
Analysis III/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 3 24.10.2011

1. (a) Assume that xn → x. Let ǫ > 0 be given. Since f is continuous at
x, there exists a δ0 such that dN (f(x), f(y)) < ǫ for all y ∈ M with
dM (x, y) < δ. Since xn → x, there exists n0 such that dM (xn, x) < δ
for all n ≥ n0. Therefore, dN (f(xn), f(x)) < ǫ for all n ≥ n0. But
this implies that f(xn) → f(x).

(b) We use sequential compactness. Let yn = f(xn) ∈ f(K) with xn ∈
K. Since K is compact, we have a subsequence xnj

→ x ∈ K.
Since f is continuous, we conclude from (a) that ynj

= f(xnj
) →

f(x) ∈ f(K). But this means that yn has a convergent subsequence
in f(K), i.e., f(K) is compact.

(c) Let x ∈ f−1(U) and y = f(x) ∈ U . Since U is open, there exists a
ǫ > 0 such that Uǫ(y) ⊂ U . Since f is continuous, there exists δ > 0
such that dN (f(x), f(x′)) < ǫ for all x′ ∈ M with dM (x, x′) < δ, i.e.,
f(x′) ∈ Uǫ(y) for all x′ ∈ Uδ(x), i.e., f(Uδ(x)) ⊂ Uǫ(y) ⊂ U , i.e.,
Uδ(x) ⊂ f−1(U). This shows that f−1(U) is open.

(d) Let A ⊂ N be closed. Then Ac = N\A is open and f−1(Ac) ⊂
M is open, by (c). Since f−1(Ac) = (f−1(A))c, we conclude that
f−1(A) ⊂ M is closed.

2. Homework! Will be given in a later solution sheet.

3. Let a be the supremum of the set {f(x) | x ∈ M}. A priori, a can be
infinity or a finite real number. There exists a sequence xn ∈ M such that
f(xn) converges to the supremum. In case that the supremum is infinity,
the sequence f(xn) becomes eventually larger than any positive number.
Since M is compact, there exists a convergent subsequence xnj

→ x ∈ M .
Since f is continuous, we have f(xnj

) → f(x). Since f(x) is a well defined
finite number and f(xnj

) converges to the supremum, the supremum is a
finite number and is attained at x ∈ M . Similar arguments hold for the
infimum. This shows that f has a minimum and a maximum on the set
M .

4. We have

‖v + w‖2 + ‖v − w‖2 = 〈v + w, v + w〉 + 〈v − w, v − w〉
= ‖v‖2 + ‖w‖2 + 2〈v,w〉 + ‖v‖2 + ‖w‖2 − 2〈v,w〉
= 2(‖v‖2 + ‖w‖2).

Assume, w.l.o.g., [a, b] = [0, 1]. Choose, e.g., f(x) = 1 for all x ∈ [0, 1]
and g(x) = x for all x ∈ [0, 1]. Then ‖f‖∞ = ‖g‖∞ = 1, ‖f + g‖∞ = 2
and ‖f − g‖∞ = 1, contradicting to the paralellogram equation.



5. Let v =
∑

i aiei. Then

‖v‖ ≤
∑

i

|ai| · ‖ei‖.

Let M = max{‖e1‖, . . . , ‖en‖}, then we obtain with Cauchy-Schwartz
inequality (

∑
|xiyi| ≤ (

∑
|xi|2)1/2(

∑
|yi|2)1/2):

‖v‖ ≤ M
∑

i

|ai| ≤ M
√

n(
∑

i

|ai|2)1/2 = M
√

n‖v‖2.

So we have ‖ · ‖ ≤ C‖ · ‖2 with C = M
√

n. Let xn → x0 in the Euclidean
metric, i.e., ‖xn−x0‖2 → 0. This implies that ‖xn−x0‖ ≤ C‖xn−x0‖2 →
0, as well and, therefore,

|‖xn‖ − ‖x0‖| ≤ ‖xn − x0‖ → 0.

This means that ‖ · ‖ : R
n → [0,∞) is continuous with respect to the

Euclidean metric. By Heine-Borel, Sn−1 is closed and bounded with
respect to the Euclidean metric, therefore compact. Every continuous
function assumes its minimum and maximum on a compact set. Let
min,max be the minimum and maximum of the map ‖ · ‖ on Sn−1. We
must have min > 0, since min = 0 would mean that ‖x‖ = 0 for a vector
in Sn−1, but ‖x‖ = 0 if and only if x = 0 (contradiction). We claim that

min‖v‖2 ≤ ‖v‖ ≤ max‖v‖2.

This is obviously true for v = 0. Let v 6= 0. Then v/‖v‖2 ∈ S2 and we
have

min ≤ ‖ v

‖v‖2

‖ =
‖v‖
‖v‖2

≤ max,

showing this inequality. But this inequality means that the two norms
are equivalent.


