Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 9

10.12.2009

1. Determine the critical points of

(a)
$$f : \mathbb{R}^2 \to \mathbb{R}^3$$
 given by $f(x, y) = (x^2, 2x + e^x \cos(y), xy \sin(xy))$.
(b) $g : \mathbb{R}^3 \to \mathbb{R}^2$ given by $g(x, y, z) = (2x^2 + (y - 1)^2, z(\cos(y) - 1))$.

- 2. Let $M = \{(x, y, z) \in \mathbb{R}^3 | x^4 + y^2 + 2z^2 = 4\}.$
 - (a) Show that M is a manifold.
 - (b) For p = (-1, 1, 1), determine the tangent space $T_p M$.
- 3. Show that

$$M = \{(x, y, z) \in \mathbb{R}^3 \mid (x - 1)^2 + y^2 = 5, y = z\}$$

is a compact manifold and the extremal values of $f(x, y, z) = x^2 + y^2 + z$ on M are 11 and 1.

- 4. (a) Find the point of the sphere $x^2 + y^2 + z^2 = 1$ which is at the greatest distance from the point $(1, 2, 3) \in \mathbb{R}^3$.
 - (b) Find the rectangle of greatest perimeter inscribed in the ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1.$$

- 5. Let p, q > 1 such that $\frac{1}{p} + \frac{1}{q} = 1$.
 - (a) Show that

$$1 \quad \leq \quad \frac{1}{p} \, u^p + \frac{1}{q} \, v^q$$

for all positive numbers u, v with $u \cdot v = 1$. Hint: Lagrange multipliers.

(b) Show that

$$uv \leq \frac{1}{p}u^p + \frac{1}{q}v^q$$

for all $u, v \ge 0$.

(c) (Hölder's Inequality) Let $x, y \in \mathbb{R}^n$. Show that

$$\sum_{i=1}^n |x_i y_i| \leq \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}} \cdot \left(\sum_{i=1}^n |y_i|^q\right)^{\frac{1}{q}}.$$

Hint: Use $u = \frac{|x_j|}{(\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}}$.

(d) Let p > 1. Show that

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

defines a norm on \mathbb{R}^n .

Hint: Write

$$|x_i + y_i|^p = |x_i + y_i|^{p-1} |x_i + y_i| \le |x_i + y_i|^{p-1} |x_i| + |x_i + y_i|^{p-1} |y_i|$$

and note that p + q = pq.