Solutions to Exercise Sheet 4

12.11.2009

1. x_n is a Cauchy sequence: Note that $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} < \infty$. For every *epsilon* > 0 there is an n_0 such that $\sum_{n=n_0}^{\infty} \frac{1}{n^2} < \epsilon$, and therefore, for $n, m \ge n_0, m \ge n$:

$$d(x_n, x_m) \le d(x_n, x_{n+1}) + \dots + d(x_{m-1}, x_m) \le \sum_{i=n}^m \frac{1}{i^2} < \epsilon.$$

2. Assume that $f: M \to M'$ is continuous and $U \subset M'$ is open. Let $x \in f^{-1}(U)$. Since U is open, there exists an $\epsilon > 0$ such that $B(f(x), \epsilon) \subset U$. Since f is continuous, there exists a $\delta > 0$ such that $f(z) \in B(f(x), \epsilon)$ for all $z \in M$ with $d(z, x) < \delta$. But this means that $B(x, \delta) \subset f^{-1}(U)$. Therefore, $f^{-1}(U)$ is open.

Assume $f: M \to M'$ satisfies $f^{-1}(U)$ open in M for all open $u \subset M'$. Let $x \in M$. We want to prove continuity of f at x. Given an $\epsilon > 0$, $B := B(f(x), \epsilon) \subset M'$ is open. Then $f^{-1}(B)$ is open in M and contains x. Therefore, there exists a $\delta > 0$ such that $B(x, \delta) \subset f^{-1}(B)$. But this means that $d'(f(y), f(x)) < \epsilon$ for all $y \in M$ with $d(y, x) < \delta$.

3. (a) Look at g(x) = f(x) - x. Then $g(a) \ge 0$ and $g(b) \le 0$, so there must be a $x \in [a, b]$ with g(x) = 0. This implies f(x) = x.

(b) Since f'(x) < 1 for all $x \in [a, b]$ and |f'(x)| is continuous on [a, b], it attains its maximum M on [a, b], which must satisfy M < 1. Using the Mean Value Theorem, we obtain

$$|f(x) - f(y)| \le |f'(\xi)| \cdot |x - y| \le M \cdot |x - y|,$$

for some ξ between x and y. This means that $f : [a, b] \to [a, b]$ is a contraction on the metric space (M, d) = ([a, b], d(x, y) = |x - y|). The statement of the exercise is then just an application of the Contraction Mapping Principle.

(c) Choose f(x) = a + b - x. Then f'(x) = -1. Choose, e.g. $x_0 = a$, then we have $x_n = b$ for all odd n and $x_n = a$ for all even n.

4. We have F(x,t) = 2tx and

$$|F(x,t) - F(y,t)| = 2|t| \cdot |x - y|,$$

and if we restrict t to a finite interval (-C, C), we have Lipschitz continuity of F in the x variable with constant L = 2C. Let $\beta_0 \equiv c$. We obtain

$$\begin{aligned} \beta_1(t) &= c + \int_0^t 2scds = c + t^2c, \\ \beta_2(t) &= c + \int_0^t 2s(c + s^2c)ds = c + t^2c + \frac{t^4}{2}c, \\ \beta_3(t) &= c + t^2c + \frac{t^4}{2}c + \frac{t^6}{3!}c. \end{aligned}$$

This suggests that the (unique) solution might be $x(t) = ce^{t^2}$. A check shows: $\dot{x}(t) = 2tce^{t^2} = 2tx(t)$ and x(0) = c.