SMB problems sheet 2: multiple-integration

54. Evaluate the following double integrals

(i)
$$\int_{0}^{2} \int_{0}^{1} (x^{2} + y^{2}) dx dy$$
, (ii) $\int_{0}^{\frac{x}{2}} \int_{0}^{4} x \cos y \, dx dy$, (iii) $\int_{1}^{2} \int_{1}^{2} \frac{xy}{\sqrt{x^{2} + y^{2}}} \, dx dy$,
(iv) $\int_{0}^{1} \int_{-1}^{y+1} (xy - x) \, dx dy$, (v) $\int_{0}^{1} \int_{0}^{x} x \cos \pi y \, dy dx$, (vi) $\int_{0}^{1} \int_{0}^{y} xy e^{x^{2}} \, dx dy$.

- 55. Evaluate the following double integrals
 - (i) $\iint_R x^3 y \, dA$ where R is the interior of the triangle with vertices (0,0), (1,0) and (1,1); (ii) $\iint_R \sqrt{xy} \, dA$ where R is the finite region enclosed by the curves $y = x^2$ and $y = x^3$.
- 56. Use a double integral to find the area of the interior of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- 57. Find the area of the bounded region determined by the curves xy = 6 and x + y = 5.
- 58. Evaluate the following double integrals by changing the order of integration (i) $\int_0^{\frac{\pi}{2}} \int_x^{\frac{\pi}{2}} \frac{\sin y}{y} \, dy dx$, (ii) $\int_0^1 \int_{\sqrt{x}}^1 \sin\left(\frac{y^3+1}{2}\right) \, dy dx$, (iii) $\int_0^1 \int_{x^2}^1 \frac{x^3}{\sqrt{x^4+y^2}} \, dy dx$.
- 59. Use polar coordinates to evaluate the following double integrals
 - (i) $\iint_R e^{-x^2 y^2} dA$ where R is the region bounded by the circle $x^2 + y^2 = 1$; (ii) $\iint_R \frac{x}{\sqrt{x^2 + y^2}} dA$ where R is the region $x^2 + y^2 \le 9$, $x \ge 0$ and $y \ge 0$.
- 60. Evaluate the integral

$$\iint_A \left(\frac{x^2}{x^2 + y^2}\right) \, dx dy,$$

where A (for annulus) is the region between the two circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

61. Evaluate the following triple integrals

(i)
$$\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{2-x} xyz \, dz \, dy \, dx$$
, (ii) $\int_{0}^{\frac{\pi}{2}} \int_{0}^{1} \int_{0}^{2} zr^{2} \sin \theta \, dz \, dr \, d\theta$,
(iii) $\int_{0}^{\pi} \int_{0}^{\frac{\pi}{4}} \int_{0}^{\sec \phi} \sin 2\phi \, d\rho \, d\phi \, d\theta$.

- 62. Evaluate the triple integral $\iiint_Q x \, dV$ where Q is the region bounded by the planes x + y + z = 1, x = 0, y = 0 and z = 0.
- 63. Evaluate the triple integral $\iiint_S \exp\left[(x^2 + y^2 + z^2)^{\frac{3}{2}}\right] dV$ where S is unit sphere centred at the origin.

- 64. Evaluate $\iiint_Q (x^2 + y^2 + z^2)^{-3/2} dV$, where Q is the region bounded by the spheres $x^2 + y^2 + z^2 = a^2$ and $x^2 + y^2 + z^2 = b^2$, with a > b > 0.
- 65. Evaluate the triple integral $\iiint_Q (x+y)^2 dV$ where Q is the solid hemisphere $z \ge 0, x^2+y^2+z^2 \le 4$.
- 66. Find the volume of the finite region bounded by the paraboloid $z = 4 x^2 y^2$ and the xy-plane.
- 67. Find the volume cut off the paraboloid $x^2 + y^2 = hz$ by the plane z = h.
- 68. Find the volume of the solid bounded by the paraboloids $z = \frac{1}{4}(x^2 + y^2)$ and $z = 5 x^2 y^2$.
- 69. A new auditorium is built with a foundation in the shape of a quadrant of a circle of radius 50 feet. Therefore, the foundation forms a region R bounded by the graph of $x^2 + y^2 = 50^2$ with $x \ge 0$ and $y \ge 0$. The sloping floor is modelled by the equation z = (x + y)/5, and the ceiling is modelled by the equation z = 20 + xy/100. A heating engineer needs to know the volume of the hall. Can you calculate it?
- 70. The sombrero surface is defined by the equation

$$z = \frac{\sin r}{r}$$
, where $r = \sqrt{x^2 + y^2}$.

Find the volume of the central peak, above the plane z = 0. Find the volume of the first trough, below the plane z = 0. Show that successive ridges above the plane z = 0 and troughs below that plane have the same volume.

- 88. Compute the Jacobian on changing variables from cartesian co-ordinates (x, y) to polar co-ordinates (r, θ) to show that the area element $dA = rdrd\theta$.
- 89. Compute the Jacobian on changing variables from cartesian co-ordinates (x, y, z) to spherical polar coordinates (r, θ, ϕ) to show that the area element $dA = r^2 \sin \theta dr d\theta d\phi$.
- 90. Find the centre of mass of the objects (assuming uniform density) in
 - (i) Question 66
 - (ii) Question 67
 - (iii) Question 68