Topics in Combinatorics IV

How an exam could look like

Section A

- **E.1.** (a) (HW 1.1) Compute the number of Dyck paths of length 2n which start with two steps up.
 - (b) (HW 3.1) Denote by $p_k(n)$ the number of Young diagrams $\lambda \vdash n$ with k rows. Show that

$$p_1(n) + p_2(n) + \dots + p_k(n) = p_k(n+k)$$

- **E.2.** (a) (HW 7.2) Draw the Hasse diagram of the poset of order ideals of the Boolean lattice B_3 (identifying elements at every vertex). Identify join-irreducible elements of $J(B_3)$. (The latter is actually a hint.)
 - (b) (HW 7.3) Show that the set Π_n of set partitions of [n] ordered by refinement is a lattice. Is it distributive?
- **E.3.** (a) (HW 8.3) Let $w = 26514871093 \in S_{10}$. Apply the RSK algorithm to w to obtain SYT P and Q.
 - (b) (HW 8.4) Let (P,Q) be SYT of shape $\lambda=(4,2,2,2)\vdash 10,$ where

$$P = \begin{bmatrix} 1 & 3 & 4 & 10 \\ 2 & 5 & & & \\ 6 & 7 & & & \\ 8 & 9 & & & & \\ \end{bmatrix} \qquad Q = \begin{bmatrix} 1 & 2 & 5 & 6 \\ 3 & 4 & & \\ 7 & 8 & & \\ 9 & 10 & & \\ \end{bmatrix}$$

Construct $w \in S_{10}$ which is taken to the pair (P,Q) by the RSK algorithm.

- **E.4.** (a) (HW 16.2) Let Δ be a root system. Show that the highest root $\tilde{\alpha}_0$ is always long, i.e. $(\tilde{\alpha}_0, \tilde{\alpha}_0) \geq (\alpha, \alpha)$ for any $\alpha \in \Delta$.
 - (b) (HW 19.1(a)) Compute the Coxeter number and exponents of Weyl group of type C_4 .

Section B

- **E.5.** (HW 2.4) We say that a Dyck path has a *hill* at point 2i + 1 if it passes through points (2i, 0) and (2i + 2, 0). Denote by F_k the number of *hill-free* Dyck paths of length 2k, i.e. Dyck paths without hills.
 - (a) Compute F_k for $k \leq 5$.
 - (b) Show that numbers F_k satisfy the following equation:

$$C_n = F_n + \sum_{k=0}^{n-1} F_k C_{n-k-1},$$

where C_k are Catalan numbers.

Hint: consider the first hill from the left.

(c) Compute the generating function F(x) of the sequence (F_k) . Show that

$$F(x) = \frac{1}{1 - x^2 C(x)^2},$$

where C(x) is the generating function for Catalan numbers.

- **E.6.** (a) (HW 8.1) Show that the poset J(P) of order ideals of a poset P is a distributive lattice.
 - (b) (HW 8.2) Given a poset P with |P| = n, construct a map from the set of linear extensions of P to the set of saturated chains of J(P) by taking $\varphi: P \to [n]$ to the chain $\hat{0} = \emptyset < I_1 < I_2 < \dots < I_n = \hat{1}$, where $I_j = \varphi^{-1}([j])$. Show that this map is a bijection.
- **E.7.** (HW 16.1) Let Δ be a root system, $\Pi = \{\alpha_i\}$ is a set of simple roots.
 - (a) Show that $r_{\alpha_i}(\Delta^+ \setminus \alpha_i) = \Delta^+ \setminus \alpha_i$. In other words, r_{α_i} takes all positive roots except α to positive roots.
 - (b) Let $w \in W$, $\alpha \in \Pi$. Denote $n(w) = \#\{\beta \in \Delta^+ \mid w\beta \in \Delta^-\}$, i.e. the number of positive roots taken by w to negative ones. Show that if $w\alpha \in \Delta^+$ then $n(wr_\alpha) = n(w) + 1$, and if $w\alpha \in \Delta^-$ then $n(wr_\alpha) = n(w) 1$. In particular, $n(w) \leq l(w)$.
 - (c) Let $s_1 ldots s_k$ be a reduced expression for w, where $s_i = r_{\alpha_i}$ are simple reflections. Show that if n(w) < l(w) then there exist i < j such that $s_i(s_{i+1} ldots s_{j-1})\alpha_j = \alpha_i$.
 - (d) Show that n(w) = l(w) for every $w \in W$.
- **E.8.** (a) (HW 15.4) Let (G, S) be Coxeter system, $r \in R$ and $g \in G$. Show that if $r \in R(g)$ then l(rg) < l(g).
 - (b) (HW 14.3) Let G be a group with a finite generating set S consisting of involutions, and let $\{P_s\}_{s\in S}$ be a family of subsets of G satisfying the following properties:
 - (1) $e \in P_s$ for every $s \in S$;
 - (2) $P_s \cap sP_s = \emptyset$ for every $s \in S$;
 - (3) For every $s, t \in S$ and $g \in G$ such that $g \in P_s$ and $gt \notin P_s$, one has sg = gt.

2

Show that $P_s = \{g \in G \mid l(sg) > l(g)\}$, and (G, S) satisfies Exchange Condition (and thus is a Coxeter system).