Topics in Combinatorics IV, Solutions 19 (Week 19)

Throughout the problem sheet Δ is a root system of rank $n, \Pi=\left\{\alpha_{i}\right\}$ are simple roots, $\tilde{\alpha}_{0}$ is the highest root, W is the Weyl group, h is the Coxeter number.
19.1. Compute the Coxeter number and exponents of the Weyl group of type
(a) C_{4};
(b) C_{n}.

Solution: Let $\left\{e_{i}\right\}$ be an orthnormal basis of \mathbb{R}^{n}, and let $s_{i}=r_{\alpha_{i}}$, where $\alpha_{i}=e_{i}-e_{i+1}$ for $i<n$ and $\alpha_{n}=2 e_{n}$. Take $c=s_{1} \ldots s_{n-1} s_{n}=\left(s_{1} \ldots s_{n-1}\right) s_{n}$, where $s_{1} \ldots s_{n-1}$ is a cyclic permutation of coordinates $1, \ldots, n$, and s_{n} is the change of sign of n-th coordinate. Therefore, for $n=4$ we have

$$
c=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

The characteristic polynomial of c is $\lambda^{4}+1$, so the eigenvalues are $\exp \left(\frac{2 \pi i}{8}+k \frac{2 \pi i}{4}\right)$, where $k=0,1,2,3$. Thus, the exponents are $1,3,5,7$, and the Coxeter number is $h=\frac{2}{n}\left(m_{1}+m_{2}+m_{3}+m_{4}\right)=$ $\frac{1}{2}(1+3+5+7)=8$.
For arbitrary n, the characteristic polynomial of c is $(-1)^{n}\left(\lambda^{n}+1\right)$, so the eigenvalues of c are $\exp \left(\frac{2 \pi i}{2 n}+k \frac{2 \pi i}{n}\right)$, where $k=0, \ldots, n-1$, and the corresponding exponents are $2 k+1$. The Coxeter number is $h=\frac{2}{n}\left(m_{1}+\cdots+m_{n}\right)=\frac{2}{n}(1+3+\cdots+(2 n-1))=\frac{2}{n}\left(\frac{n}{2} \cdot 2 n\right)=2 n$.
19.2. (a) Show that the Coxeter number of the Weyl group of type E_{8} is equal to the Coxeter number of the Coxeter group of type H_{4}.
(b) Show that the symmetric group S_{n+1} contains a subgroup isomorphic to the dihedral group $I_{2}(n+1)$.

Solution:

(a) By the construction of H_{4} as a subgroup of E_{8}, the generators of H_{4} are $s_{i} t_{i}$ (see Section 10.3.1 of lecture notes), so a Coxeter element of H_{4} is $s_{1} t_{1} \ldots s_{4} t_{4}$. However, this is a Coxeter element of E_{8} as well.
(b) S_{n+1} is a Weyl group of type A_{n}, its Coxeter number is $n+1$. If we take a bipartite Coxeter element $c=c^{\prime} c^{\prime \prime}$, then $c^{\prime 2}=c^{\prime 2}=c^{n+1}=e$, so c^{\prime} and $c^{\prime \prime}$ generate a group Γ which is a quotient of $I_{2}(n+1)$. There are no more relations on c^{\prime} and $c^{\prime \prime}: \Gamma$ contains $n+1$ elements of type c^{k}, and also $c^{\prime} \neq c^{k}$ for any k, so there are at least $2(n+1)$ elements.
19.3. (a) Define $\gamma=\sum_{\beta \in \Delta^{+}} \frac{\beta}{(\beta, \beta)}$. Show that $r_{\alpha_{i}}(\gamma)=\gamma-\frac{2 \alpha_{i}}{\alpha_{i} \alpha_{i}}$.

Hint: use HW 16.1(a).
(b) Show that $\sum_{\beta \in \Delta^{+}} \frac{\left(\alpha_{i}, \beta\right)}{(\beta, \beta)}=1$.
(c) Let $v \in \mathbb{R}^{n}, v=\sum c_{i} \alpha_{i}$. Show that $\sum c_{i}=\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)}{(\beta, \beta)}$.
(d) Define quadratic from Q on \mathbb{R}^{n} by $Q(v)=\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)^{2}}{(\beta, \beta)}$. Show that Q is invariant with respect to W. Hint: $Q(v)=\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)^{2}}{(\beta, \beta)}=\frac{1}{2} \sum_{\beta \in \Delta} \frac{(v, \beta)^{2}}{(\beta, \beta)}$.
(e) Let $\left\{e_{i}\right\}$ be an orthonormal basis of \mathbb{R}^{n}. Denote $N=\left|\Delta^{+}\right|$. Show that $\sum_{i=1}^{n} \sum_{\beta \in \Delta^{+}} \frac{\left(e_{i}, \beta\right)^{2}}{(\beta, \beta)}=N$.
(f) Show that $\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)^{2}}{(\beta, \beta)}=(v, v) \frac{N}{n}$. Deduce from this that $\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)^{2}}{(v, v)(\beta, \beta)}=\frac{N}{n}$. Hint: use HW 18.4.
(g) Let $\alpha, \beta \in \Delta$, and let $(\alpha, \alpha) \leq(\beta, \beta)$. Show that $\langle\alpha \mid \beta\rangle=0$ or ± 1.
(h) Show that $\left\langle\alpha \mid \tilde{\alpha}_{0}\right\rangle=\left\langle\alpha \mid \tilde{\alpha}_{0}\right\rangle^{2}$ for any positive root $\alpha \neq \tilde{\alpha}_{0}$.
(i) Show that $N=\frac{\left(\text { ht } \tilde{\alpha}_{0}+1\right) n}{2}$. Deduce from this that $h=1+\mathrm{ht} \tilde{\alpha}_{0}$. Hint: write $\frac{\left(\tilde{\alpha}_{0}, \beta\right)}{(\beta, \beta)}$ as $\left\langle\beta \mid \tilde{\alpha}_{0}\right\rangle \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\beta, \beta)}$ and use (c),(f) and (h).

Solution:

(a)

$$
r_{\alpha_{i}}(\gamma)=\sum_{\beta \in \Delta^{+}} \frac{r_{\alpha_{i}}(\beta)}{(\beta, \beta)}=\frac{r_{\alpha_{i}}\left(\alpha_{i}\right)}{\left(\alpha_{i}, \alpha_{i}\right)}+\sum_{\substack{\beta \in \Delta^{+} \\ \beta \neq \alpha_{i}}} \frac{r_{\alpha_{i}}(\beta)}{(\beta, \beta)}=-\frac{\alpha_{i}}{\left(\alpha_{i}, \alpha_{i}\right)}+\sum_{\substack{\beta^{\prime} \in \Delta^{+} \\ \beta^{\prime} \neq \alpha_{i}}} \frac{\beta^{\prime}}{\left(\beta^{\prime}, \beta^{\prime}\right)}=\gamma-\frac{2 \alpha_{i}}{\alpha_{i}, \alpha_{i}}
$$

Here we used that $r_{\alpha_{i}}$ takes $\Delta^{+} \backslash \alpha_{i}$ to $\Delta^{+} \backslash \alpha_{i}$ (HW 16.1(a)), and that $\beta^{\prime}=r_{\alpha_{i}}(\beta)$ has the same length as β.
(b) $\sum_{\beta \in \Delta^{+}} \frac{\left(\alpha_{i}, \beta\right)}{(\beta, \beta)}=\left(\alpha_{i}, \gamma\right)$, which is equal to 1 by (a).
(c) This immediately follows from (b) by linearity.
(d) It is sufficient to verify the statement for generators of W, i.e. for $r_{\alpha_{i}}$. Following the hint, we have

$$
Q\left(r_{\alpha_{i}}(v)\right)=\frac{1}{2} \sum_{\beta \in \Delta} \frac{\left(r_{\alpha_{i}}(v), \beta\right)^{2}}{(\beta, \beta)}=\frac{1}{2} \sum_{\beta \in \Delta} \frac{\left(v, r_{\alpha_{i}}(\beta)\right)^{2}}{\left(r_{\alpha_{i}}(\beta), r_{\alpha_{i}}(\beta)\right)}=\frac{1}{2} \sum_{\beta^{\prime} \in \Delta} \frac{\left(v, \beta^{\prime}\right)^{2}}{\left(\beta^{\prime}, \beta^{\prime}\right)}=Q(v)
$$

(e)

$$
\sum_{i=1}^{n} \sum_{\beta \in \Delta^{+}} \frac{\left(e_{i}, \beta\right)^{2}}{(\beta, \beta)}=\sum_{\beta \in \Delta^{+}} \sum_{i=1}^{n} \frac{\left(e_{i}, \beta\right)^{2}}{(\beta, \beta)}=\sum_{\beta \in \Delta^{+}} \frac{\|\beta\|^{2}}{(\beta, \beta)}=\sum_{\beta \in \Delta^{+}} 1=N
$$

(f) According to (d), the quadratic form $Q(v)=\sum_{\beta \in \Delta^{+}} \frac{(v, \beta)^{2}}{(\beta, \beta)}$ is invariant with respect to W. By HW 18.4, this implies that $Q(v)=c(v, v)$. By (e), we have $\sum_{i=1}^{n} Q\left(e_{i}\right)=N$. Therefore, $N=\sum_{i=1}^{n} Q\left(e_{i}\right)=\sum_{i=1}^{n} c\left(e_{i}, e_{i}\right)=n c$, and thus $c=\frac{N}{n}$.
(g) This follows from Lemma 9.3: both $\langle\alpha \mid \beta\rangle$ and $\langle\beta \mid \alpha\rangle$ are integers and the modulus of their product does not exceed 3 , so either both are zero or one of them must equal ± 1.
(h) Since $\left(\tilde{\alpha}_{0}, \alpha_{j}\right) \geq 0$, (a) and HW 18.3 imply that $\left\langle\alpha_{j} \mid \tilde{\alpha}_{0}\right\rangle=0$ or 1 , and the statement follows.
(i) Following the hint, we write

$$
\begin{aligned}
& \text { ht } \tilde{\alpha}_{0} \text { by (c) } \\
&= \sum_{\beta \in \Delta^{+}} \frac{\left(\tilde{\alpha}_{0}, \beta\right)}{(\beta, \beta)}=\sum_{\beta \in \Delta^{+}}\left\langle\beta \mid \tilde{\alpha}_{0}\right\rangle \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\beta, \beta)} \stackrel{\text { by (h) }}{=} \\
& \stackrel{\text { by }}{=} \text { (h) } \sum_{\beta \in \Delta^{+}}\left\langle\beta \mid \tilde{\alpha}_{0}\right\rangle^{2} \frac{\left.\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\beta, \beta)}-\left\langle\tilde{\alpha}_{0} \mid \tilde{\alpha}_{0}\right\rangle^{2} \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}+\left\langle\alpha_{0} \mid \tilde{\alpha}_{0}\right\rangle \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}= \\
& \quad=\sum_{\beta \in \Delta^{+}} \frac{4\left(\beta, \tilde{\alpha}_{0}\right)^{2}}{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)^{2}} \frac{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)}{2(\beta, \beta)}-2+1=2 \sum_{\beta \in \Delta^{+}} \frac{\left(\beta, \tilde{\alpha}_{0}\right)^{2}}{\left(\tilde{\alpha}_{0}, \tilde{\alpha}_{0}\right)(\beta, \beta)}-1 \stackrel{\text { by (f) }}{=} 2 \frac{N}{n}-1,
\end{aligned}
$$

which implies $N=\frac{\left(h t \tilde{\alpha}_{0}+1\right) n}{2}$. By Lemma 11.17(2), $N=\frac{h n}{2}$, so $h=$ ht $\tilde{\alpha}_{0}+1$.

