Exercise Sheet 3

- 1. Define $C^1[a, b]$ to be the sub-vector space of C[a, b] consisting of those $f : [a, b] \to \mathbb{R}$, which have a continuous derivative $f' : [a, b] \to \mathbb{R}$ (here $f'(a) = \lim_{h \to 0^+} \frac{f(a+h) f(a)}{h}$ is assumed to exist, and similarly with f'(b)).
 - (a) Show that $\|\cdot\|_{C^1}: C^1[a,b] \to [0,\infty)$ defined by

$$||f||_{C^1} = \sup\{|f(x)| \in \mathbb{R} \mid x \in [a,b]\} + \sup\{|f'(x)| \in \mathbb{R} \mid x \in [a,b]\}$$

gives a norm on $C^1[a, b]$.

(b) Show that $\|\cdot\|_* : C^1[a, b] \to [0, \infty)$ defined by

$$||f||_* = \sup\{|f'(x)| \in \mathbb{R} \mid x \in [a, b]\}$$

does not give a norm on $C^1[a, b]$.

- (c) Show that $D: C^1[a, b] \to C[a, b]$ given by D(f) = f' is continuous, if we use $\|\cdot\|_{C^1}$ on $C^1[a, b]$ and the supremum norm $\|\cdot\|_{\infty}$ on C[a, b].
- 2. (Warning: This exercise is a challenge!) Assume that $f_n \in C^1[a, b]$ and that there exists a pointwise limit $f(x) = \lim_{n \to \infty} f_n(x)$ for all $x \in [a, b]$. Assume also that there is a constant C > 0 such that

$$|f'_n(x)| \le C$$
 for all n and $x \in [a, b]$.

Show that f_n converges uniformly to f.

Hint: Subdivide [a, b] into small enough intervals on which the functions f_n don't vary too much (because of the bound on the derivatives) and then use simultaneous pointwise convergence at all end points of these small intervals.

Remark: The upshot of the exercise is that if pointwise convergence of C^1 -functions on a compact interval is not uniform, the derivatives of these functions have to explode.

3. We consider the following sequence $f_n \in C[0, 1]$:

$$f_n(x) = \begin{cases} n^{2/3} & \text{if } 0 \le x \le \frac{1}{n}, \\ 2n^{2/3} - n^{5/3}x & \text{if } \frac{1}{n} < x < \frac{2}{n}, \\ 0 & \text{if } \frac{2}{n} \le x \le 1. \end{cases}$$

Let $||f||_1 = \int_0^1 |f(x)| dx$ and $||f||_2 = \left(\int_0^1 |f(x)|^2 dx\right)^{1/2}$. Show that $f_n \to 0$ with respect to $||\cdot||_1$, but f_n is not convergent with respect to $||\cdot||_2$.