
Analysis 1 Solutions (Michaelmas Term 2014)

1 Basic logic and sets

1. a) True: If the two odd numbers are a = 2n+ 1 and b = 2m+ 1 then their
product is ab = 2(2nm+ n+m) + 1 and is therefore again odd.

b) False: We only need to find real numbers p, q such that p2 − 4q ≥ 0 and
x2 + px + q = 0 does not have two real solutions. Choose, for example
p = 2 and q = 1, then p2− 4q = 4− 4 = 0 and x2+2x+1 = (x+1)2 = 0
has only one real solution, namely x = −1.

c) True: For ǫ > 0 choose a natural number n such that 0 < 1
ǫ
< n. Then

1
n
< ǫ.

d) False: We have 1001 = 7 ∗ 11 ∗ 13, so 1001 is not a prime number.
Moreover, we have |sin(x2)| ≤ 1 for all real x, so

|
∫ π

0

sin(x2)dx| ≤
∫ π

0

|sin(x2)|dx ≤
∫ π

0

1dx = π < 4,

i.e., ”
∫ π

0
sin(x2)dx ≥ 4” is false. This shows that the combined statement

is also false.

2. • Statement b) implies that Tom or Max is the lecturer.

• We conclude from statement c) that today is Wednesday (since Anna
cannot be the lecturer).

• We conclude from statement e) that Tom must be lecturer (since Anna
is not the lecturer).

• We conclude from statement d) that Anna is the electrician.

• Since Tom is the lecturer and Anna the electrician, Max must be the
builder.

Of course, you need to check that with this solution all statements a)-g) are
satisfied. The uniqueness of the solution follows from the fact that each con-
clusion above was obligatory.

3.

A B (notA) orB A andB notA (A andB) or (notA)
false false true false true true
false true true false true true
true false false false false false
true true true true false true

This shows that both statements are equivalent.
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4. a) We have

not (not (A) and (B and (notC))) ⇔ not (not (A) and not (not (B) orC))

⇔ A or (not (B)) orC.

b) We have

(A and not (B)) or not (A and not (C)) ⇔ (A andnot (B)) or (not (A) orC)

⇔ not (not (A) orB) or (not (A) orC).

c) De Morgan’s Law holds also for combining finitely many sets by ” and ”.
Therefore, we have

A and not (B) and not (C) andD ⇔ not (not (A) orB orC or not (D)).

5. a) At least one of the two statements ”A”, ”not (A)” must be true. There-
fore, combining them with ” or ” leads always to a true statement.

b) B is either true or false. If B is false, then ”notB” is true and therefore
”A or (A orB) or not (B)” is also true. If B is true, then ”A orB” is also
true and so is ”A or (A orB) or not (B)”. So this statement is a tautology.

c) ”(A andB) or (B andC)” can only be true if B is true, in which case
”notB” is false and so is ”((A andB) or (B andC)) and (notB)”.
If ”(A andB) or (B andC)” is false then so is ”((A andB) or (B andC)) and (notB)”.
Therefore, ”((A andB) or (B andC)) and (notB)” is always false, and its
negation is a tautology.

6. We know that ”A ⇔ B” is only true if the statements A and B are either both
true or both false. The statement ”A andB” is only true if both statements
A and B are true. Similarly, the statement ”not (A) and not (B)” is only true
if both statements A and B are false. Therefore we have

(A ⇔ B) ⇔ (A andB) or (not (A) and not (B)).

7. Let X = {x ∈ R | x2 − 9x + 14 = 0} and Y = {y ∈ Z | 3 ≤ y < 10}. Since
x2 − 9x+ 14 = (x− 7)(x− 2), we have X = {2, 7} and, therefore,

X ∪ Y = {2, 3, 4, 5, 6, 7, 8, 9},
X ∩ Y = {7}.

8. There are different ways to describe this set. One expression for it is

((X ∩ Z)\Y ) ∪ (Y \X).

Another expression is
(Y ∪ (Z ∩X))\(X ∩ Y ).

9. Let X = {x ∈ R | x ≤ a} ∩ {x ∈ R | min{x, a} ≤ b} and Y = {x ∈ R | x ≤
min{a, b}}. To show that the two sets X and Y are equal, we have to prove
two facts. Firstly, every element of X is also an element of Y . Secondly, every
element of Y is also an element of X . Here are the arguments:

2



• If x ∈ X then x ∈ Y : Note that x ≤ a and min{x, a} ≤ b implies that
x = min{x, a} ≤ b and, therefore x ≤ min{a, b}.

• If x ∈ Y then x ∈ X : We conclude from x ≤ min{a, b} that x ≤ a, i.e.,
x = min{x, a}, and x ≤ b. This implies x ≤ a and x = min{x, a} ≤ b.

10. a) Assume that X ∪ Y = Y . Let x ∈ X . Then x ∈ X ∪ Y = Y . This shows
that X ⊂ Y .

b) Assume that X = X ∩ Y . Let x ∈ X = X ∩ Y . Therefore, x ∈ Y . This
shows that X ⊂ Y .

c) We always have Y ⊂ X ∪ Y , since if x ∈ Y then x is also in the union
of X and Y , i.e., x ∈ X ∪ Y . Assume X ⊂ Y . It remains to show that
then X ∪ Y ⊂ Y . Let x ∈ X ∪ Y . Then x ∈ X or x ∈ Y . If x ∈ X ,
then x ∈ Y because of X ⊂ Y . If x 6∈ X , then we must have x ∈ Y for
”x ∈ X or x ∈ Y ” to be true. So we have in either case that x ∈ Y . This
shows that X ∪ Y ⊂ Y .

11. a) The Venn Diagram looks as follows:

X Y

X∆Y

b) The Venn Diagram for both sets looks the same:

X Y

Z

(X∆Y )∆Z = X∆(Y∆Z)

Both sets are equal and can be described in words as follows: They consist
of all elements which belong to only one of the three sets or lie in the
intersection of all three sets X, Y, Z. Therefore, another way of describing
these sets is

(X ∩ Y c ∩ Zc) ∪ (Xc ∩ Y ∩ Z) ∪ (X ∩ Y ∩ Zc) ∪ (X ∩ Y ∩ Z).
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c) Let x ∈ X∆Z. Then x belongs to precisely one of the two sets X and
Z. Now we have two cases to consider: The first case is x ∈ Y and the
second case is x 6∈ Y . One of these two cases is always fulfilled.

Firstly, assume that x ∈ Y . Since x belongs to precisely one of the two
sets X and Z, it does not belong to either X or to Z. If x does not belong
to X , then x ∈ X∆Y . If x does not belong to Z, then x ∈ Y∆Z. So we
conclude in the first case that we always have x ∈ (X∆Y ) ∪ (Y∆Z).

Secondly, assume that x 6∈ Y . Since x belongs to precisely one of the two
sets X and Z, it belongs to either X or to Z. If x belongs to X , then
x ∈ X∆Y . If x belongs to Z, then x ∈ Y∆Z. So we conclude in the
second case that we always have x ∈ (X∆Y ) ∪ (Y∆Z).

This shows that

x ∈ X∆Y ⇒ x ∈ (X∆Y ) ∪ (Y∆Z),

finishing the proof of the inclusion.

12. 1. The statement is true. We give names to the elements of the set X , i.e.
X = {a1, . . . , an}. Now, every subset of X corresponds uniquely to n
yes/no choices, deciding for each of the elements aj whether it is in the
subset or not. We have 2n possibilities to make these choices, therefore
P(X) has exactly 2n elements.

2. The statement is true.

Let U ∈ P(Z). Then U ⊂ Z. Since U ⊂ Z and Z ⊂ X and Z ⊂ Y , we
also have U ⊂ X and U ⊂ Y , i.e., U ∈ P(X) and X ∈ P(Y ). This shows
that U ∈ P(X) ∩ P(Y ).

Conversely, let U ∈ P(X) ∩ P(Y ). Then U ⊂ X and U ⊂ Y , i.e.,
U ⊂ X ∩ Y = Z. This shows that U ∈ P(Z).

3. The statement is false. We only need to provide a counterexample. Let
X = {a} and Y = {b}. Then Z = {a, b} and Z ∈ P(Z). But Z 6⊂ X and
Z 6⊂ Y , therefore Z 6∈ P(X) ∪ P(Y ).

13. We show first that X ⊂ Y . Let (x, y) = (cos(t), sin(t)) ∈ X . Then we have

x2 + y2 = cos2(t) + sin2(t) = 1.

This shows that (x, y) ∈ Y . The proof of Y ⊂ X is more complicated. Let
(x, y) ∈ Y , i.e., x2 + y2 = 1. Then x ∈ [−1, 1] and there exists t ∈ [0, π] such
that cos(t) = x. This implies that

y2 = 1− x2 = 1− cos2(t) = sin2(t).

So we have y = ± sin(t). In the case that y = sin(t), we have (x, y) =
(cos(t), sin(t)) for some t ∈ [0, π], which implies that (x, y) ∈ X . If y =
− sin(t), then we have s = 2π − t ∈ [π, 2π] and

(cos(s), sin(s)) = (cos(2π − t), sin(2π − t)) = (cos(−t), sin(−t))

= (cos(t),− sin(t)) = (x, y),

showing again that (x, y) ∈ X . In both cases we have that (x, y) ∈ Y implies
(x, y) ∈ X , i.e., Y ⊂ X .
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14. Both Jack’s Venn Diagram and his example are correct. The problem lies
in the conclusion from the Venn Diagram. We enumerate the components of
both Venn Diagrams from 1 to 14 as follows:

1

2

3

4

5

6 7

8
9

10 11

12
13 14

U V

X Y

Z

You can easily check that these components describe the following subsets of
Z:

component subset component subset
1 U c ∩ V c ∩Xc ∩ Y c 8 U c ∩ V ∩Xc ∩ Y
2 U ∩ V c ∩Xc ∩ Y c 9 U ∩ V ∩X ∩ Y
3 U ∩ V ∩Xc ∩ Y c 10 U ∩ V c ∩X ∩ Y
4 U c ∩ V ∩Xc ∩ Y c 11 U c ∩ V ∩X ∩ Y
5 U ∩ V c ∩X ∩ Y c 12 U c ∩ V c ∩X ∩ Y c

6 U ∩ V ∩X ∩ Y c 13 U c ∩ V c ∩X ∩ Y
7 U ∩ V ∩Xc ∩ Y 14 U c ∩ V c ∩Xc ∩ Y

Now, there are 16 combinations U∗ ∩ V ∗ ∩ X∗ ∩ Y ∗, where ∗ is either no
symbol or the complement symbol, so the Venn Diagram misses out the two
combinations U c∩V ∩X∩Y c and U∩V c∩Xc∩Y . In other words, the diagram
identifies the set U ∩ V c ∩Xc ∩ Y with the empty set (i.e., there is no region
representing this set). So in the Venn Diagram the sets Y ∩ (U c ∩ V c ∩ Xc)
and

T := (Y ∩ (U c ∩ V c ∩Xc)) ∪ (U ∩ V c ∩Xc ∩ Y ) (1)

are indistiguishable, since the second set in the union (1) is represented as the
empty set. Using the laws of commutativity, associativity and distributivity
and, finally, De Morgan’s Rule we transform the set (1) into the set (V ∪X ∪
Y c)c:

T = (U c ∩ (V c ∩Xc ∩ Y )) ∪ (U ∩ (V c ∩Xc ∩ Y ))

= (U c ∪ U) ∩ (V c ∩Xc ∩ Y )

= Z ∩ (V c ∩Xc ∩ Y )

= (V c ∩Xc ∩ Y )

= (V ∪X ∪ Y c)c.

Here, we see that we have to be careful with Venn Diagrams. While Venn
Diagrams usually illustrate set relations correctly for operations on three sets,
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they cannot represent all 16 possibilities of intersection in the plane in the case
of four sets. A remedy would be to draw Venn Diagrams with sets in R

3, but
this would be hard to imagine.

2 Numbers and Inequalities

15.
3x+ 4

2
≤ 6− x

4
⇐⇒ 6x+ 8 ≤ 6− x

⇐⇒ 7x ≤ −2 ⇐⇒ x ≤ −2/7.

16. x2 − x < 2 ⇐⇒ (x− 2)(x+ 1) < 0 ⇐⇒ −1 < x < 2

17. −3

x− 4
≤ x ⇐⇒ −3

x− 4
− x ≤ 0

⇐⇒ −3 − x2 + 4x

x− 4
≤ 0 ⇐⇒ x2 − 4x+ 3

x− 4
≥ 0

⇐⇒ (x− 3) (x− 1)

x− 4
≥ 0

⇐⇒ x > 4 or 1 ≤ x ≤ 3.

Here the critical values where factors change sign are 1, 3, 4. Moreover, we
need x 6= 4 to have non-zero denominator. Therefore, we have to analyse the
intervals (−∞, 1], [1, 3], [3, 4) and (4,∞) separately.

18.

3

x− 4
< −x ⇐⇒ 3

x− 4
+ x < 0

⇐⇒ 3 + x2 − 4x

x− 4
< 0

⇐⇒ (x− 1) (x− 3)

(x− 4)
< 0

⇐⇒ 3 < x < 4 or x < 1.

19. |x2 + x− 4| = 2 ⇐⇒ x2 + x− 4 = ±2
⇐⇒ (x+ 3)(x− 2) = 0 or (x+ 2)(x− 1) = 0 ⇐⇒ x = −3,−2, 1, 2.

20.
|8x− 9| < 7x− 6 ⇐⇒ −7x+ 6 < 8x− 9 < 7x− 6

⇐⇒ −14x+ 6 < x− 9 < −6

⇐⇒ 1 < x < 3.

Also, |x− 2| < 1 ⇐⇒ −1 < x− 2 < 1 ⇐⇒ 1 < x < 3. The result now follows.
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21.

|2x+ 1| < 3x ⇐⇒ −3x < 2x+ 1 < 3x

⇐⇒ −3x < 2x+ 1 and 2x+ 1 < 3x

⇐⇒ x > −1

5
and x > 1

⇐⇒ x > 1.

22. |2x+ 5| > 4 ⇐⇒ 2x+ 5 > 4 or 2x+ 5 < −4 ⇐⇒ x > −1/2 or x < −9/2.

23.

|2x+ 1| ≤ |3x− 6| ⇐⇒ (2x+ 1)2 ≤ (3x− 6)2

⇐⇒ 4x2 + 4x+ 1 ≤ 9x2 − 36x+ 36

⇐⇒ 5x2 − 40x+ 35 ≥ 0

⇐⇒ (x− 7)(x− 1) ≥ 0

⇐⇒ x ≥ 7 or x ≤ 1.

24. The points at which the absolute values change signs are x = 1 and x = 2. So
we consider 3 cases:

• x ≤ 1. Then

|x− 1|+ |x− 2| = (1− x) + (2− x) = 3− 2x > 1,

i.e., x < 1. So this case yields the solution set (−∞, 1).

• 2 ≥ x ≥ 1. Then

|x− 1|+ |x− 2| = (x− 1) + (2− x) = 1 > 1,

which is a contradiction. So this case yields the empty solution set.

• x ≥ 2. Then

|x− 1|+ |x− 2| = (x− 1) + (x− 2) = 2x− 3 > 1,

i.e., x > 2. So this case yields the solution set (2,∞).

Therefore, we have x < 1 or x > 2.

25. The points at which the absolute values change signs are x = −1 and x = 1.
So we consider 3 cases:

• x ≤ −1. Then

|x− 1|+ |x+ 1| = (1− x) + (−1− x) = −2x < 2,

i.e., x > −1. So this case yields the empty solution set.

• 1 ≥ x ≥ −1. Then

|x− 1|+ |x+ 1| = (1− x) + (x+ 1) = 2 < 2,

which is a contradiction. So this case yields the empty solution set.
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• x ≥ 1. Then

|x− 1|+ |x+ 1| = (x− 1) + (x+ 1) = 2x < 2,

i.e., x < 1. So this case yields also the empty solution set.

Therefore, there are no real numbers x satisfying this inequality.

26. We have

|a| =
∣

∣

∣

∣

a+ b

2
+

a− b

2

∣

∣

∣

∣

=
1

2
|(a+ b) + (a− b)| ≤ 1

2
(|a+ b| + |a− b|).

Analogously, we obtain

|b| ≤ 1

2
(|a+ b|+ |a− b|).

Combining both inequalities, we end up with

|a|+ |b| ≤ |a+ b|+ |a− b|.

3 Basics about sequences and limits

In the following, we shall be making use of the following results: the Calculus of
Limits Theorem (COLT), the continuity of

√
x and log x for x > 0, the Squeez-

ing Theorem, and the limits limn→∞ αn = 0 (for |α| < 1), limx→0 x
−1 sin x = 1,

limn→∞(1 + c/n)n = ec, limn→∞ np exp(−n) = 0 and limn→∞ n−p log(1 + n) = 0 for
p > 0.

27. (a) 0 ≤ |xn| < 1/n → 0 as n → ∞, so xn → 0 as n → ∞.

(b) xn = (3 + 1/n)2/
√

4 + 1/n4 → 9/2 as n → ∞.

(c) xn = [1 + 1/(2n)]n → e1/2 =
√
e as n → ∞.

(d) Note that (2n+1)/(n+1) ≥ 3/2 for n ≥ 1; and (3/2)2n = (9/4)n has no
limit, since 9/4 > 1. So the given sequence has no limit either.

(e) xn >
√

n/2, so no limit.

(f) log xn = 10
n
log n+ 2

n
log(1 + logn

n5 ) → 0, so xn → e0 = 1 as n → ∞.

(g) xn = −2n2/(n2 − 1) = −2/(1− 1/n2) → −2 as n → ∞.

28. (a) (2n+ 1)2(n4 + 1)−1/2 = (2 + 1
n
)2(1 + 1

n4 )
−1/2 → 4.

(b) n(
√
1 + n2 − n) = n/(

√
1 + n2 + n) = 1/(1 +

√

1 + 1/n2) → 1/2.

(c) log(n)− log(n+ 1) = log n
n+1

= log 1
1+1/n

→ log 1
1
= 0.

(d)

0 <
n2 + e−n

log(n) + 5n3
≤ 1 + n2

5n3
=

1 + 1/n2

5n
→ 0, so xn → 0.

(e)
(n!)2

(n− 2)!(n+ 2)!
=

n(n− 1)

(n + 2)(n+ 1)
=

1− 1
n

(1 + 2
n
)(1 + 1

n
)
→ 1.
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(f) 0 < n!n−n = 1
n
· 2
n
· 3
n
. . . n

n
≤ 1

n
→ 0, so xn → 0.

(g)

0 <
2n

n!
=

2n

1.2.3.4. . . . .n
≤ 8

6

2n−3

4n−3
=

4

3

(

1

2

)n−3

→ 0, so xn → 0.

(h) n sin(π/n) = π sin(π/n)
π/n

→ π.

(i) Note that 0 ≤ log xn = 1
n
log(1+n2) ≤ 1

n
log(2n2) = 1

n
(2 logn+log 2) → 0.

So xn → e0 = 1.

(j)

(n+ 3)!

n!n3
=

(n+ 3)(n+ 2)(n+ 1)

n3
= (1 +

3

n
)(1 +

2

n
)(1 +

1

n
) → 1.

(k)

n2

(

1

n
− 1

n+ 1

)

=
n

n + 1
=

1

1 + 1/n
→ 1.

29. Let ǫ > 0, and suppose that n > 2/(5ǫ). Then for n ≥ 1,

|xn| =
1

5n

1 + 1/(n2en)

1 + (log n)/(5n3)
<

ǫ

2

(

1 +
1

n2en

)

< ǫ.

30. (a) xn = 1+2(logn)/n√
1+2/n2

→ 1+0√
1+0

= 1 as n → ∞, by COLT.

(b) 0 ≤ |xn| < 1/
√
n, and 1/

√
n → 0 as n → ∞. So xn → 0 by squeezing.

31. (a) log xn = n−1 log [en(1 + n2e−n)] = 1+n−1 log(1+n2e−n) → 1+0×0 = 1,
by COLT. So xn → e.

(b) xn =
√
n(

√
n+1−

√
n−1)(

√
n+1+

√
n−1)√

n+1+
√
n−1

= 2
√
n√

n+1+
√
n−1

= 2√
1+1/n+

√
1−1/n

→ 2√
1+0+

√
1−0

= 1, by COLT.

(c) xn =
(

1− 2
n+1

)n
=
(

1− 2
n+1

)n+1 /(
1− 2

n+1

)

→ e−2/(1 − 0) = e−2, by
COLT.

32. (a) log xn = 2n−1 logn + n−1 log(1 + 1/n) → 0 as n → ∞, by COLT. So
xn → e0 = 1.

(b)
√
xn =

√
n(

√
n+1−√

n)(
√
n+1+

√
n)

(
√
n+1+

√
n)

=
√
n(n+1−n)√
n+1+

√
n

= 1√
1+1/n+1

→ 1
2
as n →

∞. Hence xn → 1/4. [Alternatively, multiply out and use a similar
argument.]

33. Suppose x∗ > 0, and set ǫ = x∗/2. Find N such that |xn − x∗| < ǫ for n ≥ N .
Then xN − x∗ > −ǫ = −x∗/2 ⇒ xN > x∗/2 > 0, which contradicts the
condition that xn < 0 for all n. Hence x∗ ≤ 0. We could have x∗ = 0, for
example xn = −1/n.

34. [(n+ 1)2 − (n− 1)2] / (n+
√
n) = 4n/(n +

√
n) = 4/(1 + 1/

√
n) → 4 as n →

∞, by COLT.
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35. (a) log xn = 2n−1 logn + n−1 log(1 + 2/n2) → 0 as n → ∞. So xn → e0 = 1.

(b) xn =
[

(

1 + 1
n+1

)n+1 /(
1 + 1

n+1

)]2 → (e/1)2 = e2 as n → ∞.

(c) xn = n (
√
n2+1−

√
n2−1)(

√
n2+1+

√
n2−1)

(
√
n2+1+

√
n2−1)

= 2n√
n2+1+

√
n2−1

= 2√
1+n−2+

√
1−n−2

→ 1
as n → ∞.

36. [(n+ 1)2 − n2] / (n + logn) = (2 + n−1)/(1 + n−1 log n) → 2 as n → ∞, by
COLT.

37. (a) xn = 1/(1 + 1/n)n → 1/e as n → ∞.

(b) xn = −2/[(n2 − 1) sin(1/n2)] =
(

−2
1−1/n2

)(

1/n2

sin(1/n2)

)

→ −2 as n → ∞. We

have used COLT and the fact that sin(θ)/θ → 1 as θ → 0.
(c) 3n+2

2n+1
= 3

2
+ 1

4n+2
> 3

2
, and

(

3
2

)n → ∞ as n → ∞, so xn has no limit as
n → ∞.

38. Suppose that x∗ 6= x′, and let ǫ = |x∗ − x′|. Then we can choose n ∈ N such
that |xn − x∗| < ǫ/2 and |xn − x′| < ǫ/2. But the triangle inequality gives
|x∗ − x′| ≤ |xn − x∗|+ |xn − x′| < ǫ = |x∗ − x′|, a contradiction. Thus x∗ = x′.

39. Let ǫ > 0. Since |xn| → 0 as n → ∞, we have N ∈ N with

||xn| − 0| < ǫ for all n ≥ N .

Since ||xn| − 0| = |xn| = |xn − 0|, this implies that

|xn − 0| < ǫ for all n ≥ N ,

showing that we also have xn → 0 as n → ∞.

40. a) We have

(1− c)xn = 1 + c+ c2 + · · ·+ cn−1 − (c+ c2 + c3 + · · ·+ cn) = 1− cn.

Since c 6= 1, we can divide by 1− c and obtain

xn =
1− cn

1− c
.

b) We assume |c| < 1. Then we know from Theorem 3.11 that cn → 0 as
n → ∞ and, consequently, using the COLT Theorem,

lim
n→∞

xn =
1− limn→∞ cn

1− c
=

1

1− c
.

41. Suppose that x∗ > b, and take ǫ = x∗ − b. Then we can find n ∈ N such that
|x∗ − xn| < ǫ. But xn ≤ b = x∗ − ǫ, so that x∗ − xn ≥ ǫ, a contradiction. Thus
x∗ ≤ b.

42. Since {xn} is bounded, we can choose K such that K ≥ |xn| for all n ∈ N.
Let ǫ > 0. Then there exists N ∈ N such that n > N ⇒ |yn| < ǫ/K. But then
n > N ⇒ |xnyn| < ǫ, so that xnyn → 0.
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43. (a) This is false. A counterexample is the sequence xn = 21/n.
(b) We have then to prove that this one is true. Let N be such that n > N ⇒
|xn − r| < (1 − r)/2. Then, for n > N , |xn| ≤ r + |xn − r| < (1 + r)/2 < 1.
Thus |xn|n < ((1 + r)/2)n, which tends to 0 as n → ∞.

44. Write xn = (t + 1/n)n = tn[1 + 1/(tn)]n. Note that [1 + 1/(tn)]n → exp(1/t)
as n → ∞. If t > 1, then tn → ∞, so xn → ∞. If t = 1, then xn → e. If
0 < t < 1, then tn → 0, so xn → 0.

45. For |x| ≤ 1, the limit is zero, since |xn/n| ≤ 1/n → 0. For |x| > 1, the
sequence has no limit. Proof: use n−1 exp(αn) → ∞ as n → ∞ if α > 0,
putting α = log x.

46. (a) p ≤ xn ≤ 21/np. Since 21/n → 1 as n → ∞, xn → p.

(b) xn = 1− e−n2 → 1.

(c) 1
n
log xn = n log(1+ 1

n
) ≥ n/(n+1). Thus log xn ≥ n2/(n+1) ≥ n/2 and

so the limit as n → ∞ does not exist.

47. a) If (|an|) is convergent then so is (a2n = |an|2), by COLT. Conversely:
Assume that (|an|2 = a2n) is convergent. Then limn→∞ a2n ≥ 0. Assume
first that limn→∞ a2n = 0. Let ǫ > 0. Then there exists N ∈ N such that

|a2n| < ǫ2 for all n ≥ N .

This implies that
|an| < ǫ for all n ≥ N ,

i.e., (an) is also convergent. Now, assume that limn→∞ a2n > 0. Then
there exists A > 0 with A2 = limn→∞ a2n. Let ǫ > 0 be given. Then there
exists N ∈ N such that

|a2n − A2| < Aǫ for all n ≥ N .

This implies that

||an| −A| · ||an|+ A| < Aǫ for all n ≥ N .

Note that ||an|+ A| ≥ A > 0 and, therefore, we can divide by ||an| + A|
to obtain

||an| − A| < A

||an|+ A|ǫ ≤ ǫ for all n ≥ N .

This shows that (|an|) is also convergent and limn→∞ |an| = A.

b) Assume that (an) is convergent and a∗ = limn→∞ an. Then we also have
a∗ = limn→∞ an+1 and, using COLT,

lim
n→∞

an+1 − an = a∗ − a∗ = 0,

which means that an+1 − an → 0 as n → ∞.
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4 More logic: Quantifiers, negation and proof tech-

niques

48. The negation of the fact is: X ∩Y ⊂ Z and x ∈ Y and x ∈ X\Z. This implies
that x ∈ Y and x ∈ X and x 6∈ Z. This implies, in turn, that x ∈ X ∩ Y and
x 6∈ Z, in contradiction to X ∩ Y ⊂ Z.

49. a) The long version is: ”For all C > 0 there exists n ∈ N such that we have
xn > C.” In own words: ”The sequence (xn) is not bounded above.”
Negation:

∃C > 0 ∀n ∈ N : xn ≤ C.

b) The long version is: ”For all x ∈ R and all y ≥ x, we have f(x) ≤
f(y).” In own words: ”The function f : R → R is monotone increasing.”
Negation:

∃ x ∈ R ∃ y ≥ x : f(x) > f(y).

c) The long version is: ”For all y ∈ Y there exists x ∈ X such that y =
g(x).” In own words: ”Any element of Y is an image value of g” or
”g : X → Y is surjective”. Negation:

∃ y ∈ Y ∀ x ∈ X : y 6= g(x),

or even shorter:
∃ y ∈ Y : y 6∈ g(X).

50. a) If a triangle is not right-angled then its side lengths a, b, c do not satisfy
a2 + b2 = c2.

b) If there is a pair of opposite angles of a quadrilateral in the plane which
do not add up to 180o then its four vertices do not lie on a common circle.

51. We have

X\
(

⋂

n∈N
Xn

)

= X\{x ∈ X | ∀n ∈ N : x ∈ Xn}

= {x ∈ X | not (∀n ∈ N : x ∈ Xn)}
= {x ∈ X | ∃n ∈ N : x 6∈ Xn}
= {x ∈ X | ∃n ∈ N : x ∈ (X\Xn)}
=

⋃

n∈N
(X\Xn).

Analogously, we have

X\
(

⋃

n∈N
Xn

)

= X\{x ∈ X | ∃n ∈ N : x ∈ Xn}

= {x ∈ X | not (∃n ∈ N : x ∈ Xn)}
= {x ∈ X | ∀n ∈ N : x 6∈ Xn}
= {x ∈ X | ∀n ∈ N : x ∈ (X\Xn)}
=

⋂

n∈N
(X\Xn).
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52. (i)
⋃

n∈N[1/n, 1) = (0, 1). Since every set [1/n, 1) is contained in (0, 1), we have
the inclusion ”⊂”. On the other hand, for every x ∈ (0, 1), we have x > 0 and
there exists n ∈ N with 1/x < n, i.e., 1/n < x. This shows that x ∈ [1/n, 1)
and, therefore, x lies in the union

⋃

n∈N[1/n, 1). This shows the inclusion ”⊃”.
and both sets are equal.

(ii)
⋂

n∈N(−1/n, 2/n) = {0}. Since 0 ∈ (−1/n, 2/n) for all n ∈ N, we have
the inclusion ”⊃”. We show that there is no real x 6= 0 in this intersection.
Let x 6= 0. Then we can find n ∈ N with |x| > 2/n. This implies that x 6∈
(−1/n, 2/n) and, therefore, x 6∈

⋂

n∈N(−1/n, 2/n). This shows the inclusion
”⊂”, and both sets are equal.

(iii)
⋃

n∈N[1, n) = [1,∞). Obviously, we have [1, n) ⊂ [1,∞), which shows the
inclusion ”⊂”. For every x ∈ [1,∞), there exists n ∈ N with x < n, and we see
that x ∈

⋃

n∈N[1, n). This shows the inclusion ”⊃”, and both sets are equal.

53. (a) We know for x ∈ [0, 2π) that 0 < sin(x) ≤ 1 is equivalent to x ∈ (0, π).
We also know that the sine function is 2π periodic, i.e., sin(x+ 2kπ) = sin(x)
for all x ∈ R and k ∈ Z. Therefore, we can write

{x ∈ R | 0 < sin(x) ≤ 1} =
⋃

k∈Z
(2kπ, (2k + 1)π).

(b) Let us first express the set X of all natural numbers which are squares or
cubes of primes:

X =
⋃

p prime

{p2, p3}.

Now, let us apply De Morgan to find the complement of X :

N\X = N\
⋃

p prime

{p2, p3} =
⋂

p prime

N\{p2, p3}.

54. Statements (b) and (c) are plainly equivalent. To show that (a)⇒(c), suppose
(a). Then if ǫ > 0, x+ ǫ > x ≥ y, so x+ ǫ > y. Thus (a) ⇒ (c). Conversely,
suppose (b). Then, if x < y, (y − x) > 0, so that x > y − (y − x) = x,
Contradiction. Thus x ≥ y, and so (b) ⇒ (a).

55. i) Let A(n) be ”1 + 2 + 3 + · · ·+ n = n(n+1)
2

”.
(a) Start of Induction: We have 1 = 1·2

2
.

(b) Induction Step: Assume that A(n) holds. Then

1 + 2 + 3 + · · ·+ n + (n+ 1) = (1 + 2 + 3 + · · ·+ n) + (n + 1) =

n(n+ 1)

2
+ (n + 1) =

n(n + 1) + 2(n+ 1)

2
=

(n+ 1)(n+ 2)

2
,

i.e., A(n + 1) is then also true.

• Let A(n) be ”12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
4

”.
(a) Start of Induction: We have 12 = 1·2·3

6
.
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(b) Induction Step. Assume that A(n) holds. Then

12 + 22 + · · ·+ n2 + (n+ 1)2 = (12 + 22 + · · ·+ n2) + (n + 1)2 =

n(n+ 1)(2n+ 1)

6
+ (n+ 1)2 =

(n+ 1)(n(2n+ 1) + 6(n+ 1)

6
=

(n+ 1)(2n2 + 7n+ 6)

6
=

(n+ 1)(n+ 2)(2n+ 3)

6
=

(n + 1)((n+ 1) + 1)(2(n+ 1) + 1)

6
,

i.e., A(n + 1) is then also true.

56. Let x > −1 and A(n) be ”(1 + x)n ≥ 1 + nx”.
(a) Start of Induction: We have (1 + x)1 ≥ 1 + 1 · x.
(b) Induction Step: Assume that A(n) holds. Then 1 + x > 0 and

(1+x)n+1 = (1+x)(1+x)n ≥ (1+x)(1+nx) = 1+(n+1)x+nx2 ≥ 1+(n+1)x,

i.e., A(n+ 1) is then also true.

57. a) If c > 1, we can set c = 1 + x with x > 0. Bernoulli’s Inequality yields

cn = (1 + x)n ≥ 1 + nx.

Given K > 0, we can then choose N ∈ N such that 1 + Nx ≥ K. Then
we have for all n ≥ N :

cn ≥ 1 + nx ≥ 1 +Nx ≥ K.

b) If 0 < c < 1, we can set c = 1
1+x

with x > 0. Bernoulli’s Inequality yields

cn =
1

(1 + x)n
≤ 1

1 + nx
.

Given ǫ > 0, we can choose N ∈ N such that 1 + Nx > 1/ǫ, i.e., ǫ >
1/(1 +Nx). Then we have for all n ≥ N :

0 < cn ≤ 1

1 + nx
≤ 1

1 + nX
< ǫ.

This shows that cn → 0 as n → ∞.

58. a) We need to show that
√
a1a2 ≤ a1+a2

2
for all a1, a2 > 0. Since all involved

numbers are non-negative, we have

√
a1a2 ≤

a1 + a2
2

⇔ 4a1a2 ≤ (a1 + a2)
2

⇔ 0 ≤ (a1 + a2)
2 − 4a1a2 = (a1 − a2)

2.

Since 0 ≤ (a1 − a2)
2 is always true, we see that S(2) is true.
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b) Assume that S(2) and S(n) are both true. First observe that

G(a1, . . . , a2n) =
√

G(a1, . . . , an)G(an+1, . . . , a2n).

Applying the true statement S(2) to the non-negative numbersG(a1, . . . , an)
and G(an+1, . . . , a2n), we then obtain

G(a1, . . . , a2n) ≤
G(a1, . . . , an) +G(an+1, . . . , a2n)

2
.

Applying the true statement S(n) twice, we conclude that

G(a1, . . . , a2n) ≤
A(a1, . . . , an) + A(an+1, . . . , a2n)

2
.

it is easy to check that

A(a1, . . . , an) + A(an+1, . . . , a2n)

2
= A(a1, . . . , a2n0,

which implies that S(2n) is also true.

c) Assume that n ≥ 2 and S(n+ 1) is true. Note first that we have

G(a1, . . . , an, G(a1, . . . , an)) =
n+1

√

a1 . . . an n
√
a1 . . . an =

n+1

√

(a1 . . . an)1+1/n = n+1

√

(a1 . . . an)(n+1)/n = n
√
a1 . . . an = G(a1, . . . , an).

Applying the true statement S(n+1) to the non-negative numbers a1, . . . , an
and G(a1, . . . , an), we obtain

G(a1, . . . , an) = G(a1, . . . , an, G(a1, . . . , an)) ≤

A(a1, . . . , an, G(a1, . . . , an)) =
1

n + 1
(a1+· · ·+an)+

1

n + 1
G(a1, . . . , an).

This implies that
(

1− 1

n+ 1

)

G(a1, . . . , an) ≤
1

n+ 1
(a1 + · · ·+ an),

which simplifies to

nG(a1, . . . , an) ≤ a1 + · · ·+ an.

Division by n yields

G(a1, . . . , an) ≤ A(a1, . . . , an).

This shows that S(n) is also true.

d) Let n ≥ 2. Our aim is to show that S(n) is true. Starting from the fact
that S(2) is true (proved in a)), we iteratively conclude (using b)) that
S(2k) is true for every k ∈ N. We can choose k ∈ N large enough that
2k ≥ n. So we know that S(2k) is true. Then, using c) iteratively, we
conclude that S(m) is true for all 2 ≤ m ≤ 2k. Since 2 ≤ n ≤ 2k, we see
that S(n) must be true.
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5 The Completeness Axiom for R

59. (a) |2x− 1| < 11 ⇔ −11 < 2x− 1 < 11 ⇔ x > −5 and x < 6 ⇔ x ∈ (−5, 6).
Thus sup(S) = 6 and inf(S) = −5.
(b) For x ≥ 1, x + |x− 1| = 2x− 1, so that the set is unbounded above. For
x < 1, we have x+ |x− 1| = 1. Moreover, infx≥1(2x− 1) = 1, so the inf is 1.

60. (a) Note that x2+x−1 < 0 is equivalent to (−1−
√
5)/2 < x < (−1+

√
5)/2.

Therefore, we have

{x | x < 0 andx2 + x− 1 < 0} =

(

−1−
√
5

2
, 0

)

and we conclude that the infimum is (−1 −
√
5)/2 and the supremum is 0.

(b) Let xn = 1/n+ (−1)n for n ∈ N}. We have

{xn | n ∈ N} = {0, 3/2,−2/3, 5/4,−4/5, 7/6,−6/7, . . .}.

So we guess that the supremum is 3/2 and infimum is −1. Since

−1 ≤ 1/n+ (−1)n,

we see that −1 is a lower bound. Since

lim
k→∞

x2k−1 = lim
k→∞

1

2k − 1
+ (−1)2k−1 = −1,

the infimum is indeed −1. Moreover, we see that, for n ≥ 2,

xn =
1

n
+ (−1)n ≤ 1

2
+ 1 =

3

2
,

and x1 = 0. Therefore, 3/2 is an upper bound which is assumed by x2, and
we have that 3/2 is the supremum.

61. Note that f ′(x) = ex/(1 + ex)2 > 0, so f is an increasing function on R. Thus
inf(f) = limx→−∞ f(x) = 0 and sup(f) = limx→∞ f(x) = 1.

62. Claim: |f(x)| < 1 for all x. This says |x|/(1+ |x|) < 1 ⇐⇒ |x| < 1+ |x| which
is clearly true. So 1 is an upper bound for f , and −1 is a lower bound. Also,
f(x) → ±1 as x → ±∞, so these are the sup and the inf, respectively.

63. (a) Write xn = (n2 − n)/(n2 + 1) Note that xn = (1 − 1/n)/(1 + 1/n2) ≤ 1,
and also that xn → 1 as n → ∞. Thus sup(X) = 1. When n = 1, xn = 0;
otherwise, xn ≥ 0. Thus inf(X) = min(X) = 0.
(b) Note that (2m+ n)/(m + 3n) = (2 + n/m)/(1 + 3n/m). Write r = n/m.
Then

2 + r

1 + 3r
=

{

2− 5r
1+3r

≤ 2
1
3
+ 5

3+9r
≥ 1

3
.

Now r may be made as small or as large as we please, and hence both 5r
1+3r

and 5
1+3r

can be made arbitrarily small. Thus sup(Y ) = 2 and inf(Y ) = 1/3.
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64. g(x) = (x cos2 x+1)−3
2(x cos2 x+1)

= 1
2
− 3

2(x cos2 x+1)
. Thus g(x) ≤ 1

2
for all x ≥ 0. Moreover,

as n increases, the sequence of values g(nπ) can be made arbitrarily close to
1
2
. Thus supx≥0 g(x) =

1
2
.

65. (a) 1−x2

2+x2 ≤ f(x) ≤ 1+x2

2+x2 , with equality on the left when x = (2n+ 1)π, and on

the right when x = 2nπ. But 1−x2

2+x2 = −1+ 3
2+x2 ≥ −1, and 1+x2

2+x2 = 1− 1
2+x2 ≤ 1.

Thus choosing n large enough will make f(2nπ) arbitrarily close to 1, and
f((2n+ 1)π) arbitrarily close to −1, so that sup(f) = 1 and inf(f) = −1.
(b) Note first that g(−x) = g(x), so we can restrict to x ≥ 0. Observe that
g(x) ≥ 0 for all x ≥ 0, and g(0) = 0, so inf(g) = 0. Also, g(x) → 0 as x → ∞,
so sup(g) = max(g) = g(c), where c is some number such that g′(c) = 0. Now
g′(x) = 2x(1− x2) exp(−x2), so c = 1 and sup(g) = g(1) = e−1.

66. Because sup(g) is an upper bound for g, it must be an upper bound for f
also, and so sup(g) ≥ sup(f). It is not necessarily true that sup(g) > sup(f).
Counterexample: consider the functions f(x) = tanh x, g(x) = 1 on R.

67. f(x) ≥ 0 and f(0) = 0, so inf(f) = 0. Clearly f(x) < 1 and f(x) → 1 as
x → ∞, so sup(f) = 1.

68. Note that f(0) = 0, f(x) > 0 for x > 0, and f(x) → 0 as x → ∞. So
inf(f) = 0. Also, f ′(x) = 0 ⇔ (2 + x)/(2

√
x) − √

x = 0 ⇔ x = 2. So
sup(f) = max(f) = f(2) =

√
2/4.

69. Note that f(x) → 0 as x → 0, and f(x) > 0 for all x > 0; so inf(f) = 0. Since
also f(x) → 0 as x → ∞, the supremum must occur where f ′(x) = 0. Now
f ′(x) = (1− x2)/(x2 + 1)2 vanishes iff x = 1, so sup(f) = f(1) = 1/2.

70. The set X = {x ∈ [a, b] : f(x) ≥ x} is a subset of [a, b] and, therefore,
bounded. Moreover, X is not empty since a ∈ X . So x∗ = sup(X) must exist,
by the Completeness Axiom for R. Moreover, b is an upper bound of X and we
conclude that x∗ ≤ b. No number < a can be an upper bound, so we also have
a ≤ x∗. This shows that x∗ ∈ [a, b]. Now we need to show that f(x∗) = x∗.

Assume that f(x∗) < x∗. Since x∗ 6∈ X , there exists a sequence (xn) with
xn ∈ X for all n ∈ N and xn → x∗, by the definition of the supremum. Since
xn ∈ X , we have xn ≤ x∗. Let ǫ = x∗− f(x∗) > 0. Since xn → x∗, there exists
N ∈ N with |x∗ − xN | < ǫ. Since xN ≤ x∗, we have x∗ − xN < ǫ. Using that
f is monotone increasing, we obtain

f(xN ) ≤ f(x∗) = x∗ − ǫ < xN .

But this means that xN 6∈ X , which is a contradiction.

Assume that f(x∗) > x∗. Then we have x∗ ∈ X and x∗ < b. Let ǫ =
f(x∗)− x∗. Choose x ∈ [a, b] with x > x∗ and x − x∗ < ǫ. Then we have, by
the monotonicity of f ,

f(x) ≥ f(x∗) > x∗ + ǫ > x,

i.e., x ∈ X . Since x∗ is an upper bound of X , we then have x ≤ x∗, which is,
again, a contradiction.

Therefore, we must have f(x∗) = x∗.
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6 More on limits of sequences

71. The fixed points x satisfy x2 = 6+x, so that x = 3 or x = −2. Considering the
starting point, and the fact that xn is always going to be positive, we expect
convergence to 3. From the iteration formula,

xn+1 − 3 =
√
6 + xn − 3 =

xn − 3√
6 + xn + 3

.

Thus |xn+1 − 3| ≤ |xn − 3|/3. So |x1 − 3| ≤ |x0 − 3|/3 = 7/3, |x2 − 3| ≤ 7/9,
|x3 − 3| ≤ 7/27, and in general |xn − 3| ≤ 7/3n → 0 as n → ∞. Thus
limn→∞ xn = 3.

72. a) We have for n ∈ N:

xn+1

xn
=

(

n+2
n+1

)n+1

(

n+1
n

)n

=

(

(n+ 2)n

(n+ 1)2

)n(
n+ 2

n+ 1

)

=

(

n2 + 2n

n2 + 2n + 1

)n(
n+ 2

n+ 1

)

=

(

1− 1

(n + 1)2

)n(
n+ 2

n+ 1

)

.

b) Recall Bernoulli’s inequality (1 + x)n ≥ 1 + nx for x > −1 and n ∈ N.
Choosing x = −1/(n+ 1)2 > −1, we conclude that

xn+1

xn

≥
(

1− n

(n + 1)2

)(

n+ 2

n+ 1

)

=
((n+ 1)2 − n)(n+ 2)

(n+ 1)3
=

(n+ 1)2(n + 2)− n(n + 2)

(n+ 1)3
=

(n + 1)2(n+ 2)− ((n+ 1)2 − 1)

(n + 1)3
=

1 + (n + 1)2(n+ 2− 1)

(n+ 1)3
=

1 + (n + 1)3

(n+ 1)3
> 1,

i.e., xn = (1 + 1/n)n > 0 is monotone increasing.

c) We have for n ∈ N using, again, Bernoulli’s inequality:

yn+1

yn
=

(

n+1
n+2

)n+2

(

n
n+1

)n+1 =

(

(n+ 1)2

n(n+ 2)

)n+1(
n + 1

n + 2

)

=

(

1 +
1

n(n + 2)

)n+1(
n+ 1

n+ 2

)

≥
(

1 +
n + 1

n(n + 2)

)(

n+ 1

n+ 2

)

=

(n2 + 3n + 1)(n+ 1)

n(n+ 2)2
=

n(n + 2)2 + 1

n(n+ 2)2
= 1 +

1

n(n + 2)2
> 1,

i.e., yn is monotone increasing, as well.
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d) We have for n ∈ N:

xn+1yn =

(

1 +
1

n+ 1

)n+1(

1− 1

n+ 1

)n+1

=

(

1− 1

(n + 1)2

)n+1

≤ 1.

We have x1 = 2 and, for n ≥ 2,

xn ≤ 1

yn−1
≤ 1

y1
=

1

(1− 1/2)2
= 4.

Therefore (xn) is bounded above by 4.

e) Convergence of (xn) follows now from the fact that (xn) is bounded (since
2 ≤ xn ≤ 4) and monotone increasing (Theorem 6.2).

73. (a) Assume that 1 ≤ an ≤ (1 +
√
5)/2. Then

1 ≤
√
1 ≤ an+1 =

√
an + 1 ≤

√

3 +
√
5

2
=

√

√

√

√

(

1 +
√
5

2

)2

=
1 +

√
5

2
.

(b) We know that 1 ≤ an ≤ (1 +
√
5)/2 for all n ∈ N. We need to show

for every n ∈ N that an+1 ≥ an. This is equivalent to a2n − an + 1 ≤ 0.
Factorisation leads to the equivalent statement

(

an −
1 +

√
5

2

)(

an −
√
5− 1

2

)

≤ 0,

which is true for all n ∈ N, since an ≤ (1+
√
5)/2 and (

√
5−1)/2 < 1 ≤ an.

(c) We know from Theorem 6.2 that (an) is convergent. Let a
∗ = limn→∞ an.

We know from an ≥ 1 that a∗ ≥ 1. Taking the limit on both sides of the
recursion formula, the limit must satisfy

a∗ =
√
a∗ + 1,

i.e., (a∗)2 − a∗ + 1 = 0. The two solutions are (
√
5 ± 1)/2, and a∗ ≥ 1

implies that a∗ = (1 +
√
5)/2.

74. Property (a) means that the sequence (an) is monotone increasing and the se-
quence (bn) is monotone decreasing and non-emptyness of the intervals means
that an ≤ bn. Therefore, both sequences are also bounded and they have
limits, by Theorem 6.2. Property (b) means that both limits agree:

lim
n→∞

an = lim
n→∞

bn = c.

Moreover, we know from Theorem 6.2 that c is an upper bound of {an ∈ n ∈
N}, i.e., an ≤ c for all n ∈ N. Analogously, we have bn ≥ c for all n ∈ N. This
shows that c ∈ [an, bn] = In for all n ∈ N. Assume there would be c′ 6= c with
c′ ∈ In for all n ∈ N. Since bn − an → 0 as n → ∞, there exists n ∈ N with
bn − an < |c′ − c|. On the other hand, we assumed that c, c′ ∈ In = [an, bn],
therefore

an ≤ c, c′ ≤ bn,

which implies that |c′ − c| ≤ bn − an, a contradiction.
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75. Choose the intervals In = (0, 1/n). These intervals are non-empty and we have
both properties (a) and (b). Assume we have c ∈ In for all n ∈ N. Then we
must have c > 0 and there exists N ∈ N with c > 1/N . But this shows that
c 6∈ IN , a contradiction.

76. (a) Let ǫ > 0 be given. Since x∗ = limn→∞ xn, there exists N ∈ N such that
we have

|xn − x∗| < ǫ ∀n ≥ N.

Note that we have nj ≥ j, and so we conclude that

|xnj
− x∗| < ǫ ∀ j ≥ N.

This shows that (xnj
)j∈N also convergent and

x∗ = lim
j→∞

xnj
.

(b) The contrapositive statement reads as follows: Let (xnj
)j∈N be a subse-

quence of (xn). If (xnj
)j→N is not convergent with limit x∗ ∈ R, then (xn) is

not convergent with limit x∗ ∈ R.

77. Let (xn) be a Cauchy sequence. Choosing ǫ = 1, we find N ∈ N such that

|xn − xm| < 1 ∀n,m ≥ N.

In particular, we have

|xn − xN | < 1 ∀n ≥ N.

This shows that we have for all n ≥ N :

|xn| ≤ |xn − xN |+ |xN | < |xN |+ 1.

Choosing
M := max{|x1|, . . . , |xN−1|, |xN |+ 1},

we have
|xn| ≤ M ∀n ∈ N,

i.e., (xn) is bounded.

78. Let (xn) be convergent. Then there exists x∗ = limn→∞ xn. We need to show
that (xn) is Cauchy. Let ǫ > 0. Since xn → x∗ as n → ∞, there exists N ∈ N

such that
|x∗ − xn| <

ǫ

2
∀n ≥ N.

This implies for all n,m ≥ N that

|xn − xM | ≤ |xn − x∗|+ |x∗ − xm| <
ǫ

2
+

ǫ

2
= ǫ,

i.e., (xn) is Cauchy.
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79. (a) We have

|an+2 − an+1| =
∣

∣

∣

∣

an+1 + an
2

− an+1

∣

∣

∣

∣

=
1

2
|an+1 − an|

for all n ≥ 1. This implies that

|an+1 − an| =
1

2n−1
|b− a|.

Using the triangle inequality and the geometric series, we conclude that

|an+k−an| ≤ |an+k−an+k−1|+· · ·+|an+1−an| ≤
|b− a|
2n−1

(

1

2k−1
+ · · ·+ 1

)

≤ |b− a|
2n−2

.

For given ǫ > 0, we can find N ∈ N such that

|b− a|
2N−2

< ǫ.

Then we have for n,m ≥ N ,

|an − am| ≤
|b− a|
2N−2

< ǫ,

i.e., (an) is Cauchy.
(b) Here we may use a method introduced in Discrete Mathematics. Make the
Ansatz an = cn with c 6= 0. Then the recursion formula an+2 = (an+1 + an)/2
leads to cn+2 = (cn+1 + cn)/2, i.e., to the quadratic equation

2c2 − c− 1 = 0.

The solutions of this equation are

c =
1

4
(1±

√
1 + 8),

i.e., c = 1 and c = −1/2. So the sequence has the general form

an = A · 1n +B ·
(

−1

2

)n

.

The start values a1 = a and a2 = b yield A = (a+ 2b)/3 and B = 4(b− a)/3.
So we obtain the explicit formula

an =
a + 2b

3
+

4(b− a)

3

(

−1

2

)n

,

and therefore

lim
n→∞

an =
a+ 2b

3
.
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80. a) Assume that we do not have limn→∞ un = 0. Since un ≥ 0, there exists
ǫ > 0 such that we have un ≥ ǫ for infinitely many n ∈ N. On the
other hand, we can find N ∈ N such that 1/N ≤ ǫ/4. Then we have the
following facts:
(i) For all n ≥ N with un ≥ ǫ,

0 ≤ un+1 ≤
un

2
+

1

n
≤ un

2
+

ǫ

4
≤ 3

4
un.

(ii) For all n ≥ N with un < ǫ,

0 ≤ un+1 ≤
un

2
+

1

n
<

ǫ

2
+

ǫ

4
< ǫ.

(ii) shows that if for some index n0 ≥ N we have un0
< ǫ, then un < ǫ

for all n ≥ n0. This would imply that we would have un ≥ ǫ for only
finitely many n ∈ N, in contradiction to our assumption. Therefore, we
have un ≥ ǫ for all n ≥ N . But then (i) tells us for n ≥ N that

0 ≤ un+1 ≤
3

4
un.

Repeating this inequality and using the fact that un+j ≥ ǫ for all j ≥ 1
and n ≥ N , we obtain

0 ≤ un+k ≤
(

3

4

)k

un.

Since (3/4)k → 0 as k → ∞, this implies that un → 0 as n → ∞. But
this is in contradiction to our original assumption.

• Note that an ≥ 1 implies

an+1 =
√
an +

1

n
≥ √

an ≥ 1.

Since a1 ≥ 1, this shows that an ≥ 1 for all n ∈ N. Therefore, un =
an − 1 ≥ 0 for all n ∈ N. Next, we observe that for u ≥ 0 we have

√
1 + u ≤ 1 +

u

2
.

This follows immediately via squaring (which is here an equivalence since
all numbers involved are non-negative). Therefore, we have for all n ∈ N:

un+1 = an+1 − 1 =
√
1 + un +

1

n
− 1 ≤ 1 +

un

2
+

1

n
− 1 =

un

2
+

1

n
.

So we see that the conditions of a) are satisfied and we have

lim
n→∞

an = lim
n→∞

1 + un = 1.
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81. We have

u2(k+1)−1 = u2k−1 −
1

2k − 1
+

1

2k
< u2k−1,

which shows that (u2k−1) is monotone decreasing. Similarly, we have

u2(k+1) = u2k +
1

2k
− 1

2k + 1
> u2k,

which shows that (u2k) is monotone increasing. Therefore, u1 is an upper
bound for (u2k−1) and u2 is a lower bound for (u2k). Since u2k < u2k+1 =
u2k +1/(2k), we see that (u2k is bounded below by u2 and above by u1. Using
Theorem 6.2, we conclude that (u2k) is convergent. Let limk→∞ u2k = u∗. It
remains to show that (un) is also convergent. Let ǫ > 0. Then there exists
N1 ∈ N such that

|u2k − u∗| < ǫ

2
∀ k ≥ N1.

Then we have

|u2k+1 − u∗| ≤ |u2k+1 − u2k|+ |u2k − u∗| < 1

2k
+

ǫ

2
∀ k ≥ N1.

We choose N2 ∈ N such that 1/(2k) < ǫ/2 for all k ≥ N2. Then we have, for
all k ≥ N = max{N1, N2}:

|u2k − u∗|, |u2K+1−u∗| < ǫ,

i.e.,
|un − u∗| < ǫ ∀n ≥ 2N.

This proves convergence of (un).

82. We assume there exists w1 ∈ R such that (wn) is convergent. Let w∗ =
limn→∞wn ∈ R. Taking the limits on both sides of the recursion formula, we
must then have

w∗ = (w∗)2 + 1,

i.e., the limit w∗ ∈ R must satisfy the quadratic equation (w∗)2 −w∗ + 1 = 0.
The solutions of this equation are

w∗ = −1

2
± 1

2

√
−3.

But both solutions are not real. So we end up with a contradiction.

83. Let (un) be bounded and c ∈ R. We assume that we have (i) for every
convergent subsequence (unj

)j∈N that limj→∞ unj
= c and (ii) (un) does not

have the limit c. We conclude from (ii) that there exists ǫ > 0 such that for
all N ∈ N we have n ≥ N with

|un − c| > ǫ.

Therefore, choosing N = 1, we find n1 ≥ 1 such that

|un1
− c| > ǫ.
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Choosing N = n1 + 1, we find n2 ≥ n1 + 1 > n1 such that

|un2
− c| > ǫ.

Repeating this argument, we find a subsequence (unj
) with

|unj
− c| > ǫ ∀ j ∈ N. (2)

The subsequence (unj
) is bounded, since (un) is bounded. By the Bolzano-

Weierstrass Theorem, there must exists a convergent subsequence of (unj
)

(which is, therefore, also a subsequence of (un)) and which cannot converge to
c because of (2). But this is a contradiction to our assumption (i).

84. A sequence converging to
√
5 is given by u1 = 1 and un+1 = (un +5/un)/2 for

n ≥ 1. The very rough error is given by

|un −
√
5| ≤ 1

2n−3
|u3 − u2|.

We obtain

u2 =
1

2

(

u1 +
5

u1

)

= 3, u3 =
1

2

(

u2 +
5

u2

)

=
7

3
.

Therefore, we have

|un −
√
5| ≤ 1

3× 2n−2
.

We need to find the smallest n ∈ N such that 1/(3 × 2n−2) ≤ 10−4, i.e.
2n−2 ≥ 104

3
. We have 211 = 2048 < 104

3
and 212 = 4096 > 104

3
, therefore the

element u14 has definitively the required accuracy. We obtain

n un n un n un

4 2.238095238. . . 8 2.236067977. . . 12 2.236067977. . .
5 2.236068896. . . 9 2.236067977. . . 13 2.236067977. . .
6 2.236067977. . . 10 2.236067977. . . 14 2.236067977. . .
7 2.236067977. . . 11 2.236067977. . .

In fact, the above error estimate is extremely crude. It turns out that we have

|u4 −
√
5| ≤ 3 · 10−3,

|u5 −
√
5| ≤ 10−6,

|u6 −
√
5| ≤ 2 · 10−13,

|u7 −
√
5| ≤ 8 · 10−27,

|u8 −
√
5| ≤ 2 · 10−53,

|u14−
√
5| ≤ 4 · 10−3424,

i.e., the number of correct digits roughly doubles at every step and we could
have stopped the calculation at

u5 = 2 +
233

987
.
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7 Functions, Limits and continuity

85. We have

f−1({−1}) = {},
f−1({0}) = {(0, 0, 0)},
f−1({1}) = {(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1},
f−1([1, 2]) = {(x, y, z) ∈ R

3 | 1 ≤ x2 + y2 + z2 ≤ 2}.

This means that f−1({−1}) is the empty set, f−1({0}) is the set containing
just the origin of R3 and f−1({1}) is the Euclidean sphere around the origin
of radius 1. Finally, f−1([1, 2]) is a closed Euclidean annulus, centered at the
origin, with inner radius 1 and outer radius 2.

86. The graph of f looks as follows:

We have

f−1([0, 1)) = {x ∈ [0, 4] | 0 ≤ sin(πx) < 1}
= [0, 1/2) ∪ (1/2, 1] ∪ [2, 5/2) ∪ (5/2, 3] ∪ {4}.

87. (a) Let y ∈ f(f−1(Y0)). Then there exists x ∈ f−1(Y0) with y = f(x). But
x ∈ f−1(Y0) means that f(x) ∈ Y0. So we conclude that there exists
x ∈ X such such y = f(x) ∈ Y0. So we have

y ∈ f(f−1(Y0)) ⇒ y ∈ Y0.

This shows that f(f−1(Y0)) ⊂ Y0.

(b) Let x ∈ X0. Then we have f(x) ∈ f(X0). Since f(x) ∈ f(X0), we
conclude that x ∈ f−1(f(X0)). So we have

x ∈ X0 ⇒ x ∈ f−1(f(X0)).

This shows that X0 ⊂ f−1(f(X0)).
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88. (a) f(x) = 1/
√

1 + 4/x2 → 1 as x → ∞, by COLT.
(b) f(x) = (1 + 2x−1 log x)/(3 + 2/x) → 1/3 as x → ∞, by COLT.
(c) f(x) = x[

√
x2 + 3− x][

√
x2 + 3 + x]/[

√
x2 + 3 + x] = 3x/[

√
x2 + 3 + x]

= 3/[
√

1 + 3/x2 + 1] → 3/2 as x → ∞, by COLT.
(d) f(nπ) = nπ for n = 1, 2, 3, . . .; so there is no limit as x → ∞.

89. We have

lim
h→0

f(x+ h)− f(x)

h
= lim

h→0

√
5x+ 5h+ 1−

√
5x+ 1

h

= lim
h→0

√
5x+ 5h+ 1−

√
5x+ 1

h

√
5x+ 5h+ 1 +

√
5x+ 1√

5x+ 5h+ 1 +
√
5x+ 1

= lim
h→0

(5x+ 5h+ 1)− (5x+ 1)

h(
√
5x+ 5h+ 1 +

√
5x+ 1)

= lim
h→0

5√
5x+ 5h+ 1 +

√
5x+ 1

=
5

2
√
5x+ 1

.

90. We have

lim
x→1

x− 1√
x2 + 3− 2

= lim
x→1

x− 1√
x2 + 3− 2

√
x2 + 3 + 2√
x2 + 3 + 2

= lim
x→1

(x− 1)(
√
x2 + 3 + 2)

x2 − 1

= lim
x→0

√
x2 + 3 + 2

x+ 1
= 2.

91. (a) We have

lim
x→∞

(x−
√
x2 − 1) = lim

x→∞

(x−
√
x2 − 1)(x+

√
x2 − 1)

(x+
√
x2 − 1)

= lim
x→∞

x2 − (x2 − 1)

x+
√
x2 − 1

= lim
x→∞

1

x+
√
x2 − 1

= 0,

since 0 1
x+

√
x2−1

≤ 1
x
and 1

x
→ 0 as x → ∞, by the Squeezing Theorem.

(b) Solving x2/a2− y2/b2 = 1 for y yields y = ±b
√

(x2/a2)− 1 The hyperbola

has two branches and we use y = b
√

(x2/a2)− 1. We have to show that

lim
x→∞

b

(

x

a
−
√

x2

a2
− 1

)

= 0.

We have

lim
x→∞

b

(

x

a
−
√

x2

a2
− 1

)

=
b

a
lim
x→∞

x−
√
x2 − a2

=
b

a
lim
x→∞

x2 − (x2 − a2)

x+
√
x2 − a2

= ab lim
x→∞

1

x+
√
x2 − a2

= 0.
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92. We have

lim
x→0

√
x+ 3−

√
3

x
= lim

x→0

(
√
x+ 3−

√
3)(

√
x+ 3 +

√
3)

x(
√
x+ 3 +

√
3)

= lim
x→0

x

x(
√
x+ 3 +

√
3)

= lim
x→0

1√
x+ 3 +

√
3
=

1

2
√
3
.

93. Plugging x = 1 into 2x4 − 6x3 + x2 + 3 yields 2 − 6 + 1 + 3 = 0. Therefore,
x− 1 must be a factor of 2x4 − 6x3 + x2 + 3. Polynomial division yields

2x4 − 6x3 + x2 + 3 : x− 1 = 2x3 − 4x2 − 3x− 3,

and we obtain

lim
x→1

2x4 − 6x3 + x2 + 3

x− 1
= lim

x→1
2x3 − 4x2 − 3x− 3 = 2− 4− 3− 3 = −8.

94. We have

lim
h→0

√
4 + h− 2

h
= lim

h→0

√
4 + h− 2

h

√
4 + h + 2√
4 + h + 2

= lim
h→0

(4 + h)− 4

h(
√
4 + h+ 2)

= lim
h→0

1√
4 + h+ 2

=
1

4
.

95. (a) We have 8− x3 = (2− x)(x2 + 2x+ 4). So we obtain

lim
x→2

(

1

2− x
− 12

8− x3

)

= lim
x→2

x2 + 2x− 8

(2− x)(x2 + 2x+ 4)
= lim

x→2

(2− x)(−4 − x)

(2− x)(x2 + 2x+ 4)

= − lim
x→2

4 + x

x2 + 2x+ 4
= − 6

12
= −1

2
.

(b) We have

lim
x→0+

x

|x| = lim
x→0+

x

x
= 1

and
lim
x→0−

x

|x| = lim
x→0−

x

−x
= −1.

Since the one-sided limits do not coincide, the limit of x
|x| as x → 0 does not

exist.

96. (a) We have

lim
x→4

√
x− 2

4− x
= lim

x→4

√
x− 2

4− x

√
x+ 2√
x+ 2

= lim
x→4

x− 4

(4− x)(
√
x+ 2)

=
−1

2 + 2
= −1

4
.

27



(b) We have

lim
h→0

(2 + h)4 − 16

h
= lim

h→0

24 + 4 · 23h + 6 · 22h2 + 4 · 2h3 + h4 − 16

h

= lim
h→0

h(32 + 24h+ 8h2)

h
= 32.

97. If x ≥ 0 we have

f(x) =
3x+ x

7x− 5x
=

4

2
= 2.

Therefore, we have limx→∞ f(x) = limx→0+ f(x) = 2. If x ≤ 0 we have

f(x) =
3x− x

7x+ 5x
=

2

12
=

1

6
.

Therefore, we have limx→−∞ f(x) = limx→0− f(x) = 1
6
.

98. (a) We have

lim
x→∞

(

3x

x− 1
− 2x

x+ 1

)

= lim
x→∞

3x(x+ 1)− 2x(x− 1)

x2 − 1

= lim
x→∞

x2 + 5x

x2 − 1

= lim
x→∞

1 + 5/x

1− 1/x2
= 1.

(b) We have

lim
x→1

1

x− 1

(

1

x+ 3
− 2x

3x+ 5

)

= lim
x→1

1

x− 1

3x+ 5− 2x(x+ 3)

(x+ 3)(3x+ 5)

= lim
x→1

1

x− 1

−2x2 − 3x+ 5

(x+ 3)(3x+ 5)

= lim
x→1

1

x− 1

(x− 1)(−2x− 5)

(x+ 3)(3x+ 5)

= lim
x→1

− 2x+ 5

(x+ 3)(3x+ 5)
= − 7

4 · 8 = − 7

32
.

99. Later!

100. Later!

101. The contrapositive statement is: ”If f is not continuous at c then there exists
a convergent sequence (xn) with limn→∞ xn = c and (f(xn)) does not have
f(c) as a limit”.

So we need to prove this. If f is not continuous at c then there exists ǫ > 0
such that, for all δ > 0, there exists x′ ∈ (c− δ, c+ δ) with |f(x)− f(x′)| ≥ ǫ.
Choosing δ = 1/n for n ∈ N, we find therefore xn ∈ (c − 1/n, c + 1/n) with
f(x) − f(xn)| ≥ ǫ. This means that there exists ǫ > 0 and a sequence (xn)
with c− 1/n ≤ xn ≤ c+ 1/n (i.e., xn → c as n → ∞) such that

|f(x)− f(xn)| ≥ ǫ.
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But this implies that the sequence f(xn) does not converge to f(c), finishing
the proof.

102. Let c ∈ R. Given ǫ > 0, we choose δ = ǫ/3 > 0 and we obtain

|f(x)− f(c)| = 3|x− c| < ǫ ∀ |x− c| < δ =
ǫ

3
.

This shows that f is continous. Let c > 0. Then we have for x > 0,

|g(x)− g(c)| = |x− c|
xc

.

IF we assume that x > c/2, we obtain

|g(x)− g(c)| < 2

c2
|x− c|.

This suggests that we choose, for given ǫ > 0, δ = min{c/2, c2ǫ/2} > 0. Then
we have for all |x− c| < δ:

|g(x)− g(c)| < 2

c2
|x− c| < 2δ

c2
≤ ǫ.

This shows that g is continuous.

103. We know that f is continuous at n ∈ N if we have

∀ ǫ ∃ δ : |f(m)− f(n)| < ǫ ∀m ∈ Nwith |m− n| < δ.

Now, we choose δ = 1/2. Then the condition |m− n| < δ means that m = n
and, therefore, |f(m) − f(n)| = 0 < ǫ for any ǫ > 0. This shows that f is
continuous at n.

104. We choose ǫ = |A|/2 > 0. Then there exists δ > 0 such that

|f(x)− f(c)| < |A|
2

∀ x ∈ (c− δ, c+ δ) ∩ [a, b].

Since c ∈ (a, b), we can make δ > 0 smaller,if necessary such that a ≤ c − δ
and c+ δ ≤ b. Then we have

|f(x)− f(c)| < |A|
2

∀ x ∈ (c− δ, c + δ).

But this means that, for all x ∈ (c− δ, c+ δ),

|A| = |f(c)| ≤ |f(x)|+ |f(c)− f(x)| < |f(x)|+ |A|
2
,

i.e.,

|f(x)| > |A|
2
.

29



105. f(x)g(x) − f(a)g(a) = f(x)[g(x) − g(a)] + [f(x) − f(a)]g(a). We show that
given ǫ > 0 we can make both terms smaller than ǫ/2.
First, we can restrict the size of f(x) by being close enough to a: since f is
continuous, there is a δ1 > 0 such that |x− a| < δ1 ⇒ |f(x)− f(a)| < 1. Then
by the triangle inequality, |f(x)| ≤ |f(a)|+ |f(x)− f(a)| ≤ |f(a)|+1 for such
x.
Secondly, we can now ensure that the first term is small enough: since g
is continuous, there is a δ2 > 0 such that |x − a| < δ2 ⇒ |g(x) − g(a)| <
ǫ/2(|f(a)| + 1). Then if |x − a| < min{δ1, δ2}, we have |f(x)(g(x)− g(a))| ≤
(|f(a)|+ 1)|g(x)− g(a)| < ǫ/2.
The second term is if anything simpler. If g(a) = 0 we have nothing to do.
Otherwise, we can find δ3 such that |x− a| < δ3 ⇒ |f(x)− f(a)| < ǫ/2|g(a)|.
Then for such x, we have |(f(x)− f(a))g(a)| < ǫ/2.
Bringing all of this together, set δ = min{δ1, δ2, δ3}; then |x − a| < δ ⇒
|f(x)g(x)− f(a)g(a)| < ǫ.

106. We make use of the identities min{a, b} = (a+ b− |a− b|)/2 and max{a, b} =
(a+b+ |a−b|)/2. Then if f and g are continuous, M and m will be continuous
if |f − g| is continuous. But |x| is a continuous function of x, and so |f − g|
is just obtained by subtracting two continuous functions and composing the
result with another continuous function. The result is another continuous
function.

107. Let c ∈ [a, b]. Plainly g(c) ≤ h(c), since h(c) is the supremum of a set con-
taining g(c). Since g is continuous, given any ǫ > 0 there is a δ > 0 such that
whenever x ∈ N(c, δ) = (c− δ, c+ δ) ∩ [a, b], |g(x)− g(c)| < ǫ.

If h(c) = g(c), then we proceed as follows. Given arbitrary ǫ > 0, and δ as
above, we take x ∈ N(c, δ). If x ≤ c, then (making use of the fact that h is
increasing) g(x) ≤ h(x) ≤ h(c) = g(c). But |g(x)−g(c)| < ǫ, so |h(x)−h(c)| <
ǫ. If x > c, then h(x) = sup g([a, x]) = max{h(c), sup g([c, x])} = sup g([c, x])
(using h(c) = g(c)). Then h(x) − h(c) = h(x) − g(c) = sup g([c, x]) − g(c) =
g(y)− g(c) for some y ∈ [c, x] (since g is continuous). But |g(y)− g(c)| < ǫ for
all y ∈ [c, x], so |h(x)− h(c)| < ǫ. Thus h is continuous at c.

If h(c) < g(c), then we take ǫ = h(c) − g(c), and with δ chosen as above, we
find that g(x) < h(c) for all x ∈ N(c, δ). But h(c) = sup g([a, c]) = g(y) for
some y ∈ [a, c]. Then y 6∈ N(c, δ) (since, if so, g(y) < h(c)). It follows that
h(x) = g(y) for all x ∈ N(c, δ), i.e. h is constant on N(c, δ), and is therefore
continuous at c.

108. We have to show that the function f(x)− 1 = 2x3 − 3x2 + 7x− 10 has a zero
in (1, 2). We have

f(1) = 2− 3 + 7− 10 = −4,

f(2) = 16− 12 + 14− 10 = 8.

Therefore, we must have c ∈ (1, 2) with f(c) − 1 = 0, by the Intermediate
Value Theorem.
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109. f(x) = 0 is equivalent to cos(x) = −e−x. If x < 0, we have e−x > 1 and
| cos(x)| ≤ 1, so we cannot have zeros for x < 0. Also x = 0 is not a zero
since f(0) = 2. This shows that there are no zeros of f in (−∞, 0]. Choosing
xn = nπ for n ∈ N we obtain

f(xn) = 1 + (−1)nenπ.

Since enπ > 1, we conclude that

f(xn)

{

> 0, if n ∈ N even,

< 0, if n ∈ N odd.

This means that we have a zero of f in every interval (nπ, (n+1)π) for n ∈ N,
by the Intermediate Value Theorem.

110. (a) Assume that n is odd and a0 > 0. Let A = max{an−1, . . . , a1}. Let
C > max{1, nA}. Then we have for x = −C < 0:

f(x) ≤ −Cn + A(Cn−1 + Cn−2 + · · ·+ C + 1) ≤ −Cn + nACn−1 < 0.

Since f(0) = a0 > 0, we must have c ∈ (−C, 0) with f(c) = 0 by the
Intermediate Value Theorem.

(b) We assume that a0 < 0. We choose, again, C > max{1, nA} and obtain
for x = C > 0:

f(x) ≥ Cn −A(Cn−1 + Cn−2 + · · ·+ C + 1) ≥ Cn − nACn−1 > 0.

Since f(0) = a0 < 0, we must have c ∈ (0, C) with f(c) = 0 by the
Intermediate Value Theorem.

(c) Assume that n is even and a0 < 0. We choose, again, C > max{1, na}
and obtain for x = −C < 0:

f(x) ≥ Cn −A(Cn−1 + Cn−2 + · · ·+ C + 1) ≥ Cn − nACn−1 > 0.

Since f(0) = a0 < 0, we must have c ∈ (−C, 0) with f(c) = 0 by the
Intermediate Value Theorem.
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