SMB problems sheet 3: vector calculus

- 30. In each of the following, find the rate of change of the given function at the given point in the direction of the given vector **a**.

 - (a) $f(x,y) = x^2 y$, (-1,1), $\mathbf{a} = \mathbf{i} + 2\mathbf{j}$. (b) $f(x,y) = \frac{x}{1+y}$, (0,0), $\mathbf{a} = \mathbf{i} \mathbf{j}$. (c) $f(x,y) = x^2 + y^2$, (1,-2), \mathbf{a} makes a positive angle of 60° with the positive x-axis. (d) $f(x,y,z) = xy^3 z^2$, (2,-1,4), $\mathbf{a} = \mathbf{i} + 2\mathbf{j} 3\mathbf{k}$.

 - (e) $f(x, y, z) = \sqrt{xy} \sin z$, $(4, 9, \pi/4)$, $\mathbf{a} = 2\mathbf{i} + 3\mathbf{j} 2\mathbf{k}$.
- 31. In each of the following, sketch the level curve of the given function f through the given point, and find the direction of its tangent at that point. Also, find the direction of ∇f at the given point and confirm that it is perpendicular to the tangent to the level curve at that point. (a) $f(x,y) = y^2 - x^2$, at (2,1); (b) f(x,y) = 3x - 2y, at (-2,1); (c) f(x,y) = xy, at (3,2).
- 32. Find the gradient of $\phi(x, y, z) = z \sin y xz$ at the point $(2, \pi/2, -1)$. Starting at this point, in what direction is ϕ decreasing most rapidly? Find the derivative of ϕ in the direction of the vector 2i + 3j.
- 33. The surface of a certain lake is represented by a region of the xy plane such that the depth (in feet) under the point corresponding to (x, y) is $d(x, y) = 300 - 2x^2 - 3y^2$. A boat on which you are sitting sinks at the point (9, 6); in what direction should you start swimming so that the depth will decrease most rapidly? In what direction will the depth remain the same?
- 34. Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$, and let r be the magnitude of that vector. For $f(x, y) = \ln r$, show that $\nabla f = \frac{\mathbf{r}}{r^2}$.
- 35. Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$, the position vector of a point, and $r = \sqrt{x^2 + y^2 + z^2}$.
 - (a) Show that $\nabla(r^n) = \frac{-n\mathbf{r}}{r^{n+2}}$, and that $\nabla(\mathbf{p}.\mathbf{r}) = \mathbf{p}$ for any fixed vector \mathbf{p} .
 - (b) If u and v are two scalar functions of x, y and z, show that $\nabla(uv) = u\nabla v + v\nabla u$.
 - (c) In electrostatics, the electric field vector is $\mathbf{E} = -\nabla \phi$, where ϕ is the electrostatic potential. The potential due to an electric dipole at the origin of the coordinate system is $\phi = \frac{\mathbf{\hat{p}} \cdot \mathbf{r}}{r^3}$, where **p** is a fixed vector called the dipole moment. Use parts (a) and (b) to show that

$$\mathbf{E} = \frac{3(\mathbf{p}.\mathbf{r})\mathbf{r}}{r^5} - \frac{\mathbf{p}}{r^3}$$

- 91. Santa's sleigh has trajectory $\mathbf{r}(t) = (3t t^3)\mathbf{i} + 4\mathbf{j} + (\sin \pi t)\mathbf{k}$. Find its velocity and acceleration, and find its speed at time t = 1.
- 92. Homer's acceleration is $\mathbf{a} = \mathbf{j} + \exp(t/2)\mathbf{k}$. His initial position and velocity are **0** and $\mathbf{i} + 2\mathbf{k}$ respectively. Determine his position $\mathbf{r}(t)$.
- 93. Defining as usual $r \equiv |\mathbf{r}| = \sqrt{\mathbf{r} \cdot \mathbf{r}}$, show that $\dot{r} = \mathbf{r} \cdot \dot{\mathbf{r}}/r$. Hence if $\mathbf{r}(t) = t \mathbf{i} t^2 \mathbf{j} + t^3 \mathbf{k}$ write down r(t)and $\dot{\mathbf{r}}(t)$ and find an expression for $\dot{r}(t)$. Check by explicit differentiation of r(t). Also find $v(t) = |\dot{\mathbf{r}}(t)|$ to confirm that $v \neq \dot{r}$. Is it true that $\dot{v} = |\ddot{\mathbf{r}}|$?
- 94. Now Santa's sleigh (mass m) has trajectory $\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}$. Find its angular momentum L about $\mathbf{r} = 0$ and check explicitly that it is perpendicular to both \mathbf{r} and $\dot{\mathbf{r}}$.
- 95. The Tooth Fairy's position as a function of time t is $\mathbf{r}(t) = t \mathbf{i} + t^2 \mathbf{j}$. Find $r(t) \equiv |\mathbf{r}(t)|$ and hence show that his velocity in polar coordinates is $\mathbf{v} = \{(1+2t^2) \mathbf{e}_r + t \mathbf{e}_{\theta}\}/\sqrt{1+t^2}$. Find his acceleration also in polar coordinates.
- 96. The Easter Bunny moves in a plane with constant speed v_0 on a spiral curve given by $r(\theta) = r_0 \exp(\theta \cot \alpha)$. Show that her velocity is $\mathbf{v} = v_0(\cos \alpha \, \boldsymbol{e}_r + \sin \alpha \, \boldsymbol{e}_\theta)$ and find her acceleration **a** in polar coordinates. Show that $\mathbf{v} \cdot \mathbf{a} = 0$ and find $|\mathbf{a}|$.

- 97. The integral $\int \mathbf{a}(t) dt$, with $\mathbf{a} = t^2 \mathbf{i} + (1+t)\mathbf{j} + (1-t)^2 \mathbf{k}$, has the value $\mathbf{i} + \mathbf{j} + \mathbf{k}$ at t = 1, find its value at t = 2.
- 98. If $\mathbf{a} = t^2 \mathbf{i} + (1+t)\mathbf{j} + (1-t)^2 \mathbf{k}$ and $\mathbf{b} = (1-t)\mathbf{i} + t^2 \mathbf{j} + (1+t)\mathbf{k}$, evaluate
 - (a) $\int_0^1 \mathbf{a} \cdot \mathbf{b} dt$
 - (b) $\int_0^1 \mathbf{a} \times \mathbf{b} dt$
- 99. Calculate the grad of the following scalar fields:
 - (a) $f(x, y, z) = x^2 y^3 z^4$
 - (b) $f(x, y, z) = \sin x \cos(yz)$
 - (c) $f(x, y, z) = x^2 y z + x y^2 z$
- 100. Calculate the divergence and curl of the following vector fields:
 - (a) $\mathbf{f}(x, y, z) = x^2 y^2 \mathbf{i} + 2xyz \mathbf{j} + z^2 \mathbf{k}$
 - (b) $\mathbf{f}(x, y, z) = x^2 y^2 \mathbf{i} + y^2 z^2 \mathbf{j} + x^2 z^2 \mathbf{k}$
 - (c) $\mathbf{f}(x, y, z) = \sin x \mathbf{i} + \cos y \mathbf{j} + \tan z \mathbf{k}$
- 101. Jupiter and Saturn have masses M_J and M_S , **r** is the separation vector of Saturn from Jupiter and $r = |\mathbf{r}|$. The gravitational potential is $\phi(\mathbf{r}) = \frac{GM_JM_S}{r}$ and the force on Saturn is $\mathbf{F} = \nabla \phi$. Show that $\mathbf{F} = -\frac{M_JM_SG\mathbf{r}}{r^3}$.
- 102. Suppose that two vector fields are given by $\mathbf{g}(\mathbf{r}) = \mathbf{r}$ and $\mathbf{h}(\mathbf{r}) = \omega \times \mathbf{r}$, where ω is a constant vector. Compute:
 - (a) $\nabla \cdot \mathbf{g}; \quad \nabla \times \mathbf{g}.$
 - (b) $\nabla \cdot \mathbf{h}; \quad \nabla \times \mathbf{h}$
- 103. **b** is a vector field.

(a) Prove using the formulae for $\nabla \times (\phi \mathbf{b})$ and for $\nabla \times (\nabla \times \mathbf{b})$ given in lectures that $\nabla \times (\mathbf{b}(\nabla \cdot \mathbf{b})) + \mathbf{b} \times [\nabla \times (\nabla \times \mathbf{b})] + \mathbf{b} \times \nabla^2 \mathbf{b} := (\nabla \cdot \mathbf{b})(\nabla \times \mathbf{b}).$

(b) Prove that $\mathbf{b} \times (\nabla \times \mathbf{b}) = \nabla (b^2/2) - (\mathbf{b} \cdot \nabla) \mathbf{b}$ (Hint: consider just one component (the z-component only to begin with, the other components are similar.)

- 104. Show that $\nabla \times (\nabla \times \mathbf{a}) = \nabla (\nabla \cdot \mathbf{a}) \nabla^2 \mathbf{a}$ for $\mathbf{a} = x^2 z \mathbf{i} + y^2 z \mathbf{j} + xyz \mathbf{k}$.
- 105. Coordinates (α, β, R) with $-1 \le \alpha, \beta \le 1$, $0 \le R < 1$ are related to Cartesian coordinates (x, y, z) via $x = R\alpha, y = R\beta$ and $z = (1 \alpha^2 \beta^2)^{1/2}R$, $R = |\mathbf{r}|$.
 - (a) Express **r** in terms of α, β, R and **i**, **j**, **k**.
 - (b) Obtain the vectors $\mathbf{e}_i (= \partial \mathbf{r} / \partial \alpha, \dots)$ and hence show that the scale factors h_i are given by

$$h_1 = \frac{R(1-\beta^2)^{1/2}}{(1-\alpha^2-\beta^2)^{1/2}}, h_2 = \frac{R(1-\alpha^2)^{1/2}}{(1-\alpha^2-\beta^2)^{1/2}}, h_3 = 1.$$

- (c) Verify formally that the system is not an orthogonal one.
- (d) Show that the volume element of the coordinate system is

$$dV = \frac{R^2 d\alpha d\beta dR}{(1 - \alpha^2 - \beta^2)^{1/2}}.$$