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Laplacian smoothing. Smoothing removes surface noise and im-
proves the appearance of surfaces. A simple, yet effective technique for
polyhedral surface smoothing is Laplacian smoothing.

Let us consider a triangulated surface and for any vertex P let us
define the so-called umbrella-operator

U(P ) =
1

∑

i
wi

∑

i

wiQi − P

where summation is taken over all neighbors of P and wi are positive
weights. See Fig. 1 for the geometric idea behind the umbrella-operator.
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Figure 1: Umbrella-operator used for Laplacian smoothing.

The weights, can be defined, for example, as the inverse distances
between P and its neighbors Qi: wi = ‖P − Qi‖−1. The simplest
umbrella-operator is obtained if wi = 1: the umbrella-operator has the
form

U(P ) =
1

n

∑

i

Qi − P (1)

where n is the number of neighbors.
The local update rule

P
new
←− P

old
+ λU(P

old
) (2)

applied to every point of the triangulated surface is called Laplacian
smoothing of the surface. Typically the factor λ is a small positive num-
ber, and the process (2) is executed repeatedly.

The Laplacian smoothing algorithm reduces the high frequency sur-
face information and tends to flatten the surface. See Fig. 2 where Lapla-
cian smoothing is applied to a triangulated model of a Noh mask.

Figure 2: Left: initial triangle mesh. Middle: after 5 iterations with
λ = 1. Right: after 100 iterations with λ = 1.

If λ is too small, one needs more iterations for smoothing and the
smoothing process becomes time-consuming. If λ is not small enough,
the smoothing process becomes unstable. See Fig. 3

Smoothing by mean curvature flow. A better mesh smoothing
scheme, the so-called mean curvature flow, is obtained if the following
vertex update procedure is used instead of (2)

P
new
←− P

old
+ λ H(P

old
)n(P

old
), (3)

where H(P ) n(P ) are discrete approximations of the mean curvature
and unit normal vector at mesh vertex P , respectively.

Figure 3: Left: initial triangle mesh. Middle: after 5 iterations with
λ = 0.3. Right: after 5 iterations with λ = 1.7.

It turns out that (3) also becomes unstable if λ is not small enough.
Let us modify (3) slightly

P
new
←− P

old
+ λ H(P

new
)n(P

new
), (4)

Mesh smoothing evolution (4) is much more stable than (3). However
in order to update a mesh according to (4) we have to solve a system of
linear equations.

Enhancement. Smoothing schemes can be also used for enhance-
ment purposes. Consider a meshM. LetM′ is obtained fromM via
smoothing. Denote by P ′ ∈ M′ a vertex of the smoothed mesh corre-
sponding to vertex P ∈ M of the original mesh. An enhanced mesh is
composed by vertices {P ′ + t (P − P ′)}, where t ≥ 1.

Figure 4: Left: initial triangle mesh. Middle and Right: different mesh
enhancement procedures were applied.

Geometric Curvature Estimation

Integral estimation of the mean curvature. Note that

1

2π

∫ 2π

0

kn(ϕ) dϕ =
kmax + kmin

2
= H

This observation leads to a method to estimate the mean curvature of a
triangulated surface.
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Integral estimation of the Gaussian curvature. Note that

1

2π

∫ 2π

0

kn(ϕ)2 dϕ =
3

2
H2 − 1

2
K.

It allows us to estimate the Gaussian curvature of a triangulated surface
similarly to the above estimation of the mean curvature.

Gaussian curvature estimation via Gauss mapping. The an-
gle deficit ∆(p) of a vertex p of a polygonal surface is defined as the
vertex angle deficit (excess)

∆(p) = 2π − θ(p) = 2π −
m

∑

i=1

θi(p)

For example, the vertices of a cube each have the angle deficit π/2.
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Spherical Image

A

Let p be surrounded by triangular faces with areas S1, S2, S3, . . . and
unit normals n1, n2, n3, . . . . The spherical image of the polygonal
surface is a set of points on the unit sphere (the heads of unit vectors
parallel to n1, n2, n3, . . . ). Let us connect these points by arcs of great
circles to form a spherical polygon on the unit sphere. The area A of
the spherical polygon is equal to the angle deficit of p. The area of
each triangular face adjacent to p can be portioned into three equal parts
corresponding to the vertices of the face. So the total area related to p is
∑

Sk/3. Thus the Gaussian curvature at p can be approximated by

K(p) = 3∆(p)
/

∑

Sk

Mean curvature vector estimation via area variation. Desbrun
et al. 1 proposed recently an accurate and robust discrete approximation
of the mean curvature vector at a mesh vertex P :

Hn = −∇A

2A
,

where A =
∑

Ai is the sum of the areas of the triangles surrounding
P . Calculations show that

Hn(P ) =
1

4A

∑

i

(cot αi + cot βi)(Qi − P ), (5)

where {Qi} are the neighbors of P , αi and βi are the two angles oppo-
site to the edge QiP , as seen in the figure below.
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1M. Desburn, M. Meyer, P. Schröder, and A. H. Barr, “Implicit Fairing of Ir-
regular Meshes using Diffusion and Curvature Flow”, SIGGRAPH’99.

Least Squares Estimation

Least squares for normal and tangent plane estimation.
Consider a set of 3D points located along a smooth surface. Our aim
is to estimate the surface tangent plane and normal at each point.

First let us consider the simplest case of two 2D points. The unit
normal vector (x, y) delivers minimum in

min
x2+y2=1

(ax + by)2 (6)

(a,b)
(x,y)

O

tangent

normal

To solve (6) via the method of Lagrange multipliers let us form the
function

L(x, y, λ) = (ax + by)2 − λ(x2 + y2 − 1)

∂L

∂x
= 0 =

∂L

∂y
= 0 =

∂L

∂λ
,

(

a2 ab
ab b2

)(

x
y

)

= λ

(

x
y

)

Thus (x, y) = (−b, a)/
√

a2 + b2.
Now let us consider a set of 3D points X = {x1,x2, . . . ,xm} as-

sumed to be on or near an unknown surface. Let x ∈ X be a point where
we want to estimate the tangent plane and normal. The scatter matrix is
defined as a symmetric matrix

M(x) =
∑

y∈Nbhd(x)

(y − x)⊗ (y − x)

where ⊗ denotes the outer product vector operation (if a and b have
components ai and bj respectively, then the matrix a⊗b has aibj as its
ij-entry). Here Nbhd(x) can be defined, for example, as

Nbhd(x) = {y ∈ X : ‖x− y‖ ≤ ρ}

where ρ is a given positive parameter.
Let λ1 ≥ λ2 ≥ λ3 denote the eigenvalues of M(x) associated with

unit eigenvectors v1, v2, v3, respectively. The unit normal vector at
x, n(x), can be chosen either v3 or −v3. The eigenvectors v1 and v2

corresponding to the two largest eigenvalues form a basis in the tangent
plane at x.

Least squares for curvature estimation. Once we decide the
normal and two tangent directions, we use them as a local reference
frame. The biquadratic fit involves finding the five coefficients of the
polynomial

z = f(x, y) = ax2 + bxy + cy2 + dx + ey

where the coordinates (x, y) are measured along the tangent directions,
and the coordinate z is measured along the normal direction. If there
are at least four neighboring points, say n − 1 points, the least-square
estimate of the five coefficients can be done:

F (a, b, c, d, e) −→ min

where

F (a, b, c, d, e) =
∑

(

ax2
k + bxkyk + cy2

k + dxk + eyk − zk

)2

In matrix form, the coefficient vector ~c = (a, b, c, d, e)T which mini-
mize the fit error is

AT A~c = AT ~Z

where A is a 5 × n matrix with kth row being [x2
k, xkyk, y2

k, xk, yk],
~Z is a column vector of the zk values, and the superscript T stands
for transposition. Once the coefficients a, b, c, d, e are found, curvature
computations are straightforward.


