Analysis ITI/IV (Math 3011, Math 4201)

Solutions to Exercise Sheet 3 24.10.2011

1. (a) Assume that z,, — =. Let € > 0 be given. Since f is continuous at
x, there exists a d0 such that dy(f(x), f(y)) < e for all y € M with
dyr(x,y) < 4. Since x,, — x, there exists ng such that dys(z,, z) < 6
for all n > ng. Therefore, dy(f(xy), f(z)) < € for all n > ngy. But
this implies that f(z,) — f(x).

(b) We use sequential compactness. Let y, = f(x,) € f(K) with z,, €
K. Since K is compact, we have a subsequence z,, — x € K.
Since f is continuous, we conclude from (a) that y,, = f(zn,) —
f(x) € f(K). But this means that y, has a convergent subsequence
in f(K), i.e., f(K) is compact.

(c) Let z € f~Y(U) and y = f(x) € U. Since U is open, there exists a
€ > 0 such that Uc(y) C U. Since f is continuous, there exists 6 > 0
such that dy (f(z), f(2")) < € for all 2’ € M with dy;(z,2") <4, i.e.,
f(@') € Uc(y) for all 2’ € Us(x), ie., f(Us(x)) C U(y) C U, ie.,
Us(z) C f~YU). This shows that f~(U) is open.

(d) Let A C N be closed. Then A° = N\A is open and f~(A°) C
M is open, by (c). Since f~1(A¢) = (f~(A))¢, we conclude that
fYHA) € M is closed.

2. Homework! Will be given in a later solution sheet.

3. Let a be the supremum of the set {f(z) | € M}. A priori, a can be
infinity or a finite real number. There exists a sequence z,, € M such that
f(xy,) converges to the supremum. In case that the supremum is infinity,
the sequence f(x,) becomes eventually larger than any positive number.
Since M is compact, there exists a convergent subsequence x,,; — r € M.
Since f is continuous, we have f(z,;) — f(z). Since f(z) is a well defined
finite number and f (mn].) converges to the supremum, the supremum is a
finite number and is attained at x € M. Similar arguments hold for the
infimum. This shows that f has a minimum and a maximum on the set

M.

4. We have
||v+w\|2+ ||v—wH2 = (w+w,v+w)+ (v—wv—w)
= vl + [Jw]]* + 2{v, w) + [[v]|* + [Jw]]* = 2(v, w)
= 2(||v[]* + llw]?).

Assume, w.lo.g., [a,b] = [0,1]. Choose, e.g., f(z) =1 for all z € [0,1]
and g(z) = z for all € [0,1]. Then ||f|lcc = ll9lloc = 1, |If + 9lloc =
and || f — gllec = 1, contradicting to the paralellogram equation.



5. Let v =), ase;. Then
ol < laa] - flell-
i

Let M = max{|le1]|,...,[len||}, then we obtain with Cauchy-Schwartz
inequality (5 faiss| < (5 o) V2(5 [oaf)1/2):

ol <M ag] < My/a(>” a2 = My/nlfv]a.

So we have ||-|| < C|| - ||2 with C = M\/n. Let x,, — z in the Euclidean
metric, i.e., ||z, —z¢|l2 — 0. This implies that ||z, —zo| < C|x,—20]l2 —
0, as well and, therefore,

llznll = llzolll < [lzn — @0l — 0.

This means that || - || : R®™ — [0,00) is continuous with respect to the
Euclidean metric. By Heine-Borel, S"~! is closed and bounded with
respect to the Euclidean metric, therefore compact. Every continuous
function assumes its minimum and maximum on a compact set. Let
min, mazr be the minimum and maximum of the map || - || on S"~1. We
must have min > 0, since min = 0 would mean that ||z| = 0 for a vector
in S"~! but ||z|| = 0 if and only if x = 0 (contradiction). We claim that

min|vlly < lvf} < mazl|vf],.

This is obviously true for v = 0. Let v # 0. Then v/|[v|s € S? and we

have

v | v]]
v]l2

showing this inequality. But this inequality means that the two norms
are equivalent.

min < || < max,

[oll2



