SMB problems sheet 3: vector calculus
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In each of the following, find the rate of change of the given function at the given point in the
direction of the given vector a

( )f(l‘ y)_mQ:U, <_171)7 a:i+2j~

0) @) =5 (00, a=i-}

(¢) f(z,y) =2 +y%, (1,—-2), a makes a positive angle of 60° with the positive r-axis.

() (‘T Y,z )*zyz, (277174% a:1+2.]73k

(e) f(x,y,2) = Joysinz, (4,9,7/4), a=2i+3j—2k

In each of the following, sketch the level curve of the given function f through the given point, and
find the direction of its tangent at that point. Also, find the direction of V f at the given point and
confirm that it is perpendicular to the tangent to the level curve at that point.

(a) f(xay) = y2 - .TQ, at (27 1); (b) f(xay) =3z — 2y, at (72, 1); (C) f(xay) =y, at (372)

Find the gradient of ¢(z,y,z) = zsiny — xz at the point (2,7/2,—1). Starting at this point, in
what direction is ¢ decreasing most rapidly? Find the derivative of ¢ in the direction of the vector
2i + 3j.

The surface of a certain lake is represented by a region of the zy plane such that the depth (in
feet) under the point corresponding to (z,y) is d(z,y) = 300 — 222 — 3y%. A boat on which you are
sitting sinks at the point (9, 6); in what direction should you start swimming so that the depth will
decrease most rapidly? In what direction will the depth remain the same?

Let r = zi+ yj, and let r be the magnitude of that vector. For f(z,y) = Inr, show that Vf = %
r

Let r = zi + yj + zk, the position vector of a point, and r = /22 + y2 + 22.

(a) Show that V(r™) = and that V(p.r) = p for any fixed vector p.

ek
(b) If w and v are two scalar functions of x, y and z, show that V(uv) = uVv + vVu.
(c¢) In electrostatics, the electric field vector is E = —V¢, where ¢ is the electrostatic potential.
The potential due to an electric dipole at the origin of the coordinate system is ¢ = P 31" where
p is a fixed vector called the dipole moment. Use parts (a) and (b) to show that
3(pr)r p

E = =
75 r3

Santa’s sleigh has trajectory r(t) = (3t —t3)i+4j+ (sin7t) k. Find its velocity and acceleration, and find
its speed at time t = 1.

Homer’s acceleration is a = j + exp(¢/2)k. His initial position and velocity are 0 and i+ 2k respectively.
Determine his position r(t).

Defining as usual 7 = |r| = /T -, show that 7 = r - #/r. Hence if r(t) = ti— t?j + t3k write down r(¢
and 1(t) and find an expression for 7(t). Check by explicit differentiation of r(t). Also find v(t) = |¢(¢)
to confirm that v # 7. Is it true that v = |#|?

)
|

Now Santa’s sleigh (mass m) has trajectory r(t) =ti+t2j+ t3k. Find its angular momentum L about
r = 0 and check explicitly that it is perpendicular to both r and r.

The Tooth Fairy’s position as a function of time t is r(t) = ti+ ¢?j. Find r(¢) = |r(t)| and hence show
that his velocity in polar coordinates is v = {(1 + 2t?) e, + teg}/v/1 + t2. Find his acceleration also in
polar coordinates.

The Easter Bunny moves in a plane with constant speed vy on a spiral curve given by r(6) = 7 exp(f cot a).
Show that her velocity is v = vg(cosa e, +sinaep) and find her acceleration a in polar coordinates.
Show that v -a =0 and find |a.
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The integral [a(t)dt, with a = t%i+ (1 +¢)j+ (1 — t)?k, has the value i+ j+k at t = 1, find its value at
t=2.

fa=t’i+(1+t)j+ (1 —t)’k and b = (1 — )i+ t%j + (1 + t)k, evaluate
(a) f01a~bdt
(b) [y axbdt

Calculate the grad of the following scalar fields:

a) f(x,y,2) =a2y3z?
(a) fz,y,2) ==%
(b) f(x,y,2) = sinz cos(yz)
c) flx,y,2) = 22yz + xy’z
(c) f(z,y,2) = x*yz + zy
Calculate the divergence and curl of the following vector fields:
(a) f(z,y,2) = 2292 + 2zy2j + 22k
(b) f(z,y,2) = 22y?i + y?22j + 2227k
(¢) f(z,y,2) =sinzi+ cosyj + tan zk

Jupiter and Saturn have masses M; and Mg, r is the separation vector of Saturn from Jupiter and

r = |r|. The gravitational potential is ¢(r) = % and the force on Saturn is F = V¢. Show that
F — _MJJVésGI‘
SRR,

Suppose that two vector fields are given by g(r) = r and h(r) = w X r, where w is a constant vector.
Compute:

(a) V-g; Vxg.

(b) V-h; Vxh

b is a vector field.

(a) Prove using the formulae for V x (¢b) and for V x (V x b) given in lectures that V x (b(V - b)) +
b x [V x (V xb)]+b x V2b:=(V-b)(V x b).

(b) Prove that b x (V x b) = V(b?/2) — (b - V)b (Hint: consider just one component (the z-component
only to begin with, the other components are similar.)

Show that V x (V x a) = V(V -a) — V?a for a = 22zi + y?2j + zyzk.

Coordinates (o, 8, R) with —1 < «,8 < 1, 0 < R < 1 are related to Cartesian coordinates (z,y, z) via
z=Ra,y=RB and z = (1 — a® — B?)2R, R =|r|.

(a) Express r in terms of «, 3, R and 1i,j, k.
(b) Obtain the vectors e;(= 9r/da, . ..) and hence show that the scale factors h; are given by

R(l _ ﬁ2)1/2 R(l _ a2)1/2

hy = I-a2— )12 "2~ (1—a2 - p2)i/2’

h3 =1.

(¢) Verify formally that the system is not an orthogonal one.

(d) Show that the volume element of the coordinate system is

R2dadBdR

dv = (1—a2— )2



