Topics in Combinatorics IV

How an exam could look like

Section A

E.1. (a) (HW 1.1) Compute the number of Dyck paths of length $2 n$ which start with two steps up.
(b) (HW 3.1) Denote by $p_{k}(n)$ the number of Young diagrams $\lambda \vdash n$ with k rows. Show that

$$
p_{1}(n)+p_{2}(n)+\cdots+p_{k}(n)=p_{k}(n+k)
$$

E.2. (a) (HW 7.2) Draw the Hasse diagram of the poset of order ideals of the Boolean lattice B_{3} (identifying elements at every vertex). Identify join-irreducible elements of $J\left(B_{3}\right)$. (The latter is actually a hint.)
(b) (HW 7.3) Show that the set Π_{n} of set partitions of $[n]$ ordered by refinement is a lattice. Is it distributive?
E.3. (a) (HW 8.3) Let $w=26514871093 \in S_{10}$. Apply the RSK algorithm to w to obtain SYT P and Q.
(b) (HW 8.4) Let (P, Q) be SYT of shape $\lambda=(4,2,2,2) \vdash 10$, where

$$
P=\begin{array}{|l|l|l|l|}
\hline 1 & 3 & 4 & 10 \\
\hline 2 & 5 & & \\
\hline 6 & 7 & \\
\hline y y y & & 9 & \\
\hline 8 & 9 & \\
\hline
\end{array}
$$

Construct $w \in S_{10}$ which is taken to the pair (P, Q) by the RSK algorithm.
E.4. (a) (HW 16.2) Let Δ be a root system. Show that the highest root $\tilde{\alpha}_{0}$ is always long, i.e. $\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right) \geq(\alpha, \alpha)$ for any $\alpha \in \Delta$.
(b) (HW 19.1(a)) Compute the Coxeter number and exponents of Weyl group of type C_{4}.

Section B

E.5. (HW 2.4) We say that a Dyck path has a hill at point $2 i+1$ if it passes through points $(2 i, 0)$ and $(2 i+2,0)$. Denote by F_{k} the number of hill-free Dyck paths of length $2 k$, i.e. Dyck paths without hills.
(a) Compute F_{k} for $k \leq 5$.
(b) Show that numbers F_{k} satisfy the following equation:

$$
C_{n}=F_{n}+\sum_{k=0}^{n-1} F_{k} C_{n-k-1},
$$

where C_{k} are Catalan numbers.
Hint: consider the first hill from the left.
(c) Compute the generating function $F(x)$ of the sequence $\left(F_{k}\right)$. Show that

$$
F(x)=\frac{1}{1-x^{2} C(x)^{2}},
$$

where $C(x)$ is the generating function for Catalan numbers.
E.6. (a) (HW 8.1) Show that the poset $J(P)$ of order ideals of a poset P is a distributive lattice.
(b) (HW 8.2) Given a poset P with $|P|=n$, construct a map from the set of linear extensions of P to the set of saturated chains of $J(P)$ by taking $\varphi: P \rightarrow[n]$ to the chain $\hat{0}=\emptyset<\cdot I_{1}<\cdot I_{2}<\cdot \ldots<I_{n}=\hat{1}$, where $I_{j}=\varphi^{-1}([j])$. Show that this map is a bijection.
E.7. (HW 16.1) Let Δ be a root system, $\Pi=\left\{\alpha_{i}\right\}$ is a set of simple roots.
(a) Show that $r_{\alpha_{i}}\left(\Delta^{+} \backslash \alpha_{i}\right)=\Delta^{+} \backslash \alpha_{i}$. In other words, $r_{\alpha_{i}}$ takes all positive roots except α to positive roots.
(b) Let $w \in W, \alpha \in \Pi$. Denote $n(w)=\#\left\{\beta \in \Delta^{+} \mid w \beta \in \Delta^{-}\right\}$, i.e. the number of positive roots taken by w to negative ones. Show that if $w \alpha \in \Delta^{+}$then $n\left(w r_{\alpha}\right)=n(w)+1$, and if $w \alpha \in \Delta^{-}$then $n\left(w r_{\alpha}\right)=n(w)-1$. In particular, $n(w) \leq l(w)$.
(c) Let $s_{1} \ldots s_{k}$ be a reduced expression for w, where $s_{i}=r_{\alpha_{i}}$ are simple reflections. Show that if $n(w)<l(w)$ then there exist $i<j$ such that $s_{i}\left(s_{i+1} \ldots s_{j-1}\right) \alpha_{j}=\alpha_{i}$.
(d) Show that $n(w)=l(w)$ for every $w \in W$.
E.8. (a) (HW 15.4) Let (G, S) be Coxeter system, $r \in R$ and $g \in G$. Show that if $r \in R(g)$ then $l(r g)<l(g)$.
(b) (HW 14.3) Let G be a group with a finite generating set S consisting of involutions, and let $\left\{P_{s}\right\}_{s \in S}$ be a family of subsets of G satisfying the following properties:
(1) $e \in P_{s}$ for every $s \in S$;
(2) $P_{s} \cap s P_{s}=\emptyset$ for every $s \in S$;
(3) For every $s, t \in S$ and $g \in G$ such that $g \in P_{s}$ and $g t \notin P_{s}$, one has $s g=g t$.

Show that $P_{s}=\{g \in G \mid l(s g)>l(g)\}$, and (G, S) satisfies Exchange Condition (and thus is a Coxeter system).

