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Topics in Combinatorics IV, Solutions 19 (Week 19)

Throughout the problem sheet ∆ is a root system of rank n, Π = {αi} are simple roots, α̃0 is the
highest root, W is the Weyl group, h is the Coxeter number.

19.1. Compute the Coxeter number and exponents of the Weyl group of type

(a) C4;

(b) Cn.

Solution: Let {ei} be an orthnormal basis of Rn, and let si = rαi , where αi = ei − ei+1 for i < n
and αn = 2en. Take c = s1 . . . sn−1sn = (s1 . . . sn−1)sn, where s1 . . . sn−1 is a cyclic permutation of
coordinates 1, . . . , n, and sn is the change of sign of n-th coordinate. Therefore, for n = 4 we have

c =


0 0 0 −1
1 0 0 0
0 1 0 0
0 0 1 0


The characteristic polynomial of c is λ4+1, so the eigenvalues are exp(2πi8 +k 2πi

4 ), where k = 0, 1, 2, 3.
Thus, the exponents are 1, 3, 5, 7, and the Coxeter number is h = 2

n(m1 + m2 + m3 + m4) =
1
2(1 + 3 + 5 + 7) = 8.

For arbitrary n, the characteristic polynomial of c is (−1)n(λn + 1), so the eigenvalues of c are
exp(2πi2n + k 2πi

n ), where k = 0, . . . , n− 1, and the corresponding exponents are 2k + 1. The Coxeter
number is h = 2

n(m1 + · · ·+mn) =
2
n(1 + 3 + · · ·+ (2n− 1)) = 2

n(
n
2 · 2n) = 2n.

19.2. (a) Show that the Coxeter number of the Weyl group of type E8 is equal to the Coxeter
number of the Coxeter group of type H4.

(b) Show that the symmetric group Sn+1 contains a subgroup isomorphic to the dihedral
group I2(n+ 1).

Solution:

(a) By the construction of H4 as a subgroup of E8, the generators of H4 are siti (see Section 10.3.1
of lecture notes), so a Coxeter element of H4 is s1t1 . . . s4t4. However, this is a Coxeter element
of E8 as well.

(b) Sn+1 is a Weyl group of type An, its Coxeter number is n+ 1. If we take a bipartite Coxeter
element c = c′c′′, then c′2 = c′′2 = cn+1 = e, so c′ and c′′ generate a group Γ which is a quotient
of I2(n+ 1). There are no more relations on c′ and c′′: Γ contains n+ 1 elements of type ck,
and also c′ ̸= ck for any k, so there are at least 2(n+ 1) elements.
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19.3. (a) Define γ =
∑

β∈∆+

β
(β,β)

. Show that rαi
(γ) = γ − 2αi

αi,αi
.

Hint: use HW 16.1(a).

(b) Show that
∑

β∈∆+

(αi,β)
(β,β)

= 1.

(c) Let v ∈ Rn, v =
∑

ciαi. Show that
∑

ci =
∑

β∈∆+

(v,β)
(β,β)

.

(d) Define quadratic from Q on Rn by Q(v) =
∑

β∈∆+

(v,β)2

(β,β)
. Show that Q is invariant with

respect to W . Hint: Q(v) =
∑

β∈∆+

(v,β)2

(β,β)
= 1

2

∑
β∈∆

(v,β)2

(β,β)
.

(e) Let {ei} be an orthonormal basis of Rn. DenoteN= |∆+|. Show that
n∑

i=1

∑
β∈∆+

(ei,β)
2

(β,β)
= N .

(f) Show that
∑

β∈∆+

(v,β)2

(β,β)
= (v, v)N

n
. Deduce from this that

∑
β∈∆+

(v,β)2

(v,v)(β,β)
= N

n
.

Hint: use HW 18.4.

(g) Let α, β ∈ ∆, and let (α, α) ≤ (β, β). Show that ⟨α | β⟩ = 0 or ±1.

(h) Show that ⟨α | α̃0⟩ = ⟨α | α̃0⟩2 for any positive root α ̸= α̃0.

(i) Show that N =
(ht α̃0 + 1)n

2
. Deduce from this that h = 1 + ht α̃0.

Hint: write (α̃0,β)
(β,β)

as ⟨β | α̃0⟩ (α̃0,α̃0)
2(β,β)

and use (c),(f) and (h).

Solution:

(a)

rαi(γ) =
∑

β∈∆+

rαi(β)

(β, β)
=

rαi(αi)

(αi, αi)
+

∑
β ∈ ∆+

β ̸= αi

rαi(β)

(β, β)
= − αi

(αi, αi)
+

∑
β′ ∈ ∆+

β′ ̸= αi

β′

(β′, β′)
= γ− 2αi

αi, αi

Here we used that rαi takes ∆+ \ αi to ∆+ \ αi (HW 16.1(a)), and that β′ = rαi(β) has the
same length as β.

(b)
∑

β∈∆+

(αi,β)
(β,β) = (αi, γ), which is equal to 1 by (a).

(c) This immediately follows from (b) by linearity.

(d) It is sufficient to verify the statement for generators of W , i.e. for rαi . Following the hint, we
have

Q(rαi(v)) =
1

2

∑
β∈∆

(rαi(v), β)
2

(β, β)
=

1

2

∑
β∈∆

(v, rαi(β))
2

(rαi(β), rαi(β))
=

1

2

∑
β′∈∆

(v, β′)2

(β′, β′)
= Q(v)

(e)
n∑

i=1

∑
β∈∆+

(ei, β)
2

(β, β)
=

∑
β∈∆+

n∑
i=1

(ei, β)
2

(β, β)
=

∑
β∈∆+

∥β∥2

(β, β)
=

∑
β∈∆+

1 = N
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(f) According to (d), the quadratic form Q(v) =
∑

β∈∆+

(v,β)2

(β,β) is invariant with respect to W .

By HW 18.4, this implies that Q(v) = c(v, v). By (e), we have
n∑

i=1
Q(ei) = N . Therefore,

N =
n∑

i=1
Q(ei) =

n∑
i=1

c(ei, ei) = nc, and thus c = N
n .

(g) This follows from Lemma 9.3: both ⟨α | β⟩ and ⟨β | α⟩ are integers and the modulus of their
product does not exceed 3, so either both are zero or one of them must equal ±1.

(h) Since (α̃0, αj) ≥ 0, (a) and HW 18.3 imply that ⟨αj | α̃0⟩ = 0 or 1, and the statement follows.

(i) Following the hint, we write

ht α̃0
by (c)
=

∑
β∈∆+

(α̃0, β)

(β, β)
=

∑
β∈∆+

⟨β | α̃0⟩
(α̃0, α̃0)

2(β, β)

by (h)
=

by (h)
=

∑
β∈∆+

⟨β | α̃0⟩2
(α̃0, α̃0)

2(β, β)
− ⟨α̃0 | α̃0⟩2

(α̃0, α̃0)

2(α̃0, α̃0)
+ ⟨α0 | α̃0⟩

(α̃0, α̃0)

2(α̃0, α̃0)
=

=
∑

β∈∆+

4(β, α̃0)
2

(α̃0, α̃0)2
(α̃0, α̃0)

2(β, β)
− 2 + 1 = 2

∑
β∈∆+

(β, α̃0)
2

(α̃0, α̃0)(β, β)
− 1

by (f)
= 2

N

n
− 1,

which implies N = (ht α̃0+1)n
2 . By Lemma 11.17(2), N = hn

2 , so h = ht α̃0 + 1.
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