SMB problems sheet 4: additional questions

Here are a few more practice questions on the some of the material.

1 Total differential (Exact and inexact differentials)

1. Find the total differential of

(a)
$$x^2y + zx^2$$

(b)
$$\sin(x)e^y$$

- (c) $\sin(x) + \cos(t)x^2$
- (d) $\sin(x^2y^3z)$

where x, y, z, t are all variables.

- 2. Write down a criterion for checking if a differential is exact or not and check that it is satisfied for the total differentials you computed above.
- 3. Are the following differentials exact or inexact? For those which are exact, find a function which has this as its total differential.

(a)
$$e^{x+t}((1+x)dx+dt)$$

- (b) $e^{x+t}((1+x)dx + xdt)$
- (c) $y^2 z dx + 2xyz dy + xy^2 dz$
- (d) yzdx + 2xzdy + xydz

2 Jacobian and change of variable questions

- 1. Find the Jacobian of the change of variables x = uv, y = u/v. By using this change of variables find $\iint_R \frac{1}{y} dx dy$ where R is the region in the positive quandrant x > 0, y > 0 bounded by the four curves y = x, y = x/4, y = 1/x, y = 4/x.
- 2. Find the Jacobian for the change of variables $x = e^{s+t}$, $y = e^{s-t}$. By using this change of variables find $\iint_R \frac{1}{xy} dx dy$ where R is the region in the positive quandrant x > 0, y > 0 bounded by the four curves $y = x, \ y = x/e^2, \ y = 1/x, \ y = e^2/x$.
- 3. [Harder] Evaluate the integral $\iint_R (\sinh^2 x + \cos^2 y) \sinh 2x \sin 2y \, dx \, dy$ over the region R in the positive quandrant x > 0, y > 0, bounded by the four curves x = 0, y = 0, $\sinh x \cos y = 1$, $\cosh x \sin y = 1$ using the change of varibales $u = \sinh x \cos y$, $v = \cosh x \sin y$.

3 Vector calculus

- 1. Compute ∇f for
 - (a) $f = \sin x e^y z$
 - (b) $f = x^3 \sin y + zxy$
 - (c) $f = \cosh x^2 y + z$.

In each case show that $\operatorname{grad} f$ is irrotational.

2. Compute $\nabla \cdot \mathbf{v}$ and $\nabla \times \mathbf{v}$ for

(a)
$$\mathbf{v} = x\mathbf{i} + z\mathbf{j} + y\mathbf{k}$$

(b)
$$\mathbf{v} = x^2 \mathbf{i} + \sin y x \mathbf{j} + z y \mathbf{k}$$

(c) $\mathbf{v} = \cosh x \mathbf{i} + z y \mathbf{j} + z \mathbf{k}$.

- 3. Show that $\mathbf{v} = yz\mathbf{i} + xz\mathbf{j} + xy\mathbf{k}$ is irrotational, and find a scalar field f(x, y, z) such that $\mathbf{v} = \nabla f$. Can you find another such f?
- 4. For $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and $r = |\mathbf{r}|$ compute
 - (a) ∇r
 - (b) $\nabla \cdot \mathbf{r}$
 - (c) $\nabla \times \mathbf{r}$
 - (d) $\nabla f(r)$
 - (e) $\nabla \cdot (\mathbf{r}f(r))$
 - (f) $\nabla \times (\mathbf{r}f(r))$
- 5. Use the identities $\nabla \cdot (\mathbf{a} \times \mathbf{b}) = (\nabla \times \mathbf{a}) \cdot \mathbf{b} \mathbf{a} \cdot (\nabla \times \mathbf{b})$ and $\nabla \times \nabla f = 0$ from lectures to prove that $\nabla \cdot (\nabla f \times \nabla g) = 0$.
- 6. Prove all the grad div curl identities given in lectures.