- 1. (a) Assume that $x_n \to x$. Let $\epsilon > 0$ be given. Since f is continuous at x, there exists a $\delta 0$ such that $d_N(f(x), f(y)) < \epsilon$ for all $y \in M$ with $d_M(x,y) < \delta$. Since $x_n \to x$, there exists n_0 such that $d_M(x_n,x) < \delta$ for all $n \geq n_0$. Therefore, $d_N(f(x_n), f(x)) < \epsilon$ for all $n \geq n_0$. But this implies that $f(x_n) \to f(x)$.
 - (b) We use sequential compactness. Let $y_n = f(x_n) \in f(K)$ with $x_n \in K$. Since K is compact, we have a subsequence $x_{n_j} \to x \in K$. Since f is continuous, we conclude from (a) that $y_{n_j} = f(x_{n_j}) \to f(x) \in f(K)$. But this means that y_n has a convergent subsequence in f(K), i.e., f(K) is compact.
 - (c) Let $x \in f^{-1}(U)$ and $y = f(x) \in U$. Since U is open, there exists a $\epsilon > 0$ such that $U_{\epsilon}(y) \subset U$. Since f is continuous, there exists $\delta > 0$ such that $d_N(f(x), f(x')) < \epsilon$ for all $x' \in M$ with $d_M(x, x') < \delta$, i.e., $f(x') \in U_{\epsilon}(y)$ for all $x' \in U_{\delta}(x)$, i.e., $f(U_{\delta}(x)) \subset U_{\epsilon}(y) \subset U$, i.e., $U_{\delta}(x) \subset f^{-1}(U)$. This shows that $f^{-1}(U)$ is open.
 - (d) Let $A \subset N$ be closed. Then $A^c = N \setminus A$ is open and $f^{-1}(A^c) \subset M$ is open, by (c). Since $f^{-1}(A^c) = (f^{-1}(A))^c$, we conclude that $f^{-1}(A) \subset M$ is closed.
- 2. Homework! Will be given in a later solution sheet.
- 3. Let a be the supremum of the set $\{f(x) \mid x \in M\}$. A priori, a can be infinity or a finite real number. There exists a sequence $x_n \in M$ such that $f(x_n)$ converges to the supremum. In case that the supremum is infinity, the sequence $f(x_n)$ becomes eventually larger than any positive number. Since M is compact, there exists a convergent subsequence $x_{n_j} \to x \in M$. Since f is continuous, we have $f(x_{n_j}) \to f(x)$. Since f(x) is a well defined finite number and $f(x_{n_j})$ converges to the supremum, the supremum is a finite number and is attained at $x \in M$. Similar arguments hold for the infimum. This shows that f has a minimum and a maximum on the set M.
- 4. We have

$$||v + w||^{2} + ||v - w||^{2} = \langle v + w, v + w \rangle + \langle v - w, v - w \rangle$$

$$= ||v||^{2} + ||w||^{2} + 2\langle v, w \rangle + ||v||^{2} + ||w||^{2} - 2\langle v, w \rangle$$

$$= 2(||v||^{2} + ||w||^{2}).$$

Assume, w.l.o.g., [a,b]=[0,1]. Choose, e.g., f(x)=1 for all $x\in[0,1]$ and g(x)=x for all $x\in[0,1]$. Then $\|f\|_{\infty}=\|g\|_{\infty}=1$, $\|f+g\|_{\infty}=2$ and $\|f-g\|_{\infty}=1$, contradicting to the paralellogram equation.

5. Let $v = \sum_i a_i e_i$. Then

$$||v|| \le \sum_{i} |a_i| \cdot ||e_i||.$$

Let $M = \max\{\|e_1\|, \dots, \|e_n\|\}$, then we obtain with Cauchy-Schwartz inequality $(\sum |x_iy_i| \le (\sum |x_i|^2)^{1/2}(\sum |y_i|^2)^{1/2})$:

$$||v|| \le M \sum_{i} |a_i| \le M \sqrt{n} (\sum_{i} |a_i|^2)^{1/2} = M \sqrt{n} ||v||_2.$$

So we have $\|\cdot\| \le C\|\cdot\|_2$ with $C = M\sqrt{n}$. Let $x_n \to x_0$ in the Euclidean metric, i.e., $\|x_n - x_0\|_2 \to 0$. This implies that $\|x_n - x_0\| \le C\|x_n - x_0\|_2 \to 0$, as well and, therefore,

$$|||x_n|| - ||x_0||| \le ||x_n - x_0|| \to 0.$$

This means that $\|\cdot\|:\mathbb{R}^n\to[0,\infty)$ is continuous with respect to the Euclidean metric. By Heine-Borel, S^{n-1} is closed and bounded with respect to the Euclidean metric, therefore compact. Every continuous function assumes its minimum and maximum on a compact set. Let min, max be the minimum and maximum of the map $\|\cdot\|$ on S^{n-1} . We must have min>0, since min=0 would mean that $\|x\|=0$ for a vector in S^{n-1} , but $\|x\|=0$ if and only if x=0 (contradiction). We claim that

$$min||v||_2 \le ||v|| \le max||v||_2.$$

This is obviously true for v = 0. Let $v \neq 0$. Then $v/||v||_2 \in S^2$ and we have

$$min \le \|\frac{v}{\|v\|_2}\| = \frac{\|v\|}{\|v\|_2} \le max,$$

showing this inequality. But this inequality means that the two norms are equivalent.