Solutions to Exercise Sheet 2

- 1. (a) There exists an $\epsilon > 0$ such that, for all n_0 there exists an $n \ge n_0$ with $d(x_n, x) \ge \epsilon$, or shorter, there exists an $\epsilon > 0$ and a strictly increasing sequence n_j of natural numbers with $d(x_{n_j}, x) \ge \epsilon$.
 - (b) There exists an ε > 0 such that, for all n₀ there exists an n ≥ n₀ and x ∈ [a, b] with |f_n(x) − f(x)| ≥ ε, or shorter, there exists an ε > 0, a strictly increasing sequence n_j of natural numbers, and a sequence x_j ∈ [a, b] such that |f_{n_j}(x_j) − f(x_j)| ≥ ε.
- 2. Assume that $f_n \to f \in B([a, b])$. Let $x \in [a, b]$ and $\epsilon > 0$. Then there exists an n_0 such that $d(f_n, f) < \epsilon/3$ for all $n \ge n_0$. In particular, $d(f_{n_0}, f) < \epsilon/3$. Since f_{n_0} is continuous, there is a $\delta > 0$ such that $|f_{n_0}(y) f_{n_0}(x)| < \epsilon/3$ for all y with $|y x| < \delta$. This implies that

$$\begin{aligned} |f(x) - f(y)| &\leq |f(x) - f_{n_0}(x)| + |f_{n_0}(x) - f_{n_0}(y)| + |f_{n_0}(y) - f(y)| \\ &< d(f, f_{n_0}) + \epsilon/3 + d(f, f_{n_0}) < \epsilon/3 + \epsilon/3 + \epsilon/3 = \epsilon, \end{aligned}$$

for all y with $|y - x| < \delta$. This means that f is continuous at x.

3. Choose, e.g., $U_i = (-\frac{1}{i}, \frac{1}{i})$. Then $\bigcap_{i=1}^{\infty} U_i = \{0\}$ and this is not an open set since no open ball around 0 is completely contained in it.

Note that every open ball B(x,r) = (x - r, x + r) in \mathbb{R} contains both rational and irrational points (\mathbb{Q} is dense in \mathbb{R}). If \mathbb{Q} were open, there were an open ball around 0 completely contained in \mathbb{Q} , which contradicts to the above observation. Likewise, if \mathbb{Q} were closed, there were an open ball about $\pi \in \mathbb{Q}^c = \mathbb{R} \setminus \mathbb{Q}$ consisting only of irrational points which, again, is not possible.

4. We have

$$\begin{aligned} \|v+w\|^2 + \|v-w\|^2 &= \langle v+w, v+w \rangle + \langle v-w, v-w \rangle \\ &= \|v\|^2 + \|w\|^2 + 2\langle v,w \rangle + \|v\|^2 + \|w\|^2 - 2\langle v,w \rangle \\ &= 2\left(\|v\|^2 + \|w\|^2\right). \end{aligned}$$

Assume, w.l.o.g., [a, b] = [0, 1]. Choose, e.g., f(x) = 1 for all $x \in [0, 1]$ and g(x) = x for all $x \in [0, 1]$. Then $||f||_{\infty} = ||g||_{\infty} = 1$, $||f + g||_{\infty} = 2$ and $||f - g||_{\infty} = 1$, contradicting to the parallelogram equation.

5. Choose, e.g., $I_n = (0, \frac{1}{n})$. Then $I_1 \supset I_2 \supset I_3 \supset \cdots$ and

$$\bigcap_{n=1}^{\infty} I_n = \{0\}.$$