
Answers to Writing Maths Problems

Question 1 (a) We have the following angles:
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We derive the following lengths:

|AE| = cosα, |EF | = sinα,

|AD| = cosα cos β, |DE| = cosα sin β,

|EC| = sinα cos β, |CF | = sinα sin β,

|AB| = cos(α+ β), |BF | = sin(α+ β).

(b) Since opposite sides of a rectangle have the same length, we obtain
the addition formulas for the trigonometric functions:

cos(α + β) = cosα sin β + sinα cos β,

sin(α + β) = cosα cos β − sinα sin β.

Question 2 Geometrically, three cases have to be distinguished: The
first case is if M lies on one of the sides of the triangle ∆ABC (here we have
two cases, M lying on the side AC or on the side BC, but these cases are
symmetric counterparts of each other), the second case is if M lies inside
the triangle ∆ABC, and the third case is if M lies outside the triangle
∆ABC (here we have again two cases, M lying to the right of the triangle
or to the left, but these cases are symmetric counterparts of each other).
Useful additional lines are the segments MA,MB and MC. Here are the
illustrations of cases 2 and 3:
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Proof: Let r > 0 be the radius of the circle. Then we have

r = |MA| = |MB| = |MC|. (1)

Let us first consider the first case, assuming without loss of generality that
M ∈ AC, see the following illustration:
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We conclude from (1) that the triangles ∆AMB and ∆BMC are isosceles
and we have equal base angles (by Fact (2)), i.e.,

γ = ∡MAB = ∡MBA,

β = ∡MBC = ∡MCB.

Since the sum of angles in the triangle ∆ABC is 180◦ (see Fact (1)), we
conclude in the first case that

2γ = 180◦ − 2β. (2)



Applying the same fact to the triangle ∆AMB, we obtain

2γ = 180◦ − δ. (3)

Combining (2) and (3), we conclude

∡AMB = δ = 2β = 2∡ACB,

finishing the proof in this geometric case.
Now let us use similar arguments for the cases 2 and 3 simultaneously:

We conclude from (1) that the triangles ∆AMB, ∆BMC and ∆CMA are
isosceles and we have equal base angles (by Fact (2)), i.e.,

γ = ∡MAB = ∡MBA,

β = ∡MBC = ∡MCB,

α = ∡MAC = ∡MCA,

Since the sum of angles in the triangle ∆ABC is 180◦ (see Fact (1)), we
conclude in the second case that

2γ = 180◦ − 2α− 2β, (4)

and in the third case
2γ = 180◦ + 2α− 2β. (5)

Applying the same fact to the triangle ∆AMB, we obtain in both cases (3)
above, again. Combining (4) and (3) in the second case and (5) and (3) in
the third case, we conclude in the second case that

∡AMB = δ = 2(α + β) = 2∡ACB,

and in the third case

∡AMB = δ = 2(α− β) = 2∡ACB.

This shows the identity
∡AMB = 2∡ACB

in the remaining two geometric cases, finishing the proof.

Remark: Interestingly, it turns out that the very special first case, in-
troduced above, can be used to derive the result also for cases 2 and 3. Here
is a short explanation how the proof of the first case can be used to give a
proof of case 2: The idea is to introduce the additional point Z as the second
intersection point of the line CM with the circle and to look at the triangles
∆AZC and ∆ZCB.
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The triangles ∆AZC and ∆ZCB represent Case 1 and we can conclude
from the above result for case 1 that δ1 = 2β1 and δ2 = 2β2. Combining
these results shows for the triangle ∆ABC:

∡AMB = δ1 + δ2 = 2(β1 + β2) = 2∡ACB.

Similar arguments derive the result for case 3 from case 1.

Question 3 This is the original text:

Definition. Let q ∈ R. We call

Sn(q) = 1 + q + q2 + · · ·+ qn−1 (∗)

the geometric series of q of length n.

Theorem. Let q 6= 1. Then we have

Sn(q) =
qn − 1

q − 1
. (✷)

Proof. Multiplication of (∗) with q gives

qSn(q) = q + q2 + q3 + · · ·+ qn. (✸)

Subtracting (∗) from (✸), and observing that most terms cancel out, leads
to

qSn(q)− Sn(q) = (q − 1)Sn(q) = qn − 1.

Now, division by (q − 1) 6= 0 yields (✷), finishing the proof.



Question 4 This is a classical case where a sketch is misleading and
does not represent a really occuring situation. In fact, constructing
the diagram more carefully leads to the following configuration:
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The same arguments show that the triangles ∆ABG and ∆DCG are
congruent and that, therefore γ+90◦ = ∡ABG = ∡DCG. Moreover, we also
have γ = ∡EBG = ∡ECG, but this only tells us that

α + 2γ + 90◦ = 360◦,

i.e., α = 270◦ − 2γ > 90◦ since γ < 90◦, which is no contradiction at all.



Question 5 This is the original text:

We first introduce the notions of r-separating and r-covering sets.

Definition 1. Let A ⊂ R be a subset and r > 0. A finite set S :=
{x1, . . . , xn} ⊂ A is called r-separating, if the open intervals (xi − r, xi + r)
are pairwise disjoint.

An finite r-separating set S = {x1, . . . , xn} ⊂ A is called maximally r-
separating, if any strictly bigger set S ′ ⊂ A of finitely many points is no

longer r-separating.

Example. Let A be the closed interval [0, 10]. Then the set S := {0, 2, 4, 6, 10} ⊂
A is 1-separating, but not maximally 1-separating, since the bigger set S ′ :=
{0, 2, 4, 6, 8, 10} ⊂ A is also 1-separating.

Definition 2. Let A ⊂ R be a subset and r > 0. A finite set S :=
{x1, . . . , xn} ⊂ A is called r-covering, if the union of the open intervals

(xi − r, xi + r) covers the set A.

Example. Let B := {1/n | n ∈ N}. Then the finite set S := {1, 1/2, 1/4, 1/8} ⊂
B is 1/8-covering.

Now we present the main result of this note.

Theorem. Let A ⊂ R be a subset and r > 0. If the finite set S ⊂ A is a

maximally r-separating set, then S is also a 2r-covering set.

Proof. Let the finite set S ⊂ A be given by {x1, . . . , xn}. Assume S would
not be 2r-covering. Then we could find a point x ∈ A which is not in the
union of the intervals (xi−2r, xi+2r). This would mean that x has distance
greater or equal to 2r to all the points xi. Therefore, the strictly bigger set
S ′ := {x1, . . . , xn, x} ⊂ A would also be r-separating. This is a contradiction
to the assumption that S is maximally r-separating.


