Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 2

This set of homeworks should be handed in by Thursday, 29 October 2009 in the lecture.

- 1. In this exercise you have to negate statements. For example: Let (X, d) be a metric space. The negation of $f: X \to \mathbb{R}$ is continuous at $x \in X$ is: There exists an $\epsilon > 0$ such that for all $\delta > 0$ there is a point $y \in X$ with $d(x, y) < \delta$ and $|f(x) - f(y)| \ge \epsilon$.
 - (a) Let (X, d) be a metric space and $x_n \in X$ be a sequence. Negate the statement $x_n \to x$.
 - (b) Let $f_n, f \in B([a, b])$. Negate the statement that f_n converges uniformly to f.
- 2. For $f, g \in B([a, b])$ let $d(f, g) := \sup_{x \in [a, b]} |f(x) g(x)|$ and $C([a, b]) \subset B([a, b])$ be the subspace of continuous functions. Assume $f_n \in C([a, b])$ is a sequence with $f_n \to f \in B([a, b])$. Prove that the limit f is continuous.

Hint: Use the (ϵ, δ) -definition of continuity and the fact that f_n is uniformly close to f, for large enough n, and that f_n is continuous. Combine all this to create a precise proof.

- 3. Find an example of infinitely many open sets $U_i \subset \mathbb{R}$ such that $\bigcap_{i=1}^{\infty} U_i$ is not open. Show that the set of rational numbers $\mathbb{Q} \subset \mathbb{R}$ is neither open nor closed in \mathbb{R} .
- 4. Let $\|\cdot\|$ be the norm of an inner product space $(V, \langle \cdot, \cdot \rangle)$. Show that the parallelogram equation is satisfied:

$$||v + w||^2 + ||v - w||^2 = 2(||v||^2 + ||w||^2).$$

Let C([a, b]) be equipped with the supremum norm $||f||_{\infty} = \sup_{x \in [a, b]} |f(x)|$. Show that the parallelogram equation is not satisfied and, hence, $d(f, g) = ||f - g||_{\infty}$ is not induced from an inner product space.

5. Show that the statement of the *Nested Interval Principle* is no longer true if one replaces closed intervals by open intervals.