2

sharing a wall α⊥, we can consider C ′ = rαC1. If C ′ is not a chamber, then there exists a mirror β⊥ of
reflection in G intersecting C ′. Applying rα to β⊥, we see that the image intersects C1, which contradicts
C1 being a chamber. Now, both C ′ and C2 are chambers, and they clearly have a non-empty intersection,
so they must coincide.

Recall that an action of a group on a set is transitive if the set consists of one orbit.

Theorem 7.7. Let G be a finite reflection group in Rn. Consider all mirrors of reflections of G, and take
any connected component of the complement, call this chamber C0. Denote rα1 , . . . , rαk

the reflections
with respect to the walls of C0. Then

(1) G is generated by rα1 , . . . , rαk
.

(2) G acts transitively on the set of chambers.

(3) The dihedral angles between walls of C0 are of the type π/mij, mij ∈ N≥2.

(4) If g ∈ G and gC0 = C0 then g = id.

(5) G has presentation G = ⟨rα1 , . . . , rαk
| r2αi

, (rαirαj )
mij ⟩ (i.e. any relation on the generators follows

from these two types of relations).

Proof. Denote rαi by si. Take any chamber C, connect it to C0 by a path (which does not pass through
an intersection of three or more chambers). Write down the sequence of chambers intersected by the path:
C0, C1, . . . , Cm = C (chambers may repeat in the sequence). Note that any two neighboring chambers in
the sequence share a wall.

Since C1 and C0 share a wall (say, mirror of si1), we can write C1 = si1C0. By Lemma 7.6, walls of
C1 are precisely mirrors of reflections si1sjsi1 , j = 1, . . . ,m. Since C2 and C1 share a wall (say, mirror of
si1si2si1), we can write

C2 = si1si2si1C1 = si1si2si1(si1C0) = si1si2C0.

Continuing along the path, we see that C = Cm = si1si2 . . . simC0, where sij are reflections in the walls
of C0. This proves (2).

Moreover, we have proved that any reflection in G is conjugated to at least one of si, which proves
(1).

Now, let us prove (3). Take any si and sj and consider the group generated by them. If the angle
is not pπ/m, then the order of sisj is infinite, which contradicts finiteness of G. Further, if p ̸= 1 (we
may assume that p and m are coprime), then the walls are separated by another mirror (this is actually
a question about dihedral groups), which implies that there exists a mirror of G intersecting the interior
of C0 in contradiction with its definition, so (3) is also proved.

To prove (4) and (5) consider any word si1si2 . . . sim realizing a path from C0 to C0 going through
chambers si1si2 . . . sikC0 for k = 1, . . . ,m− 1. Note that the relations in (5) do hold (as they hold in the
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corresponding dihedral groups). Moreover, they imply the same relations for reflections in walls of any
chamber (due to Lemma 7.6). Further, using the relations we can contract the path to an empty one.
More precisely, if a path intersects any single wall twice in a row, then applying the relation r2 for r being
the reflection in the corresponding wall we shorten the path; to go around an intersection of more than
two chambers (which is a vector space of codimension two), one can use the relations (5) to substitute a
subword of type sisjsi . . . of length l by a word of type sjsisj . . . of length 2mij− l. Therefore, every path
from C0 to C0 corresponds to a trivial element of G, and the word can be reduced to e by the required
relations, which proves both (4) and (5).

Corollary 7.8. Chambers of G are indexed by elements of G.

Indeed, we can choose an initial chamber C0 and then associate with any chamber C = gC0 the
corresponding element g.

Example. Consider I2(3) = S3, it has presentation ⟨s1, s2 | s21, s22, (s1s2)3⟩.

e

s2

s2s1

s1s2s1 = s2s1s2

s1s2

s1

s1

s2

Definition 7.9. Let a group G act on an open connected set X. An open connected domain C ⊂ X is
called a fundamental domain of the action if the following conditions are satisfied:

� X =
⋃
g∈G

gC, where gC denotes the closure of gC;

� for any nontrivial g ∈ G, C ∩ gC = ∅;

� there are finitely many g ∈ G such that C ∩ gC ̸= ∅.

Corollary 7.10. Any chamber C of a finite reflection group G is a fundamental domain of the action of
G on Rn. In particular, chambers are also called fundamental chambers.

7.2 Classification of finite reflection groups

Theorem 7.7(3) has the following elementary corollary.

Corollary 7.11. Let C be a chamber of a finite reflection group, and let rα and rβ be two generating
reflections, where α and β are outward normals to walls of C. Then (α, β) ≤ 0. In other words, all angles
of C are acute (or non-obtuse, depending on the agreement whether π/2 is acute or not).
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Definition 7.12. A system of vectors is indecomposable if it cannot be split into two subsets orthogonal
to each other.

Lemma 7.13. Let {ei} be a finite indecomposable system of vectors in Rn such that (ei, ej) ≤ 0 for
all i ̸= j. Then either all ei are linearly independent, or there exists a unique (up to scaling) linear
dependence, and all its coefficients are positive.

Proof. Assume {ei} are linearly dependent, and there is a linear dependence with some coefficients positive
and some non-positive. Define index sets I and J so that coefficients of ei > 0 are positive if i ∈ I and
non-positive if j ∈ J . We then can write ∑

i∈I
ciei =

∑
j∈J

cjej ,

where ci > 0 and cj ≥ 0. Denote α =
∑
i∈I

ciei and β =
∑
j∈J

cjej . Then

(α, β) =
∑

i∈I,j∈J
cicj(ei, ej).

Since α = β, the value above is non-negative. At the same time, all ci and cj are non-negative, and all
(ei, ej) are non-positive, so the product is non-positive. Therefore, we conclude that (α, β) = 0, and thus
α = β = 0.

Take any j ∈ J , then (α, ej) = (0, ej) = 0. At the same time, 0 = (α, ej) = (
∑
i∈I

ciei, ej) =
∑
i∈I

ci(ei, ej).

Since all ci > 0, this implies that (ei, ej) = 0 for all i ∈ I. As this holds for every j ∈ J , we get a
contradiction with indecomposability of {ei}.

Now, assume that there are two positive linear dependencies
∑

ciei = 0 =
∑

aiei. Since all ai and ci
are positive, we can scale them such that a1 = c1. If the dependencies are still distinct, then subtracting
one dependence from another we get a new dependence with the coefficient before e1 vanishing, which
contradicts the statement we already proved.

Corollary 7.14. If {ei} is a finite indecomposable system of vectors in Rn with (ei, ej) ≤ 0 for i ̸= j,
then #{ei} ≤ n+ 1.

Proof. Indeed, if there are n+ 2 vectors, then there exists a linear dependence on any n+ 1 of them, so
there is a dependence with some coefficients vanishing, which contradicts Lemma 7.13.

The next statement follows from the construction of the chambers.

Lemma 7.15. Let C0 be a chamber, and let αi be outward normals to the walls of C0. Then C0 = {v ∈
Rn | (v, αi) < 0}.
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