Exercise Sheet 14

- 1. Let U_1, U_2, U_3 be three open star-like subsets of \mathbb{R}^n . Suppose that the two intersections $U_1 \cap U_2$ and $U_2 \cap U_3$ are pathwise connected and $U_1 \cap U_3 = \emptyset$. Let $\omega \in \Omega^1(U_1 \cup U_2 \cup U_3)$ be closed. Show that ω is exact.
- 2. Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be defined by

$$f(x_1, x_2, x_3) = (y_1, y_2, y_3) = (x_1 \cos x_2, x_1 \sin x_2, x_3^2).$$

- (a) Calculate the pullback $\omega = f^*(y_3 \, dy_1 \wedge dy_2 \wedge dy_3)$.
- (b) Calculate $\int_{(1,2)\times(0,2\pi)\times(-1,1)} \omega$.
- 3. Let $U \subset \mathbb{R}^n$ be open and starlike and $\omega \in \Omega^k(U)$, $k \ge 1$ with $d\omega = 0$. The aim of this exercise is to prove **Poincaré's Lemma**, i.e., that there is an $\alpha \in \Omega^{k-1}(U)$ with $d\alpha = \omega$.

Henceforth we will denote the coordinate functions of $\mathbb{R} \times U$ by t, x_1, \ldots, x_n . Note that every differential form $\eta \in \Omega^k(\mathbb{R} \times U)$ is then of the form

$$\eta = \eta_1 + dt \wedge \eta_2,\tag{1}$$

where

$$\eta_1 = \sum_{i_1 < \dots < i_k} f_{i_1,\dots,i_k} dx_{i_1} \wedge \dots \wedge dx_{i_k}$$

and

$$\eta_2 = \sum_{j_1 < \dots < j_{k-1}} g_{j_1, \dots, j_{k-1}} dx_{j_1} \wedge \dots \wedge dx_{j_{k-1}},$$

with $f_{i_1,\ldots,i_k}, g_{j_1,\ldots,j_{k-1}} \in C^{\infty}(\mathbb{R} \times U).$

Since U is starlike, there is a point $p \in U$ and a map $H : \mathbb{R} \times U \to \mathbb{R}^n$, defined by H(t, x) = p + t(x - p), such that $H(t, x) \in U$ for all $t \in [0, 1]$ and $x \in U$ (since H([0, 1], x) is the straight line segment from p to x). Observe that H(0, x) = p and H(1, x) = x. Let $i_t : U \to \mathbb{R} \times U$ be the inclusion of U into $\mathbb{R} \times U$ at "level" t, i.e., $i_t(x) = (t, x)$.

Finally, let $I:\Omega^k(\mathbb{R}\times U)\to \Omega^{k-1}(U)$ be defined by

$$(I\eta)_x(v_1,\ldots,v_{k-1}) = \int_0^1 \eta_2(t,x)(Di_t(x)(v_1),\ldots,Di_t(x)(v_k)) dt,$$

if $\eta = \eta_1 + dt \wedge \eta_2$ as given in (1).

(a) Prove that $i_1^*\eta - i_0^*\eta = d(I\eta) + I(d\eta)$.

(b) Using (a) and $H \circ i_1 = id$ and $H \circ i_0 = constant$, show that

 $\omega = d\alpha$

with $\alpha = I(H^*\omega)$.

Hint: Note that if F = constant, then DF(x) = 0 for all x, and therefore $F^*\omega = 0$.