8.3 Lagrange form for the remainder

There is a more convenient expression for the remainder term in Taylor's theorem. The **Lagrange** form for the remainder is

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1}, \quad \text{for some } c \in (a,x).$$

To prove this expression for the remainder we will first need to prove the following lemma:

Lemma

Let h(t) be differentiable n + 1 times on [a, x] with $h^{(k)}(a) = 0$ for $0 \le k \le n$ and h(x) = 0. Then $\exists c \in (a, x)$ s.t. $h^{(n+1)}(c) = 0$.

Proof:

 $\begin{array}{l} h(a)=0=h(x) \ \mbox{ so by Rolle's theorem } \exists \ c_1\in(a,x) \ \mbox{s.t. } h'(c_1)=0. \\ h'(a)=0=h'(c_1) \ \ \mbox{ so by Rolle's theorem } \exists \ c_2\in(a,c_1) \ \mbox{s.t. } h''(c_1)=0. \\ \mbox{Repeating this argument a total of } n \ \mbox{times we arrive at} \\ h^{(n)}(a)=0=h^{(n)}(c_n) \ \ \mbox{so by Rolle's theorem } \exists \ c_{n+1}\in(a,c_n) \ \mbox{s.t. } h^{(n+1)}(c_{n+1})=0. \\ \mbox{This proves the lemma with } c=c_{n+1}\in(a,x). \end{array}$

Proof of the Lagrange form of the remainder: Consider the function

$$h(t) = (f(t) - P_n(t))(x - a)^{n+1} - (f(x) - P_n(x))(t - a)^{n+1}.$$

By construction h(x) = 0.

Also $\frac{d^k}{dt^k}(t-a)^{n+1}$ is zero when evaluated at t = a for $0 \le k \le n$. Furthermore, by definition of the Taylor polynomial $P_n(t)$ we have that $f^{(k)}(a) = P_n^{(k)}(a)$ for $0 \le k \le n$. Hence $h^{(n)}(a) = 0$ for $0 \le k \le n$.

h(t) therefore satisfies the conditions of the lemma and we have that $\exists \ c \in (a,x) \text{ s.t. } h^{(n+1)}(c) = 0.$ As $P_n(t)$ is a polynomial of degree n then $P_n^{(n+1)}(t) = 0.$ Also, $\frac{d^{n+1}}{dt^{n+1}}(t-a)^{n+1} = (n+1)!$ hence

$$0 = h^{(n+1)}(c) = (x-a)^{n+1} f^{(n+1)}(c) - (n+1)!(f(x) - P_n(x))$$

Rearranging this expression gives the required result

$$f(x) = P_n(x) + \frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}.$$

One use of the Lagrange form of the remainder is to provide an upper bound on the error of a Taylor polynomial approximation to a function.

Suppose that $|f^{(n+1)}(t)| \leq M$, $\forall t$ in the closed interval between a and x. Then $|R_n(x)| \leq \frac{M|x-a|^{n+1}}{(n+1)!}$ provides a bound on the error.

Eg. Show that the error in approximating e^x by its 6^{th} order Taylor polynomial is always less than 0.0006 throughout the interval [0, 1].

In this example $f(x) = e^x$ and n = 6 so we first require an upper bound on $|f^{(7)}(t)| = |e^t|$ for $t \in [0, 1]$. As e^t is monotonic increasing and positive then $|e^t| \le e^1 = e < 3$. Thus, in the above notation, we may take M = 3.

As a = 0 we now have that $|R_6(x)| < \frac{3|x|^7}{7!} \le \frac{3}{7!}$ for $x \in [0, 1]$. Evaluating $\frac{3}{7!} = \frac{1}{1680} < 0.0006$ and the required result has been shown.