
Answers to Potpourri of Problems

Question 1 The ”proof” starts with the statement to be proved and
derives from it, via a sequence of implications, a true statement under the
given assumption ”un > a”. This means that the arguments show, under
the assumption of un > a, that the assumption un+1 > a leads to a true
statement. Let us analyse this in detail: Let A denote the statement ”un > a”
and B denote the statement ”un+1 > a”. So the arguments show that A and
B together imply the true statement (un − a)2 > 0”, i.e.,

(A and B) ⇒ True. (1)

Assuming A to be true, this does not mean anything for the validity of B: If
B is false and ”A and B” is therefore also false, (1) is then

False ⇒ True,

which is, again, a true statement. So the statement B can be false or true
and the arguments prove nothing.

Question 2 All equalities are correct, except for

{x2 | x ≤ −1 and x > 2} = {x2 | x ≤ −1} ∩ {x2 | x > 2}.

The problem here is the following: While the identity

{x | x has property A and property B} =

{x | x has property A} ∩ {x | x has property B}

is correct, we only have

{f(x) | x has property A and property B} ⊂

{f(x) | x has property A} ∩ {f(x) | x has property B}.

So, for example, if the properties A and B are mutually exclusive then the
set on the left side is empty. But the function f might map two different
elements x1 and x2 with the incompatible properties A and B, respectively, to
the same element y = f(x1) = f(x2), in which case the set on the right side is
not empty and contains, at least, the element y. So we see that the equality
need not be correct if f is not injective, and an example where exactly this
is exploited, is given in the question.



Question 3

(a) If a triangle is not right–angled then its side lengths a, b, c do not satisfy
a2 + b2 = c2.

(b) If a sequence (xn) of real numbers is not convergent then it is (not
monotone increasing) or (not bounded from above).
Here it is important to know De Morgan’s Rule: The negation
of ”A and B” is ”(not A) or (not B)”. Also, you have to be
aware that ”C or D” is not exclusive, that is, this statement
is also true if both C and D are true.

(c) If a sequence (xn)
∞

n=1 of real numbers has a subsequence that does
not converge to a limit x∞ then the sequence (xn) itself does also not
converge to x∞.
Here it is important to know that the negation swaps ”for all”
and ”there exists”.

(d) If there is a pair of opposite angles of a quadrilateral in the plane which
do not add up to 180o then its four vertices do not lie on a common
circle.

Question 4

(a) Let A and B two finite sets. For a map f : A → B to be bijective it is
necessary that |A| = |B|.

Explanation: If f is bijective then there is a one-one correspondende

between the elements of A and B via the map f . This means that both

sets must have the same cardinality. The condition is not sufficient

since A = B = {1, 2}, f(1) = f(2) = 1 satisfies |A| = |B| but is not

injective.

(b) Let (xn) be a sequence of non-negative real numbers. For (−1)nxn to
be convergent it is necessary and sufficient that xn → 0.

Explanation: Since (−1)nxn is an alternating sequence, its limit must

be 0 if it is convergent. But we obviously have (−1)nxn → 0 if xn → 0,
and vice versa.

(c) For a function f : R → R to be continuous it is sufficient that f is
differentiable.

Explanation: It is known from school that every differentiable function

is continuous. But not every continuous function must be differentiable:

a prominent example is the function f : R → R, f(x) = |x|.



(d) Let (an) be a sequence of real numbers. For a series
∑

∞

n=1
an to be

convergent it is necessary that an → 0.

Explanation: Let Ak =
∑k

n=1
an. Since (Ak) is convergent, we have

limAk = c for some c ∈ R. Since an = An+1 − An, we have lim an =
limAn+1 −An = c− c = 0. This shows that the condition is necessary.

But the condition is not sufficient since the harmonic series
∑

∞

n=1

1

n
is

not convergent but we have 1

n
→ 0.

(e) For two vectors v1, v2 ∈ R2 to be linearly independent it is sufficient
that they are non-zero and orthogonal to each other.

Explanation: If two vectors v1, v2 are non-zero and orthogonal to each

other, we have v1 · v1 6= 0 6= v2 · v2 and v1 · v2 = 0. If av1 + bv2 = 0,
we obtain by multiplication with v1 that a = 0 and by multiplication

with v2 that b = 0. Therefore, v1, v2 are linearly independent. But

this condition is not necessary: v1 = (1, 0) and v2 = (1, 1) are linearly

independent but we have v1 ·v2 = 1, that is, v1 and v2 are not orthogonal
to each other.

(f) Let A,B be two 2 × 2 real matrices and Id the 2 × 2 identity matrix.
For AB = BA it is sufficient that one the two matrices is a multiple
of Id.

Explanation: If A = a · Id, we have AB = aB = BA. Similarly, if

B = b·Id, we have AB = bA = BA. But this condition is not necessary.

For example, we have AB = BA for the matrices A =

(

a 0
0 0

)

and

B =

(

b 0
0 0

)

.

Question 5

(a) You ask all guests in the hotel to move five rooms, i.e., the guest in
room k moves to room k + 5. Then the rooms 1, 2, 3, 4, 5 are emptied,
and you can assign them to the five new guests.

(b) You ask all guests to change from their room k into the room 2k. This
empties all rooms with odd numbers. You assign the room 2j − 1 to
the j-th new guest.

(c) You ask the passengers of bus i ∈ N to form the i-th countably infinite
row. Then you enumerate the guests in a diagonal manner (as shown
in Lecture 9 to prove that the set of positive rationals is countable) and
assign to them the corresponding room with the same number.



Question 6

(a) We know that Q is countable. Another diagonal argument shows that
Q2 is also countable. Let

Q2 = {q1, q2, q3, . . . }

be an enumeration of Q2. Let D be a set of discs as described in the
question. Then we find for every disc D ∈ D a point qj with smallest
index j such that qj ∈ D (since Q2 is dense in R2). The disjointness
of the discs guarantees that there are no two discs D,D′ with the
same associated points q, q′ ∈ Q2. This shows that we have a bijection
between the elements of D and a subset of Q2. This shows that D must
be countable.

(b) Note first that a convergent sequence (xn) of natural numbers must be
constant from some finite index n0 ∈ N onwards. Let SN,k be set of
all sequences (xn) of natural numbers with xn = k for all n ≥ N and
|xn| ≤ N for all n ∈ N. It then becomes clear that the set S of all
convergent sequences (xn) whose elements are natural numbers is the
union

⋃

N,k∈N SN,k. This is a countable union of countable sets, i.e.,
itself again countable.

(c) Assume that the set T of all rational sequences (xn) with lim xn = 0 is
countable. We can then enumerate the elements of T , i.e.,

T = {(x1,n), (x2,n), . . . }.

We now construct the following sequence (yn): We set yn = 1/n ∈ Q

if xn,n 6= 1/n and yn = 1/(n + 1) ∈ Q, otherwise. We obviously have
(yn) ∈ T , but (yn) does not agree with any of the sequences (xi,n),
i ∈ N. This is a contradiction.


