Durham University Pavel Tumarkin Epiphany 2024

Topics in Combinatorics IV, Solutions 19 (Week 19)

Throughout the problem sheet Δ is a root system of rank n, $\Pi = \{\alpha_i\}$ are simple roots, $\tilde{\alpha}_0$ is the highest root, W is the Weyl group, h is the Coxeter number.

19.1. Compute the Coxeter number and exponents of the Weyl group of type

- (a) C_4 ;
- (b) C_n .

Solution: Let $\{e_i\}$ be an orthogram basis of \mathbb{R}^n , and let $s_i = r_{\alpha_i}$, where $\alpha_i = e_i - e_{i+1}$ for i < nand $\alpha_n = 2e_n$. Take $c = s_1 \dots s_{n-1}s_n = (s_1 \dots s_{n-1})s_n$, where $s_1 \dots s_{n-1}$ is a cyclic permutation of coordinates $1, \dots, n$, and s_n is the change of sign of *n*-th coordinate. Therefore, for n = 4 we have

$$c = \begin{pmatrix} 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

The characteristic polynomial of c is $\lambda^4 + 1$, so the eigenvalues are $\exp(\frac{2\pi i}{8} + k\frac{2\pi i}{4})$, where k = 0, 1, 2, 3. Thus, the exponents are 1, 3, 5, 7, and the Coxeter number is $h = \frac{2}{n}(m_1 + m_2 + m_3 + m_4) = \frac{1}{2}(1 + 3 + 5 + 7) = 8$.

For arbitrary *n*, the characteristic polynomial of *c* is $(-1)^n(\lambda^n + 1)$, so the eigenvalues of *c* are $\exp(\frac{2\pi i}{2n} + k\frac{2\pi i}{n})$, where $k = 0, \ldots, n-1$, and the corresponding exponents are 2k + 1. The Coxeter number is $h = \frac{2}{n}(m_1 + \cdots + m_n) = \frac{2}{n}(1 + 3 + \cdots + (2n - 1)) = \frac{2}{n}(\frac{n}{2} \cdot 2n) = 2n$.

- **19.2.** (a) Show that the Coxeter number of the Weyl group of type E_8 is equal to the Coxeter number of the Coxeter group of type H_4 .
 - (b) Show that the symmetric group S_{n+1} contains a subgroup isomorphic to the dihedral group $I_2(n+1)$.

Solution:

- (a) By the construction of H_4 as a subgroup of E_8 , the generators of H_4 are $s_i t_i$ (see Section 10.3.1 of lecture notes), so a Coxeter element of H_4 is $s_1 t_1 \dots s_4 t_4$. However, this is a Coxeter element of E_8 as well.
- (b) S_{n+1} is a Weyl group of type A_n , its Coxeter number is n + 1. If we take a bipartite Coxeter element c = c'c'', then $c'^2 = c''^2 = c^{n+1} = e$, so c' and c'' generate a group Γ which is a quotient of $I_2(n+1)$. There are no more relations on c' and c'': Γ contains n + 1 elements of type c^k , and also $c' \neq c^k$ for any k, so there are at least 2(n+1) elements.

- **19.3.** (a) Define $\gamma = \sum_{\beta \in \Delta^+} \frac{\beta}{(\beta,\beta)}$. Show that $r_{\alpha_i}(\gamma) = \gamma \frac{2\alpha_i}{\alpha_i,\alpha_i}$. *Hint:* use HW 16.1(a).
 - (b) Show that $\sum_{\beta \in \Delta^+} \frac{(\alpha_i, \beta)}{(\beta, \beta)} = 1.$

(c) Let
$$v \in \mathbb{R}^n$$
, $v = \sum c_i \alpha_i$. Show that $\sum c_i = \sum_{\beta \in \Delta^+} \frac{(v,\beta)}{(\beta,\beta)}$.

- (d) Define quadratic from Q on \mathbb{R}^n by $Q(v) = \sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)}$. Show that Q is invariant with respect to W. Hint: $Q(v) = \sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)} = \frac{1}{2} \sum_{\beta \in \Delta} \frac{(v,\beta)^2}{(\beta,\beta)}$.
- (e) Let $\{e_i\}$ be an orthonormal basis of \mathbb{R}^n . Denote $N = |\Delta^+|$. Show that $\sum_{i=1}^n \sum_{\beta \in \Delta^+} \frac{(e_i,\beta)^2}{(\beta,\beta)} = N$.
- (f) Show that $\sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)} = (v,v)\frac{N}{n}$. Deduce from this that $\sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(v,v)(\beta,\beta)} = \frac{N}{n}$. *Hint:* use HW 18.4.
- (g) Let $\alpha, \beta \in \Delta$, and let $(\alpha, \alpha) \leq (\beta, \beta)$. Show that $\langle \alpha \mid \beta \rangle = 0$ or ± 1 .
- (h) Show that $\langle \alpha \mid \tilde{\alpha}_0 \rangle = \langle \alpha \mid \tilde{\alpha}_0 \rangle^2$ for any positive root $\alpha \neq \tilde{\alpha}_0$.
- (i) Show that $N = \frac{(\operatorname{ht} \tilde{\alpha}_0 + 1)n}{2}$. Deduce from this that $h = 1 + \operatorname{ht} \tilde{\alpha}_0$. *Hint:* write $\frac{(\tilde{\alpha}_0,\beta)}{(\beta,\beta)}$ as $\langle \beta \mid \tilde{\alpha}_0 \rangle \frac{(\tilde{\alpha}_0,\tilde{\alpha}_0)}{2(\beta,\beta)}$ and use (c),(f) and (h).

Solution:

(a)

$$r_{\alpha_i}(\gamma) = \sum_{\beta \in \Delta^+} \frac{r_{\alpha_i}(\beta)}{(\beta,\beta)} = \frac{r_{\alpha_i}(\alpha_i)}{(\alpha_i,\alpha_i)} + \sum_{\substack{\beta \in \Delta^+ \\ \beta \neq \alpha_i}} \frac{r_{\alpha_i}(\beta)}{(\beta,\beta)} = -\frac{\alpha_i}{(\alpha_i,\alpha_i)} + \sum_{\substack{\beta' \in \Delta^+ \\ \beta' \neq \alpha_i}} \frac{\beta'}{(\beta',\beta')} = \gamma - \frac{2\alpha_i}{\alpha_i,\alpha_i}$$

Here we used that r_{α_i} takes $\Delta^+ \setminus \alpha_i$ to $\Delta^+ \setminus \alpha_i$ (HW 16.1(a)), and that $\beta' = r_{\alpha_i}(\beta)$ has the same length as β .

- (b) $\sum_{\beta \in \Delta^+} \frac{(\alpha_i, \beta)}{(\beta, \beta)} = (\alpha_i, \gamma)$, which is equal to 1 by (a).
- (c) This immediately follows from (b) by linearity.
- (d) It is sufficient to verify the statement for generators of W, i.e. for r_{α_i} . Following the hint, we have

$$Q(r_{\alpha_{i}}(v)) = \frac{1}{2} \sum_{\beta \in \Delta} \frac{(r_{\alpha_{i}}(v), \beta)^{2}}{(\beta, \beta)} = \frac{1}{2} \sum_{\beta \in \Delta} \frac{(v, r_{\alpha_{i}}(\beta))^{2}}{(r_{\alpha_{i}}(\beta), r_{\alpha_{i}}(\beta))} = \frac{1}{2} \sum_{\beta' \in \Delta} \frac{(v, \beta')^{2}}{(\beta', \beta')} = Q(v)$$

(e)

$$\sum_{i=1}^{n} \sum_{\beta \in \Delta^+} \frac{(e_i, \beta)^2}{(\beta, \beta)} = \sum_{\beta \in \Delta^+} \sum_{i=1}^{n} \frac{(e_i, \beta)^2}{(\beta, \beta)} = \sum_{\beta \in \Delta^+} \frac{\|\beta\|^2}{(\beta, \beta)} = \sum_{\beta \in \Delta^+} 1 = N$$

- (f) According to (d), the quadratic form $Q(v) = \sum_{\beta \in \Delta^+} \frac{(v,\beta)^2}{(\beta,\beta)}$ is invariant with respect to W. By HW 18.4, this implies that Q(v) = c(v,v). By (e), we have $\sum_{i=1}^n Q(e_i) = N$. Therefore, $N = \sum_{i=1}^n Q(e_i) = \sum_{i=1}^n c(e_i, e_i) = nc$, and thus $c = \frac{N}{n}$.
- (g) This follows from Lemma 9.3: both $\langle \alpha \mid \beta \rangle$ and $\langle \beta \mid \alpha \rangle$ are integers and the modulus of their product does not exceed 3, so either both are zero or one of them must equal ± 1 .
- (h) Since $(\tilde{\alpha}_0, \alpha_j) \ge 0$, (a) and HW 18.3 imply that $\langle \alpha_j | \tilde{\alpha}_0 \rangle = 0$ or 1, and the statement follows.
- (i) Following the hint, we write

$$\operatorname{ht} \tilde{\alpha}_{0} \stackrel{\operatorname{by}(\mathbf{c})}{=} \sum_{\beta \in \Delta^{+}} \frac{\left(\tilde{\alpha}_{0}, \beta\right)}{\left(\beta, \beta\right)} = \sum_{\beta \in \Delta^{+}} \langle \beta \mid \tilde{\alpha}_{0} \rangle \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\beta, \beta)} \stackrel{\operatorname{by}(\mathbf{h})}{=}$$

$$\stackrel{\operatorname{by}(\mathbf{h})}{=} \sum_{\beta \in \Delta^{+}} \langle \beta \mid \tilde{\alpha}_{0} \rangle^{2} \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\beta, \beta)} - \langle \tilde{\alpha}_{0} \mid \tilde{\alpha}_{0} \rangle^{2} \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\tilde{\alpha}_{0}, \tilde{\alpha}_{0})} + \langle \alpha_{0} \mid \tilde{\alpha}_{0} \rangle \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\tilde{\alpha}_{0}, \tilde{\alpha}_{0})} =$$

$$= \sum_{\beta \in \Delta^{+}} \frac{4(\beta, \tilde{\alpha}_{0})^{2}}{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)^{2}} \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\beta, \beta)} - 2 + 1 = 2 \sum_{\beta \in \Delta^{+}} \frac{\left(\beta, \tilde{\alpha}_{0}\right)^{2}}{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)(\beta, \beta)} - 1 \stackrel{\operatorname{by}(\mathbf{f})}{=} 2 \frac{N}{n} - 1,$$

which implies $N = \frac{(\operatorname{ht} \tilde{\alpha}_0 + 1)n}{2}$. By Lemma 11.17(2), $N = \frac{\operatorname{hn}}{2}$, so $h = \operatorname{ht} \tilde{\alpha}_0 + 1$.