
Lecture 2

In the last lecture we introduced mathematical statements and connectives.
We explained how to find out whether a combined mathematical statement is
true or false using truth tables. In this lecture we will continue with a bit of
logic and also introduce basic facts about sets...

Let us first introduce another connective of statements: ”if and only if”,
often abbreviated by ”iff”. The mathematical symbol for this is ⇔. The
statement A ⇔ B is only true if both statements A and B have the same
truth values. The truth table looks as follows:

A B A ⇔ B
False False True
False True False
True False False
True True True

Therefore, if we say that two statements A and B are equivalent, we
can also say that the statement A ⇔ B is true. Let us now rewrite some
fundamental logic laws with this symbol.

Theorem. Let A,B,C be arbitrary statements. Then the following state-
ments are true.

(a) Laws of Commutativity:

A andB ⇔ B andA,

A orB ⇔ B orA.

(b) Laws of Associativity:

(A andB) andC ⇔ A and (B andC),

(A orB) orC ⇔ A or (B orC).

(c) Laws of Distributivity:

(A andB) orC ⇔ (A orC) and (B orC),

(A orB) andC ⇔ (A andC) or (B andC).

(d) De Morgan’s Rules:

( notA) and ( notB) ⇔ not (A orB),

( notA) or ( notB) ⇔ not (A andB).
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Proof. We only prove the second equivalence in (d) with the help of a truth
table:

A B not A not B (not A) or (not B) A and B not (A and B)
False False True True True False True
False True True False True False True
True False False True True False True
True True False False False True False

Next, we look at another important concept: Sets as collections of

objects. Here are some frequently used symbols in connection with sets:

• Sets are usually described using {· · · } brackets. Here is a list of the
most frequently used sets of numbers and vectors:

natural numbers N := {1, 2, 3, 4, . . .},
integer numbers Z := {. . . ,−2,−1, 0, 1, 2, . . .},
rational numbers Q := {p

q
| p ∈ Z and q ∈ N},

real numbers R,

complex numbers C = {x+ iy | x, y ∈ R},
n-dimensional real vectors Rn = {(x1, . . . , xn) | x1, . . . , xn ∈ R}.

You will learn in Linear Algebra that the set Rn carries the additional
structure of a vector space.

• x is an element of the set X : x ∈ X .

• x is not an element of the set X : x 6∈ X .

• Y is a subset of X : Y ⊂ X .

• As already used above, a set X is often described in the form

X = {x | x has certain properties}.

Here is an example:

{n ∈ N | n is an odd square} = {1, 9, 25, 49, . . .}.

• Union of two sets X and Y : X ∪ Y = {x | x ∈ X and x ∈ Y }.

• Intersection of two sets X and Y : X ∩ Y = {x | x ∈ X or x ∈ Y }.
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• Difference of two sets X and Y : X\Y = {x | x ∈ X and x 6∈ Y }.

• Complement of a set X within a bigger set Z: Xc = Z\X .

• We have N ⊂ Z ⊂ Q ⊂ R ⊂ C and, e.g.,

√
2 ∈ R\Q, i ∈ C\R.

• The empty set ∅ = {}. Note the empty set is a subset of every set.

• Two sets X, Y are called disjoint if X ∩ Y = ∅. Here is an example:

R ∩ R2 = ∅.

• Let a < b be two real numbers. Then we have the following intervals:

(a, b) := {x ∈ R | a < x < b},
(a, b] := {x ∈ R | a < x ≤ b},
[a, b) := {x ∈ R | a ≤ x < b},
[a, b] := {x ∈ R | a ≤ x ≤ b}.

We also have unbounded intervals, for example,

(−∞, b] := {x ∈ R | x ≤ b}.

Usually, when −∞ or ∞ appears as bound of an interval, we use the
round brackets ”(” and ”)” there, since −∞ and ∞ are not proper real
numbers and, therefore, should normally not be included into the
interval.

Set operations can be illustrated by Venn Diagrams.

Example: Illustration of the distributive law

(X ∪ Y ) ∩ Z = (X ∩ Z) ∪ (Y ∩ Z).

u

X
Y

Z

(XuY)nZ

X
Y

Z

(XnZ) (YnZ)
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But be aware: Venn Diagrams cannot replace rigorous proofs (see
Question 5 in the Set Problems of Week 2).

Strategies to prove a set inclusion and to prove the equality of two sets:

How to prove X ⊂ Y ? You need to show that every element of X is
also an element of Y .

How to prove X = Y ? This is often done by showing X ⊂ Y and
Y ⊂ X .

Examples:

(a) Show that X = Y , where

X := {(x, y) ∈ R2 | x2 + y2 = 1},
Y := {(cos t, sin t) | t ∈ R}.

The inclusion Y ⊂ X is easy to show: Let (x, y) ∈ Y , i.e., (x, y) =
(cos t, sin t) for some t ∈ R. Then

x2 + y2 = cos2 t + sin2 t = 1,

i.e., (x, y) ∈ X .

Conversely: Let (x, y) ∈ X , i.e., x2 + y2 = 1. Then −1 ≤ x ≤ 1 and,
since cos maps R onto [−1, 1], there exists t ∈ R such that x = cos t,
and we have

y2 = 1− x2 = 1− cos2 t = sin2 t.

This implies that y = ± sin t. In the case y = sin t, we have (x, y) =
(cos t, sin t) ∈ Y and we are done. If y = − sin t, we choose s = −t ∈ R

and have

(cos s, sin s) = (cos(−t), sin(−t)) = (cos t,− sin t) = (x, y).

This shows that (x, y) ∈ Y .

(b) Show that X ⊂ Y1 ∪ Y2, where

X := {n2 | n ∈ Z},
Y1 := {4k | k ∈ Z},
Y2 := {4k + 1 | k ∈ Z}.
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Let n ∈ Z. Then n can be even or odd, i.e., n = 2l or n = 2l + 1 for
some l ∈ Z. In the first case

n2 = (2l)2 = 4l2 = 4k

with k = l2 ∈ Z, i.e., n2 ∈ Y1. In the second case

n2 = (2l + 1)2 = 4l2 + 4l + 1 = 4(l2 + l) + 1 = 4k + 1

with k = l2 + l ∈ Z, i.e., n2 ∈ Y2.
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