Analysis 1 Solutions (Epiphany Term 2015)

8 Differentiable functions

111. We have f(z) = f(c¢) + (x — ¢)fi(z) with f; continuous at c¢. Since f is
differentiable at x = ¢, f is also continuous at = = ¢, i.e.,

f(z) = f(c) #0 for z — ¢,

and, therefore, for = near ¢ we have f(x) # 0. This implies that
1 1 fle)—flx) 1

fl@) flo f@ifle)  fl@)flo)

Therefore, we have

(c —z)fi(x).

L _M) L e
7= 7 a9 (Fsm) = g+ 06
with fo(x) = —f1(x)/(f(z)f(c)). Then f5 is continuous at x = ¢ as expression
of continuous functions at = = ¢ and since f(c) # 0, which implies that 1/ f(z)
is differentiable at x = ¢ with derivative

file) __ f'(¢)

2=~ = R

112. Problems Class, 30 January 2015

113. Since sin x is bounded, we have
h
f/(0) = lim J(h) = lim A sin(1/h) = 0.
h h—0
Therefore, the derivative of f is given by

{2ZL‘ sin(1/x) — cos(1/x) if x # 0,

P =9, if 2 =0,

If f" were continuous at x = 0, we would need to have

liIT(l) 2xsin(1l/x) — cos(1/z) = 0.

x>

While we have xsin(1/xz) —) as  — 0, cos(1/x) is not convergent (choose
sequences x, — 0 having different constant values cos(1/x,,)). Therefore, f'(z)
1s not continuous at x = 0.



114.

115.

116.

117.

118.

Let f(z) = e *—sinx and a,b € R with a < b be two real solutions of e” sinx =
1. This means that we have f(a) = f(b) = 0. Since f is differentiable, we
can apply Rolle’s Theorem and find ¢ € (a,b) with 0 = f/(¢) = —e™¢ — cosc.
Rewriting this equation yields e“cosc = —1.

It suffices to prove that f,g") has precisely n pairwise different zeroes in (—1, 1).
Firstly, we prove that f,gk) has at least k pairwise different zeroes in (—1,1)
for k € {0,1,2,...,n}. In the case k = 0 there is nothing to prove. Assume
we have already shown that fy(Lk) has at least k pairwise different zeroes z; <
T9 < -+ < xpin (—1,1) for some 0 < k < n—1. Note that 2% — 1 divides f,&’“),
SO fy(Lk) has zeroes

1l =zy<2 <22 <+ <) < Tpy1 = 1.

Applying Rolle’s Theorem to every interval [x; 1, z;] withi =1,2,... k+1, we
obtain k + 1 pairwise different zeroes z} € (z;_1, ;) of fy(LkH). This shows that
fy(Ln) has at least n pairwise different zeroes in (—1,1). Since f, is a nonzero

polynomial of order 2n, f,&") is a nonzero polynomial of order n and can have
at most n pairwise different real roots. Combining both facts proves that p,
has precisely n pairwise different zeroes in (—1,1).

We have f(2) = 4, f(5) = 25 and f’(¢) = 4c — 7. Then the Mean Value
Theorem claims the existence of ¢ € (2, 5) satisfying 4¢—7 = (25—4)/(5—-2) =
7. The solution of 4¢ — 7 = 7 is ¢ = 3.5 which lies in the interval (2,5),
confirming the Mean Value Theorem in this case.

(a) Applying the classical Mean Value Theorem to f(z) = log(z), we obtain
for some ¢ € (1,b/a),

b—a

ac

o)~ 1) =10g (2) ~0 =105 (1) = (v/a— 117'0) -
Since 1 < ¢ < b/a, we have a/b < 1/c¢ < 1 and, therefore,

b—a ab—a b—a (b) b—a b
= - < =log|—| < =-—1

@ _
b b b a ac a a a

(b) Choose a =5 and b = 6 to obtain

1 5 6 6 1

6_1 6<log<5)—log(1.2)<5 1_5.

Let a < x <y < b. Then by the classical Mean Value Theorem there exists
2 € () such that f(2) = (f(y) — /())/(y — 7).

(a) Suppose that f/ = 0 on (a,b). Then f'(2) =0, so f(z) = f(y): i.e fis
constant on (a,b).

(b) Suppose that f’ > 0 on (a,b). Then f'(z) > 0, and so f(y) > f(x). Le. f
is increasing.

(c¢) Now suppose that ¢t < f' < T on (a,b). Then again ¢t < f'(z) < T, and the
result follows.



119. (a) We first check that

sinh’(z) = ; = 5 = cosh(x)
and
T —x\ 2 2z —2x
e’ +e e +2+e
h2 = _ = - =
cosh?(z) ( 5 ) 1
2x 9 —2x x -z 2
1+ % =1+ (%) = 1+ sinh*(x).

Since cosh(z) = (e +e7*)/2 > 0, we know that sinh(z) is strictly mono-
tone increasing. Let y = sinh(z). This implies that 2y = e* — e and,
multiplying by e”:

e* —2ye” —1=0.

Let ¢ = e® > 0. Solving ¢ — 2yc — 1 = 0 leads to

% + /Ay 1 4
c=Y 2y+ =yt 2+ L

Since ¢ > 0, the only solution is

xT

" =c=y+Vy>+1,

ie.,
x = log(y + vy> +1).

This shows that Arsinh(y) = log(y++/y? + 1). Now we differentiate and

obtain
1 2y
Arsinh’(y) = ———— 1+ — | =
Y+ Ay +1 2y/y?+1
1 LY B 1 VR +14+y 1
y+ /Pl VL) oyl Ty L+y?
(b) Using (1) in Exercise 112 and cosh(x) = 4/1 + sinh®(z) yields
1 1 1
Arsinh'(y) = =

cosh(Arsinh(y) \/1 + sinh?(Arsinh(y)) 1+y?

120. (a) Using the classical Mean Value Theorem, we obtain for 0 < a < b and
some ¢ € (a,b):

(b—a)
tan(b) — t = .
arctan(b) — arctan(a) e
Since 1 +a? <1+ ¢ < 14 b?, we conclude that
b—a b—a

< arctan(b) — arctan(a) <

1+ b2 14 a2
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(b) Choosing 0 < a =1 < b=4/3, we obtain

1 1
T/lz/g < arctan(4/3) — arctan(1) < ?

Since arctan(1) = 7/4, we end up with

3 1 T
o5 = sy < arctan(4/3) - 7 <
2%~ 31163 - etan(4/3)

1
6
We assume that f,g: (a,b) — R are differentiable, ¢ € (a,b), f(c) =g(c) =0
and that lim, . f'(x)/¢'(z) exists. Using the formula, we find some ¢ € (z, ¢)
(if z < ¢) or & € (¢,x) (if ¢ < x) such that

(

9(x)f'(§) = (9(z) = g(c)) ['(§) = (f(z) = f(c)g'(§) = f(2)g'(§)- (1)

The assumption that lim, .. f'(z)/¢'(z) exists implies that we have for all
x # ¢, sufficiently close to ¢, ¢'(x) # 0. Applying (1) to those z, we also have
g'(&) # 0, since £ # c is even closer to ¢ than x. Moreover, using the classical
Mean Value Theorem, we have

g(x) = g(x) — g(c) = (x —c)g'(n) #0

for some 7 strictly between z and ¢, and we can therefore divide (1) by

g(x)g'(§) # 0 and obtain
flx) _ ['(§)

glz) g€
Now, if © — ¢, x # ¢, we also have & — ¢, £ # ¢, and therefore,

o 1@ 1)

e (@) eve g'(€)

showing that the limit lim,. f(x)/g(z) must exist and must agree with the
well-defined limit lim,_,. f'(z)/d'(z).

Let f(z) = 1+ cos(rz) and g(z) = 2* — 2x + 1. Then f(1) ) =10
and f'(x) = —7sin(mx) and ¢'(z) = 2z — 2. Then f'(1) = ¢'(1) = 0 and
f"(z) = —7? cos(mz) and ¢”(x) = 2. Then

' (z) —n?cos(mz) 7w

— lim LSV _ T
z—1 g”(x) z—1 2 2

Applying L’Hopital twice, we obtain
/ " 2
f@) o f@) fe)

M) g e 2

Let f(x) = 2 —sinz and g(x) = 3. Then f(0) = 0 = ¢(0) = 0 and f'(z) =
1 —cosz and ¢'(x) = 3z2 Then f(0) = ¢'(0) = 0 and f”(z) = sinx and
g"(x) = 6z. Then f”(0) = ¢"(z) = 0 and f®(x) = cosz and g (z) = 6.

Then
fB)(x) . cosz 1

@) ~eB 6 6

4



Applying L’Hopital three times, we obtain
/ "
L) @) ) @)@

z—0 g(x) 250 g’(x) o mlir(l) g”(:p) z—0 g(3) (1‘) N 6

124. We have
o) — i SO =IO @) (@)

z—0 T z—0 T z—0 2 '

Let h(z) = 2% Then g(0) = h(0) = 0 and 2/(z) = 2z. Then ¢'(0) = #'(0) =0
and h"(x) = 2. Applying L’Hopital twice, we obtain

125. Let f(x) = 5sinax — 4x. Then f'(x) = 5cosz — 4 and Newton’s iteration is
given by
f(zy) Ssinz — 4x
Tpy1 = Tp — =X, - —.
- f(xn) bcosx — 4

We start with ; = 1 and obtain successively

5sin(l) — 4
— ———— = 1.15969. ..
2 5cos(1) — 4 ’
5sin(xg) — 4xg
= 1- =1.13203...
s 5cos(xg) — 4 ’
Ssin(zs) — 4xs
= 1- = 1.13110....
= 5cos(xg) — 4

We check that
f(1.131) = 0.000192... and f(1.132) = —0.001682. ..,

which means that there must be a zero within the interval (1.131,1.132) by
the Intermediate Value Theorem.

9 Infinite series

126. (24 n)/V4n* —1 > n/V4n* = (2n)~!, and X(2n)~! diverges; so the given

series diverges, by comparison.

127. v/n/(n® 4+ 1) < n=°/2, and Yn~"? converges; so given series converges, by
comparison.

128. |sin(2")/2"| < 27" and )7, 27" converges, so the given series converges
absolutely, by comparison.

129. Write x,, = (n — 3)(2 4+ 9n%)~Y/2. Note that 0 < z,, < n/v9nb = 1/(3n?), and
ZZO:1 1/(3n?) converges; so the given series converges, by comparison.



131.
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133.

134.

135.

< x, < 1/n? so the series converges.

T, > =, so the series diverges.

(

( — 2n’

(¢) For n > 2, we have |z,| < n=%?2
(

(

~— —
@)

, SO series converges absolutely.

d) x, = m > % (HLJF?))3 > %4%, so the series is divergent.

e) Since 2% exp(—z) — 0 as x — oo, the set {n* exp(—+/n)} is bounded above,
say by K. So 0 < z,, < K/n?. Thus the given series converges, by comparison
with the convergent series Y K/n?.

() |z,] < n2, so the series is absolutely convergent.

(g) sinf < 6 for @ >0, s0 0 < x,, <n~ 2 for n > 1. Since Y n~? converges, so
does > x,,, by comparison.

(h) Since n~2(logn)* — 0 as n — oo, the set {n~2(logn)*} is bounded
above, say by K. So 0 < x, < K/n%?. Thus the given series converges, by
comparison with the convergent series > K /n3/2.

(1) z, = 1/(V14+n2+n) > 1/(n + vV2n2) > 1/n(1 4+ v/2), so the series is

divergent.

(a) nlog(1+ 1) — 1 as n — oo, so there exists K such that
zp, = (n*+1)"*log(1+1) < Kn~?*"!; hence the series is convergent for @ > 0,

by comparison with >>n=2*"1 For a < 0, we can say that for n large enough,
1_ 1 11 1 1.
Tn > 2 n(lrn?)a > 5T9%a jTi2a 2 5T42a 9

so the series is divergent, by comparison with > 1/n.

(b) @ = n® (L _ 1 ) _ ne(Vatlym) _ e
n NS /() V) (VaF Ty
N n?/? — 1 as n — o0, so that, by comparison, the series

ow 2
/(4 1) (VaFT+y/n) 2
converges for o — % < —1, ie. for a < %

The series has partial sums x1 —x9, ¥1 — 23, 1 — 4, ..., and the result follows.

Define the partial sums X, = > 7z and Y,, = >, y4. Then X,, — s as
n — o0o. But Y, = %Xn + %(Xn_i_l —x1),80 Y, = s—1x1/2.

Since > x, converges, x, — 0 as n — oo, and so there exists K such that
|z,| < K for all n. But then |x,y,| < Kly,|, so that > x,y, converges
absolutely by comparison with > |y,|. Conditional convergence of > y,, is not
enough. For example, consider z,, = y, = (=1)"n""2. Then Yz, and >y,
are convergent, by the alternating series test, but ) x,y, is the harmonic
series and is divergent.

(a) The tan function is increasing on [0,7/2), so {tan(w/n)} is a decreasing
sequence for n > 3; its limit is tan0 = 0. Also cos(nm) = (—1)" — so by the
Alternating Sign Test, the series converges.

(b) Write f(z) = 1/[z(logx)?] on [2,00). Then f is a positive decreasing
function, and fQM flx)de = -1 [(log:p)*Q];M = 1(log2)™% — L(logM)™% —
s (log2)~2

as n — oco. Hence )"~ , f(n) converges, by the Integral Test.

(c) Write x,, = (2n)! 57" (n!)~2. Then

(2n+2)(2n+1) . 4 .
= — as n— o0.
5(n+ 1) 5

Tn+41
Tn
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Since 4/5 < 1, we conclude that Y | z,, converges, by the Ratio Test.

(a) Write x, = 1/[y/ntanh(n)]. Both /n and tanh(n) are increasing se-
quences, so {x,} is decreasing. Also, z,, — 0 as n — oco. So by the Alternating
Sign Test, the given series converges.

(b) Write x,, = (2/9)"(2n)!/(n!)?. Then

22n+2)(2n+1)

8
T 9m+1? 9

as n — 0o. So by the Ratio Test, > z,, converges.

(c)

Tn+41

Tn

- n—1 - no 1
2+ 2)(n2 + 1)1/4 n2nl/2 ~ p3/2

and >"n~%/2 converges, so the given series converges by comparison.

(n+1))? @2n)! (1?1 1 g

mN2(2n+2)!] — @ntl)(2n+2)  4nt2 1

(a) The ratio of successive terms is

n — 00, so convergent by Ratio Test.
(b) >2°°  x, is the same series as Y -, —-— Since f(z) = 1/(zlogz) is de-

n=2 nlogn

creasing on [2, 00), and f2M f =loglog M —loglog 2 is unbounded as M — oo,
the series diverges (Integral Test).

(c) cos(mn) = (—1)™, so that we have an alternating series. Thus the Alter-
nating Sign Test tells us that for convergence it is sufficient to have |z,| — 0
monotonically as n — oo, which certainly is the case here.

(a) Ratio test: |z,41/2n| = |a|(1+1/n)* — |a| as n — oo. So series converges
if |a| < 1 and diverges if || > 1. If @ = 1 then z,, = n clearly divergent;
while if & = —1 then z,, = (—1)"/n which gives an alternating series which

converges since {1/n} is a decreasing sequence tending to zero. So we have
convergence iff -1 < a < 1.

(b) The terms of the series vanish as n — oo (and so the series can con-
verge) only for |a] < 3. When a = 3, the series is a harmonic series and
diverges. When o = —3 the series converges by the Alternating Sign Test.
When |a| < 3, the series is absolutely convergent by comparison with the con-
vergent geometric series » (o /3)".

(c) By the comparison test, Y z,, converges if and only if >~ (n+ 1) (log(n +
1))~ does. Since f(z) = (z + 1) *(log(z + 1))~ is decreasing on [1, 00) for
all o, we can apply the Integral Test. The o = 1 case was covered in Problem
137(b); for av # 1 we have (1 — «) flM f(x)dr = [log(M + 1)]'=® — [log 2] 7.

This has a limit as M — oo, and hence > x,, converges, if and only if a > 1.

(d) |zpi1/xn| = (n+1)|al; if & £ 0, then this ratio tends to infinity as n — oo,
so the series diverges by the Ratio Test. If a = 0, then the series clearly con-
verges.

(e) We have z, = (a/2)"/(3 —1/n) and since 2 < 3 — 1/n < 3, the se-
ries converges if and only if the geometric series > (a/2)" converges (by the
Comparison Test), and this converges for |a| < 2.

7
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a) The series is absolutely convergent for any z by the Ratio Test.
b) The series is absolutely convergent for any z by the Ratio Test.

c¢) The series is a geometric series and is convergent if and only if |z¢| < 1.
d) The ratio test implies that the series is absolutely convergent when |z| < 1,
and the vanishing condition implies that it is divergent otherwise.

(e) Since a"/n! — 0 as n — oo for any « € R, the terms of this series do not
vanish for any z # 0, and so the series is divergent for all z # 0.

(
(
(
(

(a) Write z,, = n*27". Then |z, 11/x,| = (1 +1/n)*/2 — 1/2 as n — co. So
the series converges, by the Ratio Test.

(b) Write z,, = [1+exp(—n)]/[(n+1)*—(n—1)%. Then z,, = (1+e™)/(4n) >
1/(4n), and X(4n)~! diverges; hence the given series diverges, by comparison.
(c) Write z,, = n~2logn. Since n~*/?logn — 0 as n — oo, there exists a
number K such that logn < K/n for all n. Thus 0 < n~2logn < Kn=3/2,
and YK n 3?2 converges; so the given series converges by comparison.

(d) Write z,, = n!2"n~". Then |zp1/2z,] =2[n/(n+1)]" =2/(1+1/n)" —
2/e as n — co. Since 2/e < 1, the Ratio Test says that Yz, converges.

We use the n'* Root Test. Let

4 - 9 2n "
a, = |n*sin® | —————— .
3nd —2n2+5

2
|ap|™ = n*sin? 3—71 :
3n3 —2n2 +5

Note that (2n)/(3n* — 2n? +5) — 0 as n — oo, which implies that

Then we have

. sin?((2n)/(3n® — 2n? +5)) .y
n—oo  (2n)%/(3n3 — 2n? 4 5)2 ’

using sin(z)/x — 1 as x — 0. This means we obtain

*(2n)? in”((2 5 — 2n? 4
lim [a,[" = lim n*(2n) sin”((2n)/(3n n® +5)) _4A
n—r00 n—oo (3n3 —2n2+5)2  (2n)/(3n® — 2n% +5) 9

The n' root test tells us that the series converges.

We consider the series Y (3n — 1)!/(3n)! and > 4""!/(3n)! separately. The
first series Y 1/(3n) is equal to 1/3 times the harmonic series, which diverges.
We apply the Ratio Test to the second series Y 4" /(3n)!:

472 . (3p)! 4 0 .
= as n .
Bn+3) -4 (3n+ 1)(3n+2)(3n + 3) >

This shows that the second series is convergent. If the original series were
convergent, then the series Y " (3n—1)!/(3n)! were also convergent as the sum of
the original series and the series Y 4""1/(3n)!, by COLT. But > (3n—1)!/(3n)!
is divergent. Therefore this series is divergent.
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Let sy = ZnNZQ % Note that we have

R VR N Vi VSN S
SoN+1 —Zm _Z2k+(—1)2k+2k+1+(—1)2k+1 - _Zm

n=2 k=1 k=1

Therefore, the partial sums sony1 converge, by Comparison with the conver-
gent series >, 1/(4k?). Let s* = limy_,00 Sov+1. Then we also have
1 *

lim SoN = lim SoN4+1 + ——= =35
N—o0 N—o0 + 2N ’

and the sequence (s,) of all partial sums converges. This shows convergence
of the series.

Problems Class, 30 January 2015
Problems Class, 30 January 2015

Assume that " a contains only finitely many nonzero elements. Then this
sum is convergent and also absolutely convergent, since it only contains non-
negative elements. Applying COLT to > a, — > a,; would then show that
also Y a. is convergent and, therefore, also absolutely convergent, since it only
contains nonpositive elements. But then also the sum > a, = > al + > a,
would be absolutely convergent, in contradiction to the assumption that > a,
is only conditionally convergent. This shows that Y a' contains infinitely
many nonzero elements and a similar reasoning shows that also the > a.
has infinitely many nonzero elements. Assume that at least one of the sums
S af, > a, were convergent. Let Y a; be convergent. Then > a) is also
absolutely convergent (only nonnegative terms) and then also > a, =Y a, —
> a) is also convergent, by COLT. But then Y a; would be also abso-
lutely convergent (only nonpositive terms) and we would, again, obtain that
Sap =Y af +>" a, were absolute convergent, which is again a contradiction.
So both series Y a; and Y a; must be divergent and, therefore, the partial
sums must be unbounded.

The crucial point that we can establish the inequality U; > s* is that Y, ajf
is monotone increasing and unbounded above. The crucial point that we
can then establish the inequality Uy + Ly < s* is that ), ., a, is monotone
decreasing an unbounded below. Next, we can find a smallest index n, such
that Uy + Ly + Y702, af > s, since 37, a; is still unbounded above.
We define

U2 = a’:ﬁrl + a’:1+2 +oot a;;'
Next, we can find a smallest index my such that U —|—L1+U2+Zzzml+1 a, < s,
since » ;5 11 @ is still unbounded below. We define

L2 = am1+1 + a’m1+2 +oot amQ'

It is clear how this method proceeds and that the process never stops, since
we have always unbounded series ) S a; and Y [Se——N left. Note also
that, by construction, we have

5" = (Ur+ Ly + -+ Up)| < af

9
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149.

150.
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151.

and
5 = (U1 + L+ Ui+ Li)| < lag, |

Since Y a, is convergent, we have a,, — 0 and this implies that also a7 — 0
and a, — 0. This final fact shows that we have convergence sY — s* and
L *
sy — s*.

We know that the series ) E/_k—lT)i is convergent by the Alternating Sign Test.
Since 1/vVk+1 > 1/(k + 1), divergence of ) \/kl?

son with the harmonic series. This shows that > % is only conditionally

convergent. For the Cauchy product, we have to consider the terms

from Compari-

(-~ *
_Z\/k+1\/n Frl Z\/k+1 Jn—k+1)

It is easy to see that we have \/(k +1)(n — k + 1) < n + 1 and, therefore,

1
o] > D g =
k=0

So > ¢, cannot converge since then we would have ¢, — 0 in contrast to

(a) |zn| =1/vVn*+1—0asn— oo, so0 z, = 0.
) |zn| = n? exp(—n)—)Oasn—>oo S0 2z, — 0.

(b
(c) By COLT, z, — exp(im/4)v/2 =1+1i as n — oo.

(d) z, = (—=1)" x,,, where z,, = 2n/(n+1i) — 2 as n — 00, so {z,} has no limit
(

(

but is bounded).

a) Re(z,) =n/(n*+1) > (2n)~!, and X(2n)~! diverges, so ¥ Re(z,) diverges
by comparison, and hence Xz, diverges.

(b) |zn] = 1/v/n*+1 < n~% and Xn~? converges, so Xz, converges absolutely,
by comparison.

() |2ns1/2a] = V29/(n + 1) — 0 as n — 00, so Yz, converges absolutely, by
the Ratio Test.

(d) n?|z,| = n?(n? + 4)*exp(—n) — 0 as n — oo, so there exists K such that
0 < n?|z,| < K for all n. Hence Xz,, converges absolutely, by comparison with
the convergent series YK n 2

Integrals

(a) Since f is decreasing on [0, 1], we have U(f,P,) =n~t (1 +e /" e 2/m 4 ...

and L(f,P,) =n"t (e +e 2+ ... 4el).

(b) Then U(f,P,) — L(f,P,) =n"'(1 —e™'), and this — 0 as n — oo, so f
is Riemann integrable.

c) fol edr =1—e'. L(f,P,) =an (1 +a+- -+ a" ), where a =
exp(—1/n), s0 L(f, Pa) = a1 — a")}/fn(1 — )] = [a(1 — e )]/[n(1 — a)] =
[(1 —e™1)]/[n(e’/™ —1)]. The result follows.

10

+e=(n=1)/m)
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154.

155.
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U1, P) = & (log (1+3) +Tog (1+2) + -+ log (2)). and

L(f,Py) =21 (0+1log (1+2)+1log (1+2)+---+1log (14 21)). Then U(f, Pn)—

L(f,P,) = 10%2 — 0 as n — oo, so that f is Riemann integrable on [1,2].

Now the integral is I = ff f(z)dx = 2log2 — 1. Moreover, L(f,P,) <
I < U(f,Pn) = L(f. Pn) + %2, s0 that [ — %2 < L(f,P,) < I, and then
lim,, o0 L(f,P,) = I by the Squeezing Theorem. The final result follows by

taking the exponential of both sides: exp(L(f,P,)) = ((1+2) (1+2) ... (14 =!

and exp([) = 4/e. !
We have f(z) =1/z. U(f,Ps) = %(1 + %) = %, and L(f,Py) =
U(f,Pa) =3(1+3+24+32) =38 and L(f,Ps) = (3 + 3+ +3
Expressing the results to 4 decimal places, we have

I — L(f,Py) | —0.1402
I-U(f,P) | 0.1098
[—L(f,Ps) | 0.0586
[ —U(f,Ps) | —0.0664

Let P,, be the partition of [0,7/2] into n subintervals of equal length. Then
we can write

ul <sin(21) + sin(;—ﬂ) + sin(g—ﬂ) +-- 4 sin(%)) =U(f,Pn)

2n n n 2n

with f(x) = sin(z). Note that

oo LT 27 . 37 . (n=1rm B
L(f,P,) = o <sm(2n) +sm(2n) + Sm(Zn) + -+ sin( 5 ) =U(f,Pn)
ie.,

T . T T
U(f,Pn) — L(f, Pn) = %sm(g) =5 0.
Therefore, we have
lim — in(i) + in(z—ﬂ) + in(3—ﬂ)+ + in(@) = lim U(f,P,) =
nvoe 2p \ ST/ TG SIS ) DT R e

/2
/ sin(x)dx = [— cos x]g/Q =1,
0

which implies

1 2 3
Jim - (sin(%) + sin(%) + sin(%) 4t sin(l)) —

Problems Class, 12 February 2015

We use the criterion given in Theorem 10.4. First of all, every uniformly
continuous function f : [a,b] — R is obviously continuous and, therefore,

11
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bounded. Let € > 0. Then we can find § > 0 such that we have, for all
x,y € |a,b] with |y — x| < 4,

[f(y) = f2)| <

€

b—a

Now we choose n € N large enough such that (b — a)/n < 6. Let P, be the
partition of the interval [a, b] into n subintervals of equal length. Then we have

and "
Ul P =05
with h
mi:inf{f(x)|a+(i—1)b_7a §x§a+z‘b;a}=f(&)
and b—a b—a
M; = sup{f(z) | a+ (i = )— <z <a+i—7} = f(m)

We obviously have &, n; € [a,b] and |n; — &| < (b —a)/n < §. Therefore, we

conclude that c

b—a’

M; —m; = [f(m) — f(&)] <

ie.,

n n b—a

U(fapn>_L(f7Pn):b_aZM@'—m@'<b_a"n~ € = €.
i=1

But this implies that f is Riemann integrable.
157. Problems Class, 12 February 2015
158. Using for a < b that | f:f(x)dx| < f; | f(x)|dz, we obtain

T sin(kx) o ] 27
/0 x2+k32dx’§/o d:vg/o ﬁdx:ﬁ—ﬂ).

159. Using for a < b that | f:f(x)da:\ < fab |f(z)|dz, we obtain

V3 o~z V3 oz V3
/ e sm(x)dx S/ e < el/ dx _
1 . 1+2? 1 1422

2 +1
é(arctan(\/g) — arctan(1)) = é(w/?) —n/4) = %@W'

sin(kx)
x? + k2

160. (a) Let r = x;/z; 1. Then we have zy/xo = r* and, therefore, " = b/a. Let
c¢=r". Then
Li i i/n
ri=x9-— =a-r =ac’".
Lo

12



(b)

Note that we have

n

U(f,Pa) = Y fl:)(wi — x5-1)

i=1
and .
L(f,Pa) = > flaioa) (@ — xim1).
i=1
Moreover, we have
z; — 1y = ac’" — actY/M = eV (e ),

Using f(z;) = (z;)? = aPc™P/™, this implies that

U(f, Pn) = Z PP/ (1) = gt (1 — /) Z (C<p+1>/n)" '

=1 i=1

Now we use the formula for the geometric series > 1" o' = 04111 o” and
obtain
1 — ptl
_ ptl/q1 _ —1/n\ (p+1)/n _
U(f,Pn)=0a""(1—c"")c T
1 — C—l/n 1 — C—l/n
p+1l1 _ pt\(pt)/n_~ ~ __ ( ptl _gp+l\.(p+t)/n_~- =
@ (1= e [ —cwrom @ e 1 — cwtD/n
1—ct/m
+1 _  _p+l /n
(bp “ )Cp 1 — clp+1)/n”
Using the formula for the geometric series Y 7 _ o' = % again yields

1

U ’Pn:bp+1_p+lcp/n :
(f ) ( @ ) 1+Cl/n+02/n+...+cp/n

For L(f,P,) we obtain

L(f, Pn) = Z apc(ifl)p/nac(i—l)/n(Cl/n - 1) - Cip/nU(fa Pn) =
i=1
1

bp+1_ p+1 .
( a )1+Cl/n+62/n+...+cp/"

Since ¢/™ — 1 as n — 0o, we have

bp+1 _ ap+1

lim U(f,Pn) =
Mm U(F,Po) = — 77
and also - .
: —a’
Tim L(f, Pn) = EPESE
This shows that f(z) = 2P is Riemann integrable over [a, b] and we have
prtl _ gptl
EZ PaPdr = vooe
p+1

13



161. Let f(z) = sin(rz) and g(x) = 7. Then both functions are continuous and,
therefore, Riemann integrable over [0, 1]. Moreover, we have f,g > 0 on [0, 1].
So we can apply the Mean Value Theorem for integrals in two different ways
to obtain on the one hand

cos(0) —cos(m) 2 2

[ st = g(e) [ sintmae = oten L= 2y - 2

and on the other hand

[ 1@t = 1) [ 125 = e actan() = sien§ = T,

162. (a) We choose g(x) = 1. Then g > 0 and we can apply the Mean Value
Theorem for Integrals to obtain

/abf(x)dx = /abf(x)g(x)dx = f(c) /abg(x)dx = f(e) /abdx = f(c)(b—a).

(b) Since f is continuous on [a, b], there exists M > 0 such that |f(x)] < M
for all z € [a, b].

Firstly, let ¢ € (a,b) and h > 0 such that ¢+ h € [a,b]. Then we have

with (a):
/;Jrhf(a:)dx

with some £ € (¢, ¢+ h). This shows that

[F(et h) - F(o) = — WF()] < hM.

lim F(c+h)— F(c)=0.

h—0+

A similar argument applies for h < 0. If we consider the case ¢ = a and
¢ = b, we have to restrict to one-sided limits.

163. Let ¢ € (a,b) and h > 0 such that ¢ + h € (a,b). Then we have, using the
results of the previous problem

F(c+h / fla ()

for some € € [c,c+h]. If h — 0+ we have £ — ¢, which implies using continuity

of f

F(c+h) — F(c)
=21 i f(6) = (o)

E—c

F'(c) = lim

We have tacitly assumed here that h > 0, but the arguments can be modified
easily to cover also the case h < 0.

C
/sm
01Jo

164. We have

lim
c—r

< hm/ }sm }d:v < hm dr =lime = 0.

—0 0 c—0




So we can try to apply L'Hopital. Let f(c) = [ sin(z*)dz and g(c) = ¢".
Then we have f(0) = g(0) = 0 and f'(c) = sin(¢?) and ¢'(¢) = 4¢®. Then we
have f/(0) = ¢’(0) = 0 and f”(c) = 3c®cos(c?) and ¢”(c) = 12¢. Here we can
calculate the limit:

f"(e) .. 3c*cos(¢®) . cos(c?)

. 1
zlzlgtl) g"(c) N cg% 12¢2 - clgtl) 4 T4

Applying L’Hopital twice yields
/ "
O T O R O N

c—0 g(c) 50 g’(c) 50 g”(c) 4"

165. Let f(x) = 6x2/7r—27r/4+f;/2 esntdt and g(z) = 1+ cos(2z). We easily check

that f(7/2) = g(7/2) = 0, so we can try to apply L’'Hopital. We have f'(x) =

2ze/m—e7 and ¢/(x) = —2sin(2z). Then we still have f'(7/2) = ¢'(7/2) = 0

and we differentiate again: f”(z) = 2e/pi — cos ze""* and ¢"(x) = —4 cos(2z).

Here we can take the limit and, using continuity of f” and ¢”, we obtain
P fE2 tefn e

I - = =—.
com2 g'(x)  g'(n/2) 4 2¢

Applying L’Hopital twice yields
/ I
@) P P e

li = = .
x—1>17g2 g(x)  emm2g(x)  aon2g’(x) 2w

166. Problems Class, 27 February 2015
167. (a) Since (f(x)+ Ag(z))? > 0, we conclude from Monotonicity of the Integral
that, for all A\ € R,

/ (f(2) + Ag(x)dz > 0.

This implies that
BN +2CA+ A > 0.

Since B # 0, this is a quadratic polynomial in A which is non-negative
for all choices of A € R. Therefore, we must have

(40)* —4BA = 4(C* — AB) < 0.

(b) We proved in (a) that C? < AB. Replacing A, B, C by the expressions
they represent, we obtain

</abf(x)g(x)dx>2 < /ab(f(x))de /ab(g(x))de.

15



168. Since g is continuous and not identically zero, we have B # (. Since equality
in (3) implies that C? — AB = 0, the quadratic equation

BN +20\+A=0

has a solution \y € R. This means that we have

/ (f(z) + Aog(x))*dx = 0.

Since (f+MXog)? is continuous and non-negative, this means that (f+\gg) = 0,
ie., f=—MN\g.

169. (a) We have | cos z/(z4€")] < e, and [~ e * dx converges. Thus [ (cosz)/(z+
e”) dx converges absolutely, by comparison.
(b) (z + vx)' > 1/(2z), and [ (22)~' dz diverges. Thus [~ (z + /z) " dx
diverges by Comparison
() V(6 +2)/(1+a8) < \/Tx/28 = Tz andso [ /(6 +z)/(1 + %) dx

converges by comparison with /7 fl *5/ 2dx.

d) fOR e dr = —R?’¢ ® —2Re ™ — 2% +2 - 2 as R — oo. So the
integral converges. Alternatively, use z%e™® — 0 as z — oo, and comparison
with flR r 2 du.

(e) 0 < (1+2°%)~1/2 <2732 and so the integral converges by comparison with
[ 32 da.

. 1
(f) On (0,1], 2732e™ > 2732 /e, and [ ~**dx diverges, so the given inte-
gral diverges by comparison.

(g) 0 < e®/y/x < 1/y/xr for x > 0, and fol dx/\/x converges, so the given
integral converges by comparison.

h) [Jx/vV1—a?de =1—+/1—¢for 0 < ¢ < 1; and this has a finite limit
(namely 1) as ¢ — 1. So the integral converges, by definition.

(i) Write f(z) = 7 "/3cosx. For 0 < # < 1, we have 0 < f(z) < 2~ '/3.
Since fol /3 dx converges, we deduce that the given integral converges by
comparison.

(j) For 0 < & < 1, we have 0 < va —22/z = V1 —z/y/x < 1/\/x; and

1 _1/9 . . .
fo Y2 dx converges, so the given integral converges by comparison.

170. If L > 0, we can say that there is a number R > 0 such that |L — f(z )\ < L/2
(say) for all z > R. But then we can deduce that the integral [ f r flx)dz
is dlvergent by Comparlson Wlth the divergent integral f r L/2dzx, and SO

fo x)dr = fo x)dx + fR x)dx is divergent. If L < 0 the same ar-
gument can be apphed to —f. Thus if the integral converges, we must have
L=0.

171. Integrating by parts on [0, R] gives fOR xf'(z)dr = Rf(R fo x)dr =
— fOR f(x)dx. This has a limit as R — oo if fo dx converges and
if limp oo Rf(R) = L (finite). (Note that, by an argument similar to that of
the previous problem, L in fact has be zero.)

172. (a) 027cx(16 — ")V dr = f0(276)2(16 —u?) V2 duj2 = w/dasc— 0 (It’s a
sin~!.) Thus the integral converges.

16



173.

174.

175.

176.

177.

178.
179.

180.

(b) 16 —' = (4+2%)(2—)(2+2). Then 2(16—a*)""2 < 2(8(2—))~/* on
, and SO t e Integral converges comparison with the convergent integra
1/2 fO —-1/2 dor.

(a) fal(log:p)2 dr = —a(loga)? + 2aloga + 2(1 —a) — 2 as a — 0. Thus the
integral converges.

(b) Since z'/*log x — 0 as x — 0, there is a number K such that 0 < (logz)? <
K/\/z for x € (0,1]. Now fol K dx/\/x converges, therefore so does the given
integral, by comparison.

tanz becomes unbounded as x approaches 7/2, so we consider foa tan® x dx
for a < 7/2. Writing tan®x = —tanz + tanxsec? z, we see that tan®z =
d[log cos © + (sec? ) /2] /dx on [0,a]. Thus [ tan® zdx = logcosa + (sec® a —
1)/2, which has no limit as a — 7/2: the integral diverges.

Parts (a) and (c) in Problems Class, 27 February 2015 (b) (z + 1/x)* =
71 + 2?)% Thus min{1,2°}z™ < (z + 1/2)* < max{1,2°}2~* on [0, 1].
By comparison with fol x~%dz, the integral is convergent for a@ < 1 and diver-
gent otherwise.

(d) As in part (c), there are positive numbers ¢ and C such that cz!™® <
r %sinz < Cx'~®. Thus by comparison with fol 27 dx, the integral is con-
vergent for av < 2 and divergent otherwise.

(e) We split the integral into two components: A = fol %dw and B =
floo 2> — dux. Since 1 1 < p%r <1 on [0,1], A converges if and only if fol A
converges (by comparison) i.e. when a0 > 0.

As for B, 1 272 < le < 2272 for x > 1, so B converges if and only if

f1 x92 dx converges (again by comparison), i.e. when o < 1. The integral
converges if and only if both A and B converge, i.e. for 0 < a < 1.

Write f(z) = 2= *3sinz. For x > 1, we have 0 < |f(z)| < 2=%3; and
[ 2=%3 dx converges, so [;° f(x) dx converges absolutely, by comparison. For
0 < x <1, we have |z 'sinz| < 1; and fol 2713 dx converges, so folf(x) dx
converges absolutely, by comparison. Hence fooo f(z) dx converges.

Write f(z) = 2°/va2 +2 = 27Y2//r + 1. For x > 1, we have 2712271 <
f(x) < a7t and [7 2 'dx converges iff ¢ — 1 < —1, that is iff ¢ < 0. Next,
for 0 < z < 1, we have 27122712 < f(x) < 272, and fl xc_1/2 dx converges
iff c—1/2 > —1 that is iff ¢ > —1/2. So by comparison, fo x) dx converges
iff —1/2<c< O

Problems Class, 27 February 2015

Write f(z) = (z+2?)7P. For:c > 1, we have 313 < -5 < 5, and [~ 2% dx

converges iff 2p > 1; so f1 d:c converges 1ff p > 1/2, by comparison. Next,
for 0 < x < 1, we have 2— < x+$2 < xv and fo x Pdx converges iff p < 1; so
fo x) dx converges iff p < 1, by comparison. Thus fo x) dz converges iff
1/2 < p < 1L

Problems Class, 27 February 2015
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181.

182.

183.

184.

185.

Sequences of functions and uniform conver-
gence

The pointwise limit is the function f : R — R, given by f(z) = 0 since, for
every x € R, there exists N € N with x < N and we have f,(x) = 0 for all
n > N. The convergence is not uniform, since we have f,(n+1)—f(n+1) = 1.
(If f, — f were uniform, we could find for ¢ = 1 an index N € N with
|fu(z) — f(z)] <1foralln > N and z € R.)

The pointwise limit is the function f : (1,00) — R, given by f(x) = 0 since,
for every z € (1,00), 2™ — o0 as n — oo. The convergence is not uniform
since every function f, is unbounded (recall that lim, — oo”;—z = 0) but the
limit function is bounded.

C

Note that lim. ,,, e7¢ = 0. This implies that we have, for every x € [—1,1],

x #0,

. _ 2
lim e ™ = 0.
n—o0

At x = 0, we always have f,,(0) = e® = 1, so the limit function is

1 ifo< |z <1,
f@%_{]ﬁxzﬂ

The convergence cannot be uniform, since all the functions f,, are continuous
on [—1,1] but the pointwise limit function f is discontinuous at = = 0.

Note that e=** < 1 for all z € R. Therefore, we have for all z € R,

1—%§fn(a:)§1.

Here we have uniform convergence to f(z) = 1. Let € > 0. Then there exists
N € N with 1/N < epsilon and we have, for all n > N and all x € R,

U@—ﬁ@»g%<6

The pointwise limit of 2™ on [0, 1] is

ﬂ@:{a if 2 €[0,1),

1, ifz=1.

Since x?" is a subsequence, its pointwise limit is the same function f, so

the difference converges pointwise to the function g(x) = 0 on [0,1]. Let us
determine
n 2n
max f,(x) — g(x) = max z" — z*".
me[o,uf( )~ 9(@) €0,1]

Obviously, we have f,,(0) = f,(1) = 0 and 2™ > 22" on [0, 1], so if f,(z) with
xo € (0,1) is a positive maximum, we must have f’(zo) = 0. This leads to
fi(wo) = nal~ ' —2nag™! = 0, which yields 2! = 1/2, i.e., 9 = (1/2)". There

we obtain
1 1

MR =3-1=1

So we obtain a contradiction to uniform convergence by choosing ¢ < 1/4.

18



186.

187.

188.

We have f,(0) = 0, and for any fixed = > 0 we have
nx
lim f,(z) = lim —— —
Therefore, the pointwise limit function is given by f(x) = x. Now we consider
nr —x —nr — l4+x
=r—.
l+n+z l+n+x

(o) = )] |
Choosing x = n, we see that

fula) = fla)l = nyge 2o = 2.

This expression becomes arbitrarily large as n — 0o, so we cannot have uni-
form convergence.

nw ‘
— x| =
l+n+ux

1+n> 14+n n

For every x € [0, 00) we have
1
lim f,(v) = lim 4/2? + — = Va2 =z,
n—o0 n—o0 n
So the pointwise limit function is f(z) = z. Now we calculate |f,(z) — f(x)]:

1
\/x2+$—x =

(22 +1/n%) — 2? 1

fa2 4+ L 4o Cn2z+n2\/2% + 1/n?
Since n = n%y/1/n? < n’z + n?y/x? + 1/n?, we obtain

n

First of all, we know that the limit function f : [a,b] — R is again continuous
and, therefore, all functions f,, f are Riemann integrable on [a, .

Let € > 0. Then we know that there exists N € N such that
f(z) —e< fu(z) < f(z) +€ foralln>N.

1
§_7
n

By Monotonicity of the Integral, we conclude that for all n > N,

/ac(f(:c) —€)dr < /ac folz)de < /ac(f(:c) +e)da.
Observe that
/ac(f(a:) +e)dr = /acf(a:)da: + e/: dx = /acf(:c)d:c + (c—a)e.

This shows that we have for all n > N,

/acf(a:)dx - /ac fn(x)dx

Since € > 0 was arbitrary, we conclude that

lim cfn(x)dx = /C f(z)dx.

< (c—a)e < (b—a)e.
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189.

190.

(a) If f(z) = 0 for all x € [a,b], we obviously have ||f|l.c = 0. Now let
| flleo = 0. If we had f(z) # 0 for some = € [a, b], we also had |f(z)| > 0,
which would imply || f|lc = sup|f(z)| > 0. This shows the converse
direction.

(b) We have

A flloe = sup [Af(z)[ = [A] sup [f(2)] = [A] - [|f]loe-

x€[a,b] z€[a,b]

(¢) Note that continuity of |f| implies that there exists zo € [a,b] with
|flloc = |f(z0)]. So we have xg,y0 € [a,b] with | f|lcc = |f(z0)] and
lg]loc = |g(yo)|- This means that we have |f(z)| < |f(zo)| and |g(x)| <
lg(yo)| for all z € [a,b], i.e.,

[f (@) + g(@)| < [f (@) + g(z)| < |f(zo)| + [g(yo)| for all z € [a, b].

So | f(xo)] + |g(yo)| is an upper bound of {|f(z) + g(z)| | = € [a,b]} and
we have

1f + glloe = sup [f(x) + g(@)] <[f(z0)| + [9(wo)| = [fllc + [19]loc-

z€la,b]

Let f, € C([a,b]) be a Cauchy sequence. Let us first show that the sequence
fn ¢ [a,b] = R of continuous functions has a pointwise limit function f :
la,b] — R. Let = € [a,b] and € > 0 be given. Then there exists N € N such
that

|[f(2) = fm(2)| <€

for all n,m > N. This means that the sequence (f,(x)) of real numbers is a
Cauchy sequence and, therefore, has a limit, which we denote by f(x):

f(z) = lim f,(z).

n—oo

So we showed that there exists f : [a,b] — R such that f,, — f pointwise. This
function f is the candidate for the limit. We first show that the convergence
is not only pointwise, but uniform. Let ¢ > 0 be given. f, being a Cauchy
sequence means that we have a start index N € N such that for all z € [a, D]
and all n,m > N

|fn(x) - fm(x)| <€
Letting m — oo, we conclude that
[ful@) = fz)] <€ (2)

for all n > N and all z € [a, b]. This shows that f,, — f uniformly. Therefore,
the limit function f : [a,b] — R is continuous and we have f € C([a,b]). But
(2) means also that for all n > N,

[fr = flloe = sup, [fu(x) = f(2)] <

z€la,b

i.e., we have convergence f,, — f in C([a,b]), finishing the proof.
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191.

192.

193.
194.
195.

196.

197.

Power series and Taylor series

Ya,2*" = Ya,(2%)", which converges for |2%| < R < |z| < V/R and diverges
for |2?| > R < |2| > VR.

Parts (b) and (¢) in Problems Class, 13 March 2015 (a) |a,41/an| = %
4 asn — 00,80 R=1/4.

(d) |ans1/an] = (3"+3)2(€’::12))3(3"+1) — 2l as n — 00, so R = 2/2T.
(€) |ans1/an] = (";é)Q — +asn — 00, s0 R =3,

(f) |ans1/an| = n%ol — 0 as n — o0, so R is infinite.

(g) lani1/an| = é(n?’fffl) — 2 asn — 00, s0 R =3/2.

|Gps1/an| = 1/2, s0 R = /2 by question 191.
|api1/an| = 1/22"1 — 0 as n — oo, so R is infinite.

Let a, = n!/n™. We need to find lim |a,|"/". We have

Ja, | = (G
n n )

and therefore
1 1
(27m)1/2n_ < |an|1/n < (271_7,1[)1/211_61/(12112).
e e

Note for a > 0 that
log(an)

2n
which implies that (an)!/?" — 1. So we conclude that

log((an)'/*") = — 0,

1/”:1

)

lim |a,|
n—00 e

and, therefore, R =1/(1/e) =e.
Let a, as in the problem. Let n = k!. Then we have
|an\1/” = (2]“)1/1“! =2V/¢=D" 1 as k — oo.

This becomes clear from the fact that 2' — 1 for [ — oo. If n is not a factorial,
we have trivially |a,|"/" = 1'/™ = 1, so we have

lim |a,|"™ =1,
n—o0

and the radius of convergence is R = 1.

Let R be the radius of convergence of > b,2". If R = 0 there ios nothing to
show. Assume R > 0. Then we only have to convince ourselves that ) a,2"
converges for all |z] < R, then the radius of convergence of ) a,2™ must be
> R. Let z € C with |z| < R. Then we can find r € (|z|, R) and _ b,r" is
convergent. By Lemma 12.2, > b,2" is absolutely convergent. But then also
> |anz"| is convergent, by comparison. Since > a,, 2™ is absolutely convergent,
it is also convergent, which we wanted to show.
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198. Using 22 ,t" = t/(1 — t) for |t| < 1, we get f(x) = x for all z # 0.
Clearly f( ) = 0, so we have f(z) = z for all 2. Hence df /dz = 1, whereas
¥ uh(0) =30 = 0: the two quantities are not equal.

199. The kth partial sum is Sk( ) = kwexp(—ka?), so f(z) = lim,HOO Sk( ) =0
for all x. Thus fol = 0. On the other hand, ¥¥_ 1f0 up(z) de =
fo _Up( dx—fo Sk dx—(l —e%)/2 5 1/2ask — co. So B 1f0 U (T
1/2: the two quantities are not equal.

200. Using the geometric series, we find

1 1 1 1 1 1
e & 1 S —
e (n+1)!< T2 T2 Tty )
1 1 1 om0
(n+1)! 1-1/(n+2) (n+1)! n+1

This implies that

0< 1+1+1+1+1 1+1+ <16 0 L
e — — — = — — _—— = — = —
12t 31 4l 5 6l 55  5-120 100
Now we have
1 1 1 1 1 1 1 48+12+4—|—1 65
1 — =24 -+ — = 2.708333.
+1'+ +3'jL +2+6+24 24 T 24 833

which yields the required result.
201. Assume that e = p/q with natural numbers p, q. Then

1 1 1
= eq! — — |
N = eq! (1+1|+2|+ +q!)q.
is a natural number and (4) implies that

1 1 g gt2  q+2
N =gl + L) < a2 .
I ((q+1)! (q+2) ) G+D! g+1  (g+1)72

But ¢ is a natural number and

g+2 _lg+2 1 - 1Ly _ 1 1+1 3
(g+1)2 = 2¢q+1 2 qg+1) =2 2) 4

which is a contradiction.

202. (a) Note that R:ﬁ > 0.56.
(b) |sin(n|z|)| <1, and >°7° & converges

(c) |]z"| < 1; moreover, %~ < - hence have convergence.
) ) n3+\:13\ n )

203. Problems Class, 13 March 2013

22



204.

205.

Let g(x) = nz/(1 + n*2?). Then g : [0,00) — R is continuous, non-negative
and lim,_, g(z) = 0 and g(0) = 0. We have

() n(1 + ntz?) — 2ndx? 1 — ntz?
T) = =n
g (]_ +n4x2)2 (1 +n4x2)2’

and ¢'(z) = 0 leads to x = 1/n? Note that ¢’(z) < 0 for all z > 1/n? ie.,
g is monotone decreasing on [1/n? oo). For given a > 0, we can find N € N
with @ > 1/N?. Then each term in the series

S
— 1+ nte?
can be estimated from above by (na)/(1 + n*a?). Since
na na 1 1
Zl+n4a2 = Zn4a2 - EZﬁ

is convergent, the original series is uniformly convergent, by the Weierstrass
M-test.

Let £ > 0. Then we have

[e.e] o0

nxT nr
f(l‘) :Z 1+n4x2 Z Z 1+n4x2'

n=0 n=N

We have for n > N that n*/N* > 1 and choosing x = 1/N? > 0 leads to

FUN 2 S e Y :

n=N

o N1 = 3 2
n=N n=N

Moreover, we have
=1 > dx
— > — = [—27?)2E=% = 1/(2N?).
Yz [ = =N

Combining both results leads to

N? 1 1
/N > —— =-.
JA/NT) 2 2 2N2 4
If the convergence were uniform on R, we could conclude that f : R — R is
continuous since the partial sums are continuous. This would imply that

e~ =

FO) = Jim f(1/N?) >

But the pointwise limit at x = 0 is f(0) = 0. Therefore, we cannot have
uniform convergence on R.
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206.

207.

208.

209.

Ycosz = [1+cos(2z)]/2=1—a?+2"/3—.. .

) sin(2?) = 2% — 2/6 + 21°/120 — . . ..

yetsine = (1+x+22/2+23/6+..)(z—23/6+...)=x+2>+2°/3+...
Y1/(A+2Y)=1—2+2* — ...

/(1423 =2 —a* +27 — ...

) (1+2%)2=1-22%+32"— ...

) [exp(z?) —1]/a3 =2 +2°/2+2°/6 + ...
)(1—x)_3—1+3x—|—6x + .

i) exp(z?) sin(z?) = 2? + 2! +x6/3+ . [from (c)]

) exp[l/(1—2z)] =e(l+2x+62%+...)

k) exp(expx) = (1+x+x +...)

log(1 + 22?%) = 222 — 22 +8:1:6/3—...

m) log(1+2)?=(r—x/2+23/3—.. ) =2 -3+ 112" /12 + ...

We prove by Induction that, for x # 0,
f® (@) = pu(1/x)e! ™,

where p;. is a polynomial of degree 3k. For k& = 0 there is nothing to prove.
Given this fact holds for k&, then we obtain

FED) = a1/ (1) e
= (s s ) e,

which shows that we need to choose py1(y) = —y*p}.(y) + 2y°pr (), which has
degree 3k + 3. This completes the induction proof.

Now we consider the derivatives f*)(0). Again we use Induction. We start
with f©(0) = f(0) = 0. Assuming that f*~(0) exists and is equal to zero,

we obtain (o1} (o1}
- — = 1
f (SL’) - f (0) _ Epk71<1/l’)€71/12.

This implies that

i £470@) = 14700)

= 1 v —
: i pe-a(y)e =0

The same argument applis for the elft hand limit. Therefore, f*)(0) exists
and is also zero.

Since f®)(0) = 0 for all k € NU {0}, the Taylor polynomial of f is trivial and
converges to f(z) only if x = 0.

Parts (b) and (c) Problems Class, 13 March 2015

(a) We have cos(z) =~ (_(12):)3[;%- So the sum is cos(27) = 1.

We have sinx = Zﬁo(—l)k(gzi), and cosx = > _,° (— 1)1(12—?;!, which converge
absolutely for any choice of z € C. So we can apply the Cauchy product and
obtain

o
(sinz)(cos ) g "

n=0

24



n
1,219—1—1 2l x2n+1

= N Y P =
‘ k;n( i - Y £ (2k+ DN(2n + 1) — (2k + 1)!
( 1>n n m + 1 x2n+1
2k+1) (2n+ 1)1
k=0
Now we use
“~ (2n+1
Q£+1):2% (3)
k=0 +
and conclude that
(_1)n _— x2n+1 (_1)n (2$)2n+1
Cn g g s
2 (2n+1)! 2 (2n+1)!
ie.,
= I & (2z)2+t 1
W= = (1) = sin(20).
g;cx 2%;< P an 3 oin()
Now it remains to prove (3), using (1 + ¢)>**1 = S22 (") ¢k Choosing
c= —1 and ¢ = 1, we obtain
2n+1
2n+1 &
0 = -1
> (" e
k=0
2n+1
2n+1
22n+1 — ( )

Adding the two equations kills all even k-terms and we obtain

" /o2n+1
22n+1:2
> (50

=0

ie.,

210. Problems Class, 13 March 2015

25



