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Some Books

a) Mathematical Analysis, a straightforward approach, K. G. Bin-
more.

b) Calculus, Michael Spivak.

c) Limits, Limits Everywhere, The Tools of Mathematical Analysis,

David Applebaum.

d) Calculus, Schaum’s Outlines, F. Ayres and E. Mendelson.

e) Advanced Calculus, Schaum’s Outlines, R. Wrede and M. Spiegel.

f) How to Think Like a Mathematician, Kevin Houston.

g) How to Read and Do Proofs, Daniel Solow.

The books a)-c) are good introductions into material of Analysis.
However, c) falls short on the concepts of continuity, differentiation

and integration. d) and e) contain a lot of solved problems and is a
good exercise source. Finally, the books f) and g) cover the logic as

well as proof techniques which are important in the study of Analysis.

This lecture notes are not meant to be complete, but they

are a useful additional source of information!

The symbol � at the margin of the page informs you about pitfalls

to be avoided.

At the end of each chapter you find a box with important

points which are useful for you to check whether you un-

derstood the crucial concepts and can apply the methods

introduced in this chapter.
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1 Basic logic and sets

1.1 Logic

In mathematics, we formulate mathematical statements and prove
them.

Examples. (a) There are infinitely many prime numbers.

(b)
√
2 is irrational.

In mathematics, we introduce the objects we work with by definitions. definition

Here is the definition of a mathematical statement.1
statement

Definition 1.1. A statement is a sentence which is either true or
false – but not both.

Remarks. (a) and (b) above are examples of true statements.2 While
”3 < 2” is a false statement, ”x > 1” is not a statement! It can be
true or false, depending on the number we choose for x. ”x > 1” is an

example of a conditional statement. A conditional statement contains conditional
statementvariables which can be specified to obtain a statement which is then

true or false.

Statements can be manipulated and combined via connectives to ob-
tain new statements.

and/or/not

Definition 1.2. Let A and B be two statements.

(a) ”A andB” is a statement which is true only if both A and B are

true.

(b) ”A orB” is a statement which is false only if both A and B are
false.

(c) ”notA” is a statement which is true (false) if A is false (true).
”notA” is called the negation of A.

truth
tablesThe truth values of combined statements like ”A or (notB)” in terms

of A and B can be illustrated via truth tables.

1Note that definitions and other mathematical structures carry numbers so that we can refer
to them at a later stage via their numbers.

2There are statements like ”There are infinitely many pairs of numbers n, n + 2 which are
both prime”, for which we do not know at present whether they are true or false. We call them
conjectures. This one is called the Twin Prime Conjecture.
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A B A andB A orB notA

false false false false true
false true false true true
true false false true false

true true true true false

We say, two expressions built up by unspecified statements A,B, C
are equivalent if the truth tables made from their inputs and outputs equivalent

state-
ments

are the same. We use the symbol ”⇔”. Here is an example due to De

”⇔”Morgan.3

De
Morgan’s
Law

Example (De Morgan’s Law). ”not (A orB)” is equivalent to
”(notA) and (notB)”. We check this via truth tables:

A B not (A orB) notA notB (notA) and (notB)

false false true true true true
false true false true false false

true false false false true false
true true false false false true

We write, in short:

not (A orB) ⇔ (notA) and (notB).

There is a second De Morgan’s Law:

not (A andB) ⇔ (notA) or (notB).

Other important logical rules which are proved via truth tables are

the following:

(a) Law of Commutativity:

A andB ⇔ B andA,

A orB ⇔ B orA.

(b) Law of Associativity:

A and (B andC) ⇔ (A andB) andC,

A or (B orC) ⇔ (A orB) orC.

(c) Law of Distributivity:

A and (B orC) ⇔ (A andB) or (A andC),

A or (B andC) ⇔ (A orB) and (A orC).

3Augustus De Morgan (1806-1871) was a British mathematician and logician who also
introduced the term ”induction”, which is an important mathematical proof technique.
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1.2 Sets

We think of a set as a well defined unordered collection of elements

where each element is contained only once. For example, the set
{a, 4, z, 4, a, 22, a} has in fact only four elements and coincides with
{a, z, 4, 22}. We use the following well-known notation in connection

with two sets X, Y : X ∪ Y is the union4, X ∩ Y is the intersection5,
X\Y is the set of all elements in X and not in Y , x ∈ X (x 6∈ X)

means that x is (not) an element in X, X ⊂ Y means that X is a sub-
set of Y 6. The above logical rules have counterparts in set operations,

where ”and” and ”or” are replaced by ”∩” and ”∪”. We collect these
rules in a mathematical structure, called a proposition. Propositions Proposition

contain interesting mathematical facts and need to be proved.

Proposition 1.3. Let X, Y, Z be sets. Then the following hold:

(a) Law of Commutativity:

X ∪ Y = Y ∪X,

X ∩ Y = Y ∩X.

(b) Law of Associativity:

X ∪ (Y ∪ Z) = (X ∪ Y ) ∪ Z,

X ∩ (Y ∩ Z) = (X ∩ Y ) ∩ Z.

(c) Law of Distributivity:

X ∪ (Y ∩ Z) = (X ∪ Y ) ∩ (X ∪ Z),

X ∩ (Y ∪ Z) = (X ∩ Y ) ∪ (X ∩ Z).

(d) De Morgan’s Law: Let X, Y ⊂ Z. Then we have:

Z\(X ∪ Y ) = (Z\X) ∩ (Z\Y ), 7 (1)

Z\(X ∩ Y ) = (Z\X) ∪ (Z\Y ).
equality
of setsNote that this proposition presents a collection of set equalities. The

general method to prove that two sets U and V are equal is the fol-
lowing: We prove that every element of U is also an element of V and

4X ∪ Y is the set of all elements which are contained in at least one of the two sets X,Y .
5X ∩ Y the set of all elements which are contained in both sets X,Y .
6X is a subset of Y if every element of X is also an element of Y .
7This formula carries a number, namely (1). We use this marking to refer to this identity later

in the text.
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conversely. Often, both directions can be carried out in one go via a
sequence of equivalences:

x ∈ U ⇔ · · · ⇔ x ∈ V.

Sometimes, it is better to prove each direction separately, i.e., first8

x ∈ U ⇒ · · · ⇒ x ∈ V,

and then

x ∈ V ⇒ · · · ⇒ x ∈ U.

This separation is necessary if each direction needs a different sequence

of arguments.
A proof is another mathematical structure. Since proofs may be long Proof

(some of them may go over several pages), we mark the end of a proof
by a special symbol, the square ”✷” . Here is the first example of end of

proof
symbol

such a proof. We do not prove all statements of the proposition and
restrict ourselves to one of the two De Morgan’s Laws. The proofs of
the other identities are carried out similarly. Generally, all equations

of the proposition are proved by reduction to the corresponding logical
rules.

Proof of (1). We have

x ∈ Z\(X ∪ Y )

⇔ x ∈ Z and x 6∈ X ∪ Y

⇔ x ∈ Z and not (x ∈ X orx ∈ Y )
(∗)⇔ x ∈ Z and (notx ∈ X) and (notx ∈ Y )

⇔ x ∈ Z and x 6∈ X and x 6∈ Y
(∗∗)⇔ (x ∈ Z andx 6∈ X) and (x ∈ Z and x 6∈ Y )

⇔ x ∈ Z\X andx ∈ Z\Y
⇔ x ∈ (Z\X) ∩ (Z\Y ).

In (∗) we used De Morgan’s Law for statements, and in (∗∗) we used
the equivalence ”A ⇔ A andA”, which can be easily checked via a

truth table. We also made frequent use of commutativity and asso-
ciativity (bracketing) without futher mentioning.

8At present, we have not yet properly introduced the symbol ”⇒’, but we assume that you have
an intuitive understanding that ”A ⇒ B” means that ”if A is true then also B is true”, but not
necessarily conversely. A prime example is ”x = y ⇒ x2 = y2” (since we have (−3)2 = 32 but not
−3 = 3). This symbol is called implication. Its precise logical meaning will be introduced later in
Chapter 4.
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CAUTION. Do not mix up connectives with set operations! The con- �
nectives ” and ”, ” or ”, ”not ” are only used to create new statements
from given ones and must be understood as set operations. For exam-

ple, if X, Y are sets, ”X and not (Y )” makes no sense! The set oper-
ations ”∪”, ”∩”, ”\” are only used to manipulate sets and not state-

ments. For example, if A,B are statements, the expression ”A ∪ B”
is nonsense!

Venn
diagramReader’s Task. You might know from school how Venn Diagrams can

be used to illustrate set relations. Check the De Morgan’s Laws with
the help of Venn diagrams. But be alert that Venn diagrams do not �
replace a proper proof!!

Here is another concrete example for an equality of sets.

Proposition 1.4. Let S be set of all differences of two square numbers.
Let O be the set of all odd integers and Z be the set of all integers

divisible by 4. Then we have

S = O ∪ Z.

It turns out that both inclusions need different arguments and have
to be proved separately.

Proof. We first show that S ⊂ O ∪ Z: Let x = a2 − b2 ∈ S. Then we

have x = (a − b)(a + b) and we can have two situations. If a − b is
even, then so is a + b (since a + b = (a − b) + 2b), and x is therefore

divisible by 4 and x ∈ Z. If a − b is odd, then so is a + b, and x is
therefore also odd and x ∈ O.

Finally, we show that O∪Z ⊂ S: If x ∈ O∪Z is odd, then x = 2k+1
for some integer k and x = (k + 1)2 − k2, i.e., x ∈ S. If x ∈ O ∪ Z is
divisible by 4, then x = 4k for some integer k and x = (k+1)2−(k−1)2,

i.e., x ∈ S.
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Important concepts/typical problems in this chapter that you should
try without looking anything up:

• State De Morgan’s Law.

• Prove ”A and (B orC) ⇔ (A andB) or (A andC)” via truth ta-

bles.

• The symmetric difference of two sets X, Y is defined as X∆Y =

(X\Y )∪ (Y \X). Draw a Venn Diagram to illustrate X∆Y . Give
a formal proof that X∆Z ⊂ (X∆Y ) ∪ (Y∆Z).
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2 Numbers and Inequalities
number
setsFundamentally important sets in mathematics are number sets. There

is a hierarchy of number sets: the natural numbers, the integers and
the rational numbers ”appear in Nature” in the sense that measure-

ments yield answers that belong to Q; the others are ”invented”9.

• The Natural Numbers or positive integers N = {1, 2, 3, . . .}. In
some textbooks the number 0 is added to the natural numbers.

• The Integers Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.

• The Rational Numbers Q = {p/q | p ∈ Z, q ∈ N}.
• The Real Numbers R will not be defined here. A crucial property
of the real numbers is that R is complete, i.e., there are no gaps

on the number line. We come back to this later in more detail.
The rational numbers lie dense on the number line, but there are

certain positions on the number line which cannot be represented
by a rational number (e.g.,

√
2, the diagonal in the unit square).

• The Complex Numbers C = {x + iy | x, y ∈ R, i2 = −1}. Com-

plex Numbers can be represented geometrically as points in the
Argand plane10 and they are also complete.

We have the proper inclusions

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

On the number line, the real numbers R are ordered, and the order

relations <,>,≤,≥ satisfy the following properties:

(a) If x < y and y < z, then x < z (transitivity).

(b) If x < y and a ∈ R, then x+ a < y + a.

(c) If x < y and c > 0, then cx < cy.

(d) If x < y and c < 0, then cx > cy.

(e) If 0 < x < y, then 0 < 1/y < 1/x.

9Leopold Kronecker (1823-1891) was even more restrictive. His is quoted as having said
”God made natural numbers; all else is the work of man.”

10Jean-Robert Argand (1768-1822) was a French amateur mathematician who published the
idea to represent complex numbers geometrically in the plane. The same geometric interpretation
of complex numbers was also considered by Carl Friedrich Gauss (1777-1855) and Caspar

Wessel (1745-1818).
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�CAUTION. Recall that the complex numbers C are points in the Ar-
gand plane. Complex numbers C are NOT ordered, so we cannot

use the concept of inequality.

In mathematics, we often use known facts to derive new facts from
them. The mathematical structure containing a relatively straightfor-

ward consequence of other facts is called a corollary. Corollary

Corollary 2.1. Rules (a)-(e) imply the following fact: If x < y and
a < b, then x+ a < y + b.

Proof. Since x < y and a ∈ R, we conclude from (b) that

x+ a < y + a. (2)

Since a < b and y ∈ R, we conclude from (b) that11

y + a = a+ y < b+ y = y + b. (3)

Using (2) and (3), we conclude from (a) that

x+ a < y + b.

Here are examples to find the real solutions of inequalities.

Examples. (a) Find all x ∈ R such that −3(4− x) ≤ 12. We have

−3(4− x) ≤ 12

⇔ 4− x ≥ −4 (Division by −3)

⇔ 8 ≥ x (Adding 4 + x to both sides)

(b) Solve
x+ 2

3
<

5− 2x

4
.12 We have

x+ 2

3
<

5− 2x

4
⇔ 4x+ 8 < 15− 6x (Multiplication by 12)

⇔ 10x < 7 (Adding 6x− 8 to both sides)

⇔ x <
7

10
(Division by 10)

11In fact, we also use here without proof the commutativity of the addition, in other words
y + a = a+ y.

12Here we ask, without mentioning it explicitly, for the set of all possible real solutions of this
inequality.
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(c) Solve x2 − 4x+ 3 > 0. We have

x2 − 4x+ 3 > 0

⇔ (x− 3)(x− 1) > 0 (Factorising the polynomial)

⇔ (x− 3 > 0 and x− 1 > 0) or (x− 3 < 0 and x3 < 0)

(Both factors must have the same sign)

⇔ (x− 3 > 0) or (x− 1 < 0)

⇔ x > 3 orx < 1

(d) Solve
3

x− 2
≤ x.13 We have

3

x− 2
≤ x

⇔ 3

x− 2
− x ≤ 0 (Subtracting x from both sides)

⇔ 3− x(x− 2)

x− 2
≤ 0 (Bringing to a common denominator)

⇔ x2 − 2x− 3

x− 2
≥ 0 (Multiplication by −1)

⇔ (x− 3)(x+ 1)

x− 2
≥ 0 (Factorising the numerator).

The last inequality is equivalent to

(x−2 > 0 and (x−3)(x+1) ≥ 0) or (x−2 < 0 and (x−3)(x+1) ≤ 0).

This simplifies to

(x ≥ 3) or (−1 ≤ x < 2).
absolute
value in
C

Definition 2.2. The absolute value of a complex number z = x + iy

is a non-negative real number, given by

|z| =
√

x2 + y2 ≥ 0.

|z| measures the Euclidean distance between the point z and the origin
in the Argand plane.

Remark. Since R ⊂ C, the absolute value is also defined for real num-
bers x ∈ R, and we have |x| =

√
x2 ≥ 0.

13Observe here that we need to have x 6= 2. Otherwise the expression 3/(x− 2) is not defined.
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It makes sense to consider inequalities involving absolute values of real
and complex numbers. The following rules are important:

(a) Triangle Inequality: |z1 + z2| ≤ |z1|+ |z2| for all z1, z2 ∈ C. Triangle
inequality

(b) Variant of (a): | |z1| − |z2| | ≤ |z1 − z2| for all z1, z2 ∈ C.

(c) |z| = |(−z)| for all z ∈ C.

(d) x ∈ R and |x| ≤ c is equivalent to −c ≤ x ≤ c. Here −c ≤ x ≤ c

means ”−c ≤ x andx ≤ c”. (There is an analogous rule for
|x| < c.)

The triangle inequality is one of the most fundamental inequalities in
mathematics.

Reader’s Task. (i) It is a useful exercise to derive the variant (b)

from the Triangle Inequality (a). You may also use the rules (c)
and (d).

(ii) Find an equivalent statement to ”x ∈ R and |x| > c” for some
positive c ∈ R.

Here are examples how to find real solutions of inequalities with ab-
solute values.

Examples. (a) Solve |3x− 4| ≤ 2. This is equivalent to

−2 ≤ 3x− 4 ≤ 2

⇔ 2 ≤ 3x ≤ 6

⇔ 2

3
≤ x ≤ 2

(b) Solve |2x+ 3| > 5. This is equivalent to

2x+ 3 < −5 or 5 < 2x+ 3

⇔ 2x < −8 or 2 < 2x

⇔ x < −4 or 1 < x

(c) Solve |x+ 2| ≤ |2x− 1|. This is equivalent to
(x+ 2)2 ≤ (2x− 1)2

⇔ x2 + 4x+ 4 ≤ 4x2 − 4x+ 1

⇔ 0 ≤ 3x2 − 8x− 3

⇔ 0 ≤ (3x+ 1)(x− 3)

⇔ x ≥ 3 or 3x ≤ −1

⇔ x ≥ 3 or x ≤ −1

3
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Important concepts/typical problems in this chapter that you should
try without looking anything up:

• Find all x ∈ R such that

∣
∣
∣
∣

x

x− 2

∣
∣
∣
∣
≤ 5.

• Write down the Triangle Inequality.

• Complex numbers are multiplied as follows:

(x1 + iy1)(x2 + iy2) = (x1x2 − y1y2) + i(x1y2 + x2y1).

Prove for complex numbers z1, z2 ∈ C that |z1z2| = |z1| · |z2|.
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3 Basics about sequences and limits
real
sequenceDefinition 3.1. A real sequence is a function from N to R, i.e., it

assigns to every natural number n ∈ N a real number, say, xn ∈ R. We
denote such a sequence by (xn)n∈N. We sometimes write the elements

of the sequence consecutively as

x1, x2, x3, x4, x5, . . .

Examples. 1. If xn = 6 for all n ∈ N, then we have the constant
sequence

x1 = 6, x2 = 6, x3 = 6, x4 = 6, x5 = 6, . . .

2. If an = 1
n for all n ∈ N, then we have the sequence

a1 = 1, a2 =
1

2
, a3 =

1

3
, a4 =

1

4
, a5 =

1

5
, . . .

Here, we chose a different name for the sequence. This sequence

is denoted concisely by (an)n∈N.

3. If bn = (−1)n for all n ∈ N, then we have the sequence

b1 = −1, b2 = 1, b3 = −1, b4 = 1, b5 = −1, . . .

4. Finally, let yn = n2, i.e.,

y1 = 1, y2 = 4, y3 = 9, y4 = 16, . . .
index

Remark. We call the parameter n ∈ N of a element xn the index of this
element. In Example 2 above, the element with the small index n = 2

is a2 =
1
2 , and the element with large index n = 1000 is a1000 =

1
1000.

We see that the elements an of the sequence (an) become smaller and

smaller as their index n increases, and they approach the limit value
0 as n goes to infinity.

Now we introduce the crucial notion of limit of a real sequence. We call

a sequence (xn)n∈N convergent, if its elements come closer and closer
to a real number x∗ ∈ R as their index increases. We characterise

convergence by measuring the distance |xn − x| between xn and x,
which should become arbitrarily small as the index n ∈ N increases.
Now, we make this concept precise. Small positive real numbers are

often denoted by the Greek letters ǫ and δ, pronounced ”epsilon” and
”delta”.
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limit of
sequenceDefinition 3.2. A real sequence (xn)n∈N has the limit x∗ ∈ R if, for

every ǫ > 0, there exists an index N ∈ N such that

|xn − x∗| < ǫ for all n ≥ N.

We write ”limn→∞ xn = x∗” or also ”xn → x∗ as n → ∞”. A sequence convergent/divergent
sequencewhich has a limit is called a convergent sequence. If a sequence is not

convergent, it is called divergent.

Remark. All y ∈ R satisfying |y − x∗| < ǫ define precisely the small
real open interval

Bǫ(x
∗) := (x∗ − ǫ, x∗ + ǫ) ⊂ R.

We call this interval the ǫ-interval around x∗. Convergence of xn to

a limit x∗ means therefore that, given ǫ > 0, from some start index
N onwards, all elements of the sequence lie in the interval Bǫ(x

∗). Of

course, as we choose ǫ > 0 smaller, the start index N may need to
be larger (we say that the start index N depends on the choice of ǫ).

But, whatever number ǫ > 0 is chosen, only finitely many elements xn

of the sequence can lie outside the ǫ-interval Bǫ(x
∗) around x∗.

x∗x1 x2 x3

x4

x5

x6

B
ǫ
(x∗)

R

Figure 1: A sequence (x
n
) entering B

ǫ
(x∗) from N = 4 onwards

Examples. Coming back to our earlier examples of sequences, we have

the following limiting behaviour.

1. Here we have xn → 6 since, for every ǫ > 0 and every n ∈ N, we
have |xn − 6| < ǫ. In other words, we can choose N = 1 for all

choices of ǫ > 0. Therefore, the sequence (xn) is convergent with
limit 6.

2. Here we have an → 0. This can be seen as follows: For a given
ǫ > 0 we choose a natural number N > 1

ǫ . This implies that
1
N
< ǫ and, therefore,

|an − 0| = |an| =
1

n
≤ 1

N
< ǫ for all n ≥ N .
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Therefore, the sequence (an) is convergent with limit 0.

3. Here, the elements bn with even indices n = 2k are 1 and the

elements with odd indices n = 2k + 1 are −1. If we had bn → b∗

for some real number b∗ ∈ R then, for any choice of ǫ > 0, only

finitely many bn could lie outside the ǫ-interval I = (b∗− ǫ, b∗+ ǫ)
around b∗. But if we choose ǫ < 1, I cannot contain both numbers

−1 and 1. Since bn assumes both values −1 and 1 infinitely many
times, there are always infinitely many elements of the sequence

outside the ǫ-interval around b∗. This shows that (bn) is not
convergent.

4. Note here that the elements of the sequence (yn) become arbitrar-
ily large with increasing indices. If we had yn → y∗ ∈ R, then all

but finitely many elements of yn would have to lie in the bounded
open interval (y∗−1, y∗+1) (by taking ǫ = 1), which would violate

the fact that the elements yn become arbitrarily large. Therefore,
(yn) is not convergent. We could say that ”yn → ∞ as n → ∞”,

but ∞ is not a real number. �
CAUTION. If xn → x∗, x∗ has to be a fixed real number, not de-

pendent on n. In other words, a statement of the form ” 1
n+1 → 1

n as

n → ∞” does not make sense!!

While propositions contain interesting mathematical facts which can

be useful in certain instances, theorems are mathematical structures
stating facts of fundamental importance. Of course, theorems need to Theorem

be proved as well. The following theorem establishes uniqueness of
the limit for any convergent sequence.

Theorem 3.3 (Uniqueness of the limit). Every convergent sequence
(zn)n∈N has precisely one limit.

The idea for the proof of uniqueness of the limit is already contained in
the arguments showing that (bn) in Example 3 above is not convergent.

Proof. If a sequence (zn) had two different limits z∗ 6= z′, then we could
choose ǫ > 0 small enough such that the ǫ-intervals around z∗ and z′

do not intersect (choose, for example, ǫ < |z∗−z′|
2 ). Then we would

have infinitely many elements zn lying in Bǫ(z
∗) = (z∗ − ǫ, z∗ + ǫ)

since z∗ is a limit of (zn). These elements would necessarily lie outside

Bǫ(z
′) = (z′− ǫ, z′+ ǫ). But this contradicts the assumption that z′ is

also a limit of (zn).
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(un)bounded
sequenceTheorem 3.4. A sequence (xn) is called a bounded sequence, if there

exists C > 0 such that |xn| ≤ C for all n ∈ N. A sequence which is not

bounded is called an unbounded sequence. Then we have the following
fact: Every convergent sequence (xn) is a bounded sequence.

Proof. Exercise.

Note that the first three sequences in our example above are bounded
sequences, while yn = n2 in Example 4 is unbounded. Theorem 3.4

tells us that (yn) cannot be convergent.
Here is another fundamental result, called the Squeezing Theorem.

It allows to derive for many sequences that they are convergent with
limit equal to zero.

Squeezing
TheoremTheorem 3.5 (Squeezing Theorem). If |xn| ≤ yn for all n ∈ N and

yn → 0 as n → ∞, then also xn → 0 as n → ∞.

Proof. Let ǫ > 0 be given. Since yn → 0 as n → ∞, there exists
N ∈ N such that yn = |yn − 0| < ǫ for all n ≥ N . This implies that

|xn − 0| = |xn| ≤ yn < ǫ for all n ≥ N .

This shows that xn → 0 as n → ∞, as well.

Theorem 3.6. Let xn → 0 as n → ∞. Let (yn) be a bounded sequence.
Then we have xnyn → 0 as n → ∞.

Reader’s Task. It is a good exercise for you to prove Theorem 3.6 by

a slight modification of the proof of the Squeezing Theorem.

The next theorem is called the ”Calculus of Limits Theorem”, abbre-
viated as COLT. This theorem is crucial in the explicit calculation of

limits by deducing the limits of more complicated sequences via limits
of simpler ones.

COLT

Theorem 3.7 (COLT). Let x∗ = limn→∞ xn and y∗ = limn→∞ yn. Let
a, b ∈ R be constants. Then we have

(i) axn + byn → ax∗ + by∗ as n → ∞.

(ii) xnyn → x∗y∗ as n → ∞.

(iii) xn

yn
→ x∗

y∗
as n → ∞, provided y∗ 6= 0 and all elements of (yn) are

non-zero.
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Proof. We provide a sample proof for statement (ii), the other proofs
are left to the reader. A crucial step is to estimate the difference
xnyn − x∗y∗ via the triangle inequality:

|xnyn − x∗y∗| ≤ |xnyn − xny
∗|+ |xny

∗ − x∗y∗|
≤ |xn| · |yn − y∗|+ |y∗| · |xn − x∗|.

Since (xn) is convergent, we have C > 0 such that |xn| ≤ C for all
n ∈ N, by Theorem 3.4. By increasing C > 0, if necessary, we can

also assume that |y∗| ≤ C and, therefore,

|xnyn − x∗y∗| ≤ C(|yn − y∗|+ |xn − x∗|).

Recall that C > 0 is a fixed positive real number. Now, choose N
such that |xn − x∗| < ǫ

2C
for all n ≥ N . Analogously, choose N ′ such

that |yn − y∗| < ǫ
2C for all n ≥ N ′. Consequently, we have for all

n ≥ max{N,N ′}:

|xnyn − x∗y∗| ≤ C(|yn − y∗|+ |xn − x∗|) < C(
ǫ

2C
+

ǫ

2C
) = ǫ.

This shows that we have xnyn → x∗y∗ as n → ∞.

Using COLT and the fact 1
n
→ 0 as n → ∞, we can conclude for every

k ∈ N that 1
nk → 0 as n → ∞. Using the Squeezing Theorem, we can

also conclude that 1
nα → 0 as n → ∞, for all α ≥ 1. In fact, this even

holds for all α > 0.
The Euler number e is named after Leonhard Euler14 and is defined as

the limit of a sequence. At present, we will not give a proof that this
sequence has a limit. We return to the convergence proof later. The

sequence can be motivated as a limit of growth processes with shorter
and shorter increment times.

Definition 3.8. The Euler number

e = 2.718281828459045 . . .

is defined as the limit Euler
number

e = lim
n→∞

(

1 +
1

n

)n

.

14The famous Swiss Mathematician Leonhard Euler(1707-1783) is one of the most productive
and greatest mathematician to have ever lived. His picture is on an earlier, out of date version of
the Swiss 10-francs banknote.
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Facts. In determining limits, you can use the following very important
and useful facts without proof:

i) Exponentials beat powers: For any c > 0 and k ∈ N,

nk

ecn
→ 0 as n → ∞.

(ii) Powers beat logarithms: For any c > 0 and α > 0,

log(cn)

nα
→ 0 as n → ∞.

Here log means logarithm to the base e (in other words, log means the
same as ln).

In determining limits, we also often use the following fact about con-

tinuous functions:

Theorem 3.9. If xn → x∗ as n → ∞ and if f(x) is continuous at x∗,
then we have f(xn) → f(x∗) as n → ∞.

We do not prove this theorem here but mention that this theorem
could also be used as a definition of continuity. We will discuss con-

tinuity in detail in Chapter 7. Here we only list some functions which
are known to be continuous: polynomials p(x); ratios p(x)/q(x) of

polynomials away from the zeros of q(x); sin(x), cos(x), exp(x) = ex

and
√
x for x ≥ 0 and log(x) for x > 0. So, for example, if we know

that xn → x∗ as n → ∞, we can deduce that exp(xn) → exp(x∗) as
n → ∞.
Now we consider explicit examples of convergent sequences and derive

their limits.

Examples. 1. Compute lim
n→∞

n
√
3n2 − 2√
1 + 8n4

. We have, using COLT and

continuity of the square root function,

n
√
3n2 − 2√
1 + 8n4

=

√

3− 2/n2

√

1/n4 + 8
→

√
3− 0√
0 + 8

=

√

3

8
as n → ∞.

Be aware that the limit appears on the right hand side of the
”→” symbol and must not depend any more on the index n.
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2. Compute lim
n→∞

n+ sin(n)√
4n2 + 1

. We obtain, using COLT, continuity

of the square root function, and Theorem 3.6 (note that the se-
quence sin(n) is bounded),

n+ sin(n)√
4n2 + 1

=
1 + n−1 sin(n)
√

4 + 1/n
→ 1 + 0√

4 + 0
=

1

2
as n → ∞.

3. Compute lim
n→∞

n2 + n3e−n

(log(2n) + log(n8))2
. Here we use COLT and the

facts that ”exponentials beat powers” and that ”powers beat log-
arithms” to obtain

n2 + n3e−n

(log(2n) + log(n8))2
=

1 + ne−n

1
n2 (n log(2) + 8 log(n))2

=

1 + ne−n

(

log(2) + 8 log(n)
n

)2 → 1 + 0

(log(2) + 0)2
= (log(2))−2 as n → ∞.

4. Compute lim
n→∞

n2n!

(n+ 2)!
. Here we obtain

n2n!

(n+ 2)!
=

n2

(n+ 1)(n+ 2)
=

1

(1 + 1/n)(1 + 2/n)
→ 1

1 · 1 = 1 as n → ∞.

5. Compute limn→∞
√
n(
√
n+ 1 − √

n). While
√
n becomes larger

and larger as n → ∞, the difference
√
n+ 1 − √

n goes to 0 as

n → ∞ (the latter is not obvious). So it is not clear how the
product behaves as n → ∞. We need a trick to find the limit.

The trick is to write

(
√
n+ 1−

√
n)(

√
n+ 1 +

√
n) = (n+ 1)− n = 1,

which leads to

√
n(
√
n+ 1−

√
n) =

√
n√

n+ 1 +
√
n

=
1

√

1 + 1/n+ 1
→ 1√

1 + 0 + 1
=

1

2
as n → ∞.

20



6. Compute limn→∞ xn with xn = n5/n. We obviously have xn > 0
and we can consider the sequence yn = log(xn) =

5 log(n)
n instead.

Since ”powers beat logarithms”, we have limn→∞ yn = 0 and,

therefore,

lim
n→∞

xn = lim
n→∞

exp(yn) = exp(0) = 1.

7. Compute lim
n→∞

log(3n + n3)

n
. We have

log(3n + n3)

n
=

log(3n(1 + 3−nn3))

n
=

n log(3) + log(1 + 3−nn3)

n
= log(3) +

1

n
log(1 + 3−nn3) →

log(3) + 0 · log(1 + 0) = log(3) as n → ∞.

Corollary 3.10. Let (an), (bn), (cn) be three real sequences with an ≤
bn ≤ cn and let (an) and (cn) be convergent with the same limit, in

other words, limn→∞ an = limn→∞ cn = x∗. Then (bn) is also conver-
gent and we have limn→∞ bn = x∗.

Proof. From the assumptions we conclude that

|bn − an| ≤ cn − an

with cn − an → 0 as n → ∞. The Squeezing Theorem then implies
that also bn − an → 0 as n → ∞. Therefore, by COLT,

bn = (bn − an) + an → 0 + x∗ = x∗ as n → ∞.

The next fact is very important and useful.

Theorem 3.11. Let |c| < 1. Then the sequence (cn)n∈N is convergent

and we have
lim
n→∞

cn = 0.

Proof. We first consider the special case 0 ≤ c < 1. Let ǫ > 0. We
need to find N ∈ N such that

|cn − 0| = cn < ǫ for all n ≥ N. (4)
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cn < ǫ is equivalent to n log(c) < log(ǫ) and, since log(c) < 0, this is
equivalent to

n >
log(ǫ)

log(c)
.

Now, choose N ∈ N such that N > log(ǫ)
log(c)

. Then (4) is satisfied and we

have cn → 0 as n → ∞.
Now we consider the general case, in other words, we have a constant

c ∈ R with |c| < 1 and xn = cn. Our first part of the proof showed
that |xn| = |c|n → 0 as n → ∞. Finally, we use the fact that |xn| → 0
implies xn → 0, which is a very easy exercise.

Remark. It can also be shown that for |c| > 1 the sequence (cn)n∈N
is divergent. There are two remaining cases: If c = 1, then (cn) is

constant = 1 and, therefore, convergent with limit 1. If c = −1, we
have a divergent sequence with values alternating between −1 and 1. �
CAUTION. Observe that if (xn) is a convergent sequence of positive
real numbers, the limit does not need to be positive. The easiest

example is xn = 1/n. But the limit is certainly non-negative. This is
the statement of the next proposition.

Proposition 3.12. Let (xn) be a convergent real sequence with xn ≥ 0.
Then we have

lim
n→∞

xn ≥ 0.

Proof. If xn → x∗ < 0 then, choosing ǫ = |x∗|
2 , we must have xn ∈

Bǫ(x
∗) = (x∗ − ǫ, x∗ + ǫ) from some index N ∈ N onwards. Since

x∗ + ǫ = x∗/2 < 0, we conclude that these elements satisfy xn <
x∗/2 < 0, in other words, these elements of the sequence must be
negative.

Example. We now prove: If c ∈ R is a fixed number, then

lim
n→∞

(

1 +
c

n

)n

= ec.

This shows, in the case c = 1, that the sequence (1 + 1/n)n is conver-

gent, which was not proved in the definition of e (see Definition 3.8).
We use the following well known formula for the logarithm

log(t) =

∫ t

1

dx

x
.
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We start with the following fact: If x ∈ [1, 1 + c/n] then

n

c+ n
≤ 1

x
≤ 1.

Integrating from 1 to t = 1 + c/n, we obtain

c

n

n

c+ n
=

∫ 1+c/n

1

n

c+ n
dx ≤

∫ 1+c/n

1

dx

x
≤

∫ 1+c/n

1

dx =
c

n
.

Multiplying by n we conclude

cn

c+ n
≤ log

((

1 +
c

n

)n)

≤ c.

Since cn/(c+n) → c as n → ∞, we obtain by applying Corollary 3.10

lim
n→∞

log
((

1 +
c

n

)n)

= c.

Now using the continuity of the exponential function, we end up with

lim
n→∞

(

1 +
c

n

)n

= ec,

finishing the proof.

CAUTION. Note that the index of a sequence is not always denoted

by n. For example, (uj = j/(j2 + 1))j∈N is a perfectly fine sequence
and the index here is j. In this example, it makes no sense to write �
limn→∞ uj = 0, since n does not appear as index of the sequence. Here
the correct notation is ”limj→∞ uj = 0” or ”uj → 0 as j → ∞”.

The following result states that the convergence and the limit of a

sequence is not affected if we remove some elements at its beginning
by an index shift:

Proposition 3.13. Let (xn)n∈N be a convergent sequence and K ∈ N.

Let (yn)n∈N be the sequence defined by yn = xn+K, in other words,

y1 = xK+1, y2 = xK+2, y3 = xK+3, y4 = xK+4, . . .

Then (yn) is also convergent and we have

lim
n→∞

yn = lim
n→∞

xn.

We leave the straightforward proof of this result to the reader.
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Remark. Proposition 3.13 is a manifestation of the general fact that
the limit of a sequence is independent of the concrete values of finitely
many elements at the beginning. In fact, we may also add some ele-

ments at the beginning. For example, if (xn)n∈N is convergent then so
is the sequence (yn)n∈N with the same limit

yn =







2 if n = 1

−1100 if n = 2

xn−2 if n ≥ 3.

So far, we only discussed real sequences and their limits. It turns out
that the same concepts can be introduced for complex sequences. In complex

sequencethe case of a complex sequence (zn)n∈N, we have zn ∈ C.
limit of
complex
sequence

Remark. Also the definition of limit is not restricted to real sequences.

We say that limn→∞ zn = z∗ ∈ C if, for every ǫ > 0, there exists N ∈ N

with
|zn − z∗| < ǫ for all n ≥ N. (5)

The set of complex numbers z ∈ C satisfying |z − z∗| < ǫ is an open

Euclidean ball of radius ǫ > 0 around z∗, which we denote by Bǫ(z
∗).

We call this set the open ǫ-ball around z∗ ∈ C. Therefore, property (5) open
ǫ-ballcan be reformulated equivalently, that zn lies in Bǫ(z

∗) for all indices
n ≥ N (see Figure 2 for illustration).

z∗

z1

z2

z3

z4
z5

z6

z7

z8

B
ǫ
(z∗)

R

iR

Figure 2: A sequence (z
n
) entering B

ǫ
(z∗) from N = 5 onwards
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Important concepts/typical problems in this chapter that you should
try without looking anything up:

• Give the definition that a sequence (xn)n∈N has the limit x∗.

• Give an example of a sequence which is bounded but not conver-

gent.

• What is the convergence/divergence behaviour of (cn)n∈N
for c ∈ R?

• Formulate COLT and the Squeezing Theorem.

• Calculate lim
k→∞

(k3 + log(2k))(cos(5k)− 3k2)

(2k + 1)5
.

• Calculate the limit of
√

n+ log(5n3)(
√
n+ 2−√

n) as n → ∞.
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4 More logic: Quantifiers, negation and proof tech-

niques

4.1 Quantifiers

Recall that an expression A(x) like ”x > 1” is a conditional state-
ment. By choosing real values for the variable x, we obtain true or

false statements. So A(2) is a true statement while A(−5) is false.
Conditional statements can be combined with quantifiers to obtain
new statements. The two quantifiers which are used are the symbols ∀, ∃

quanti-
fiers

”∀” and ”∃”:

• The symbol ”∀” abbreviates the phrase ”For all”.

• The symbol ”∃” abbreviates the phrase ”There exists”.

Examples. (i) ”∀x ∈ R: x2 ≥ 0” This is an abbreviation for ”for all

x ∈ R we have x2 ≥ 0”, which is a true statement.

(ii) ”∀k ∈ N: 2k+1 is odd” This is an abbreviation for ”for all k ∈ N

we have that 2k + 1 is odd”, which is again a true statement.

(iii) ”∃x ∈ R: x2 = −1” This is an abbreviation for ”there exists

x ∈ R such that x2 = −1”, which is a false statement.

(iv) ”∀ǫ > 0 ∃n ∈ N : ǫ > 1/n” This is an abbreviation for ”for all
ǫ > 0 there exists n ∈ N such that ǫ > 1/n”, which is a true

statement.

(v) ”∀x ∈ Z: if x2 even then x even” This is an abbreviation for ”for

all x ∈ Z we have: if x2 is even then x is even”, which is a true
statement.

Using quantifiers is a very efficient way to make mathematical state-
ments. In fact, the fundamental statement from Chapter 3 that ”the

sequence (xn) is convergent with limit x∗” can be written in symbols
as follows:

∀ǫ > 0 ∃N ∈ N ∀n ≥ N : |xn − x∗| < ǫ. (6)

Reader’s Task. Translate the following statements into symbols.

(a) The sequence (xn)n∈N is bounded.

(b) The sequence (an)n∈N is unbounded.
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(c) The rational numbers Q lie dense on the number line 15.
�

CAUTION. The meaning of a statement can change dramatically if

the order of the quantifiers is permuted. While

∀x ∈ R ∃y ∈ R : y > x

means that ”for every real number x there exists another real number

y which is larger than x”, which is a true statement, the sequence

∃y ∈ R ∀x ∈ R : y > x

means that ”there exists a real number y ∈ R which is larger than

every other real number x ∈ R”, which is obviously a false statement.
So be always careful with the order in which you place your quantifiers.

However, sometimes, we may place ∀-quantifiers after conditional state-
ments instead of before them without changing the meaning. So the
following symbol expression is equivalent to (6):

∀ǫ > 0 ∃N ∈ N : |xn − x∗| < ǫ ∀n ≥ N.

This means, in words: ”For all ǫ > 0, there exists N ∈ N such that
we have |xn − x∗| < ǫ for all n ≥ N .”

4.2 Negation

The use of quantifiers allows us also to negate certain statements cor-
rectly, even if they are involved. Let us start with a simple example

and consider the statement A1, given by

∀x ∈ X : B(x),

where B(x) is a conditional statement. This statement is not true if

and only if ”there exists x ∈ X such that notB(x)”. In other words,
A1 is false if and only if

∃x ∈ X : notB(x) (7)

is true. Therefore, (7) represents the negation ”notA1”. Similarly, if
A2 is the statement

∃x ∈ X : C(x),

15In other words, for every real number x ∈ R we find rational numbers which are arbitrarily
close to x.
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where C(x) is another conditional statement, then notA2 means that
there is no x ∈ X with C(x) or, in other words, we have notC(x) for
all x ∈ X. Therefore, the negation of A2 is

∀x ∈ X : notC(x).

Rule for negation. Generally, we have the following formal rule to rule for
negationnegate a logic statement, consisting of a list of quantifiers with a con-

cluding conditional statement of the form

Q1x1Q2x2 . . .Qnxn : P (x1, . . . , xn),

where Qi ∈ {∀, ∃}.
• Change every ∀-quantifier to an ∃-quantifier and every ∃-quantifier
to a ∀-quantifier.

• Replace ”P (x1, . . . , xn)” by ”notP (x1, . . . , xn)”.

Examples. 1. The statement

∀n ∈ N : n is a prime number

is obviously false. Its negation is

∃n ∈ N : n is not a prime number,

which is obviously true (choose, for example n = 6).

2. Let us recall the statement, denoted by A, that ”x∗ is the limit
of the sequence (xn)”. This was formulated in (6). Applying
formally the negation rule, we obtain

∃ǫ > 0 ∀N ∈ N ∃n ≥ N : |xn − x∗| ≥ ǫ,

to express that ”x∗ is not the limit of the sequence (xn)”.

In other words, ”notA” means that there exists a ǫ > 0 such
that for every start index N there is an element xn with an index
n ≥ N outside the open ǫ-interval Bǫ(x

∗).

A shorter formulation of ”notA” is that ”there exists ǫ > 0 such
that there are elements xn with arbitrarily high indices n ∈ N

outside Bǫ(x
∗)”.

An even shorter formulation of ”notA” is that ”there existsBǫ(x
∗)

with infinitely many elements xn outside Bǫ(x
∗)”.

We see in this example that is often useful to combine strictly for-

mal logical rules with the concrete understanding of the meaning
of a statement to end up with a short and efficient formulation.
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4.3 Proof techniques

An important connective between statements besides ”and” and ”or”

is ”if ... then”.

Definition 4.1. Let A and B be two statements. ”If A then B” is a if...then

statement which is false only if A is true and B is false. The concise

mathematical symbol for ”If A then B” is ”A ⇒ B”, and we call this ”⇒”

connective also an implication. implication

Let us quickly justify this definition. Since a false statement cannot
follow from a true one, we need to have that ”If true then false” is false.

Since true statements can follow from true statements and also false
statements can follow from false statements, ”If true then true” is true

as well as ”If false then false”. What about ”If false then true”? In
fact, a true statement can follow from a false one; here is an example:
The equation ”0 = 1” is obviously false, but multiplying both sides

with 0 yields the true statement ”0 = 0”. So a true statement can
follow from a false one and we therefore define ”If false then true” as

true.
The following is an important fact which is often used in connection

with a certain proof technique, called ”indirect proof”.
negation
of
”if...then”

Theorem 4.2. The negation of ”If A then B” is ”A and (notB)”.

Proof. The proof is given via truth tables:

A B if A then B A notB A and (notB)

false false true false true false

false true true false false false
true false false true true true

true true true true false false

�
CAUTION. Here it is important to avoid a dangerous misconception.
The negation of ”If A then B” is NOT ”If A then (notB)”.

Reader’s Task. It is a good exercise to write down the truth tables for

both ”If A then B” and ”If A then (notB)” to convince yourself that
they are not negations of each other.
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Example. Let us give an example for an Indirect Proof: Assume we indirect
proofwant to prove for integers n that

”If n2 is even then n is even.” (8)

In an indirect proof, we start with the negation of the statement and

derive from it a logical contradiction. This implies that the negation
must be a false statement and, therefore, the original statement must
be true.16 Let us carry out this method in the above example (8).

Recall for integers that beging ”not even” means being ”odd”. The
negation of (8) is

”n2 is even and n is odd.”

But if n is odd, we can write n = 2k + 1 for some k ∈ Z and derive

n2 = (2k + 1)2 = 4k2 + 4k + 1,

in contradiction to the assumption that n2 is even. This finishes the
proof.

Remark. In fact, we already used the indirect proof technique in Chap-
ter 3. Theorem 3.3 and Proposition 3.12 were proved indirectly. You

may go back and convince yourself about this fact.

Finally, we mention another important fact which is often used in
connection with another certain proof technique, called ”contraposi-

tive proof”.

Theorem 4.3. Let A,B be two statements. Then the following two contrapositive
statementstatements are equivalent: ”If A then B” and ”If (notB) then (notA)”.

The second statement is called the contrapositive of the first one.

We omit the proof which is again given by a truth table. Be aware

that the statements A and B must be interchanged when switching �
to the contrapositive statement.

Example. Let us give an example of an Contrapositive Proof: We contrapositive
proof
technique

return to our statement (8) and want to prove for integers n that

”If n2 is even then n is even”.
16The method is also called reductio ad absurdum. The British mathematician G. H. Hardy

(1877-1947) described the indirect proof as ”one of a mathematician’s finest weapons”, saying ”It
is a far finer gambit than any chess gambit: a chess player may offer the sacrifice of a pawn or even
a piece, but a mathematician offers the game.” (see Wikipedia)
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Instead we prove the equivalent contrapositive statement

”If n is odd then n2 is odd”,

which is much easier to prove: We set n = 2k+ 1 for some k ∈ Z and

derive
n2 = (2k + 1)2 = 4k2 + 4k + 1,

in other words n2 is odd.

Remark. Above, you learnt two important proof techniques which we

will use over and over again in the following chapters. Revisiting both
examples, we observe that the central argument of both proofs is ”if

n is odd then so is n2”. But the logic of both proofs is very different:

• In the indirect proof we start with the negation of the original
statement (which has the opposite truth value as the original

statement) and derive a contradiction.

• In the contrapositive proof we start with the contrapositive state-
ment (which has the same truth value as the original statement)

and prove it directly.

It is important that you fully understand the logical difference between

the two proof techniques.

Important concepts/typical problems in this chapter that you should
try without looking anything up:

• Write formally that the sequence (xn)n∈N has limit x∗.

• Write in symbols that a function f : R → R is surjective.

• The fact that a function f : R → R is strictly monotone increasing
can be written in symbols by

∀x, y ∈ R : if x < y then f(x) < f(y)

Derive the formal negation of this statement.

• Find two concrete mathematical statements A,B such that ”If
A then B” is true but ”If B then A” is false. In other words,

”If...then” is not commutative.

• Show that if x ∈ R\Q then
√
x ∈ R\Q, giving first an indirect

proof and then a contrapositive proof.
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5 The Completeness Axiom for R

Recall that, while the rational numbers Q are ”dense” on the real

number line, there are points which do not represent rational num-
bers (for example

√
2). Obviously, we can find sequences of rational

numbers with elements approximating
√
2 better and better, but their

limit is no longer rational. In some sense, the rational numbers Q are

incomplete. Before we give a precise formulation of the Completeness
Axiom for R, we need some preparations. The completeness of R is
expressed in this chapter with the help of sets rather than sequences.

But we will return to sequences in the next chapter and then discuss
implications of the Completeness Axiom for sequences.

Definition 5.1. Let X ⊂ R be a set of real numbers. A number maximum/
minimumM ∈ X is called the maximum of X, if x ≤ M for all x ∈ X. In other

words, the maximum is the largest number in the set X. Similarly, we
define m ∈ X to be the minimum of X, if m ≤ x for all x ∈ X.

Examples. 1. X = {2, 3, 6, 8, 9}. Then we have min(X) = 2 and
max(X) = 9.

2. X = {1/n | n ∈ N}. Then we have max(X) = 1, but minX does

not exist.

3. X = [0,∞). Then we have min(X) = 0, but max(X) does not

exist.

Definition 5.2. A set X ⊂ R is bounded above if there exists a

number C ∈ R such that x ≤ C for all x ∈ X. C is called an upper bounded
above/below

upper/
lower
bound

bound of X. Similarly, X is bounded below if there exists c ∈ R such

that c ≤ x for all x ∈ X. c is called a lower bound of X. A set X is
called bounded, if it is bounded above and below.

Examples. 1. X = {1/n | n ∈ N} is bounded, since it is bounded

above (upper bounds are, for example, 1, e, 17) and bounded be-
low (lower bounds are, for example, −5,−3/2, 0).

2. X = {x ∈ Q : x2 ≤ 2} is bounded below by −
√
2 and above by√

2, but these two numbers are not minimum and maximum of

X, since they are not elements of X.

If a set X ⊂ R is bounded above, it has many upper bounds. But
there might be an optimal upper bound, namely the smallest one. A

32



priori, it is not clear that such a smallest upper bound exists. If it
exists, we call it the supremum of the set X.

Definition 5.3. Let X ⊂ R be bounded above. A number C ∈ R is

called least upper bound or supremum of X if supremum/
infimum

(i) C is an upper bound of X and

(ii) no number less than C is an upper bound of X.

We write C = sup(X). Similarly, we can define the greatest lower

bound or infimum of X, denoted by inf(X).

In contrast to the maximum of X, the supremum of X need not be

element ofX. But if sup(X) 6∈ X, then there exists a sequence xn ∈ X
with xn → sup(X) as n → ∞. Therefore, (ii) is equivalent to

(ii’) C ∈ X or there exists xn ∈ X such that xn → C as n → ∞.

In the following examples, we use the defining properties (i) and (ii’)
to derive supremum and infimum.

Examples.

1. X = {1/n | n ∈ N}. Then we have inf(X) = 0 and sup(X) = 1.

2. X = (0,∞). Then we have inf(X) = 0 but sup(X) does not exist.

3. X = { n

1 + n2
| n ∈ N}. We have

X =

{
1

2
,
2

5
,
3

10
,
4

17
,
5

26
, . . .

}

,

and we guess that sup(X) = 1/2 and inf(X) = 0.
Proof of sup(X) = 1/2: n/(1 + n2) ≤ 1/2 is equivalent to

(n− 1)2 ≥ 0, which is true. Since 1/2 ∈ X, we have sup(X) = 1/2 by
(i) and (ii’).
Proof of inf(X) = 0: We have n/(1+n2) ≥ 0 for all n ∈ N. Moreover,

n/(1 + n2) → 0 as n → ∞. Therefore, (i) and (ii’) are satisfied and
we have inf(X) = 0.

4. X = {xn,m =
nm

1 + n2 +m2
| n,m ∈ N}. Looking at some values

of X we guess that sup(X) = 1/2 (by choosing n = m large) and

inf(X) = 0 (by choosing n = 1 and m large).
Proof of sup(X) = 1/2: xn,m ≤ 1/2 is equivalent to
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0 ≤ 1 + (n − m)2, which is true. Therefore, 1/2 is an upper bound.
Moreover, we have

lim
n→∞

xn,n = lim
n→∞

n2

1 + 2n2
=

1

2
.

Therefore, sup(X) = 1/2 by (i) and (ii’).
Proof of inf(X) = 0: Since xn,m ≥ 0, 0 is a lower bound of X. More-

over,

lim
n→∞

xn,1 = lim
n→∞

n

2 + n2
= 0.

Therefore, inf(X) = 0 by (i) and(ii’).

5. X = {xn =
n2 − 4n+ 4

1 + 2n2
| n ∈ N}. We have

X =

{
1

3
, 0,

1

19
,
4

33
,
9

51
, . . .

}

,

so we guess that inf(X) = 0 and sup(X) = 1/2 (by looking at

limn→∞ xn).
Proof of sup(X) = 1/2: xn ≤ 1/2 is equivalent to
0 ≤ 8n− 7, which is true. We then conclude sup(X) = 1/2 from

lim
n→∞

n2 − 4n+ 4

1 + 2n2
=

1

2
.

Proof of inf(X) = 0: We have xn ≥ 0 since n2−4n+4 = (n−2)2 ≥ 0.

Moreover, x1 = 0, which implies inf(X) = 0.

Completeness Axiom for R. Every non-empty set of real numbers

which is bounded above has a supremum. completeness
of R

Remark. When reading the completeness axiom, we may be tempted
to think that this is a theorem which needs to be proved. The problem

is that we never defined what real numbers are. It is possible, but time-
consuming, to give a proper definition of the real numbers and then

to prove the completeness axiom as a theorem. Another approach is
to introduce the real numbers axiomatically. Then the completeness

axiom is one of their defining features, distinguishing the real numbers
from the rational numbers. This means that completeness should not
hold if we consider it within the set Q of rational numbers. Here the

set X = {x ∈ Q | x2 ≤ 2} is non-empty and bounded above, but there
is no supremum of X within the rationals, since we cannot choose the
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irrational
√
2 and, for every other upper bound C ∈ Q of X there

exists a smaller one, ruling out that there is an optimal rational upper
bound of X.

Definition 5.4. Let X be a set and f : X → R be a real-valued

function. The image of f , denoted by f(X) is the set image set
of a
functionf(X) = {f(x) | x ∈ X}.

We say that f is bounded above if f(X) ⊂ R is bounded above.

Similarly, we define bounded below and bounded. For sup(f(X)) supremum/
infimum
of a
function

we also use the notation sup(f) and supx∈X f(x).

Examples. 1. f(x) = x2 on X = R has inf(f) = 0 and sup(f) does
not exist.

2. f(x) =
x2 cos(x)

1 + x2
for x > 0. Since | cos(x)| ≤ 1, we have

−1 ≤ − x2

1 + x2
≤ f(x) ≤ x2

1 + x2
≤ 1

for all x > 0. So−1 and 1 are lower and upper bound of f(x). The
question is whether we can find sequences xn, yn > 0 such that
f(xn) → −1 and f(yn) → 1 as n → ∞. Choosing xn = 2nπ > 0

and yn = (2n− 1)π > 0 for n ∈ N, we obtain

lim
n→∞

f(xn) = lim
n→∞

(2nπ)2

1 + (2nπ)2
= 1,

lim
n→∞

f(yn) = lim
n→∞

− (2n− 1)2π2

1 + (2n− 1)2π2
= −1.

3. f(x) = − 1

x2
+

1

x
− 1 for x > 1. We conclude from x > 1 that

x2 > x and, therefore, 1/x > 1/x2. This shows that

f(x) = − 1

x2
+

1

x
− 1 > −1.

On the other hand, we have both17

lim
x→1

(

− 1

x2
+

1

x
− 1

)

= −1 + 1− 1 = −1

17We have not yet defined the following symbols limx→1 and limx→∞ rigorously, so we ask you
to use your intuition about their meaning. We will introduce this notation later in Chapter 7 in
full rigour.

35



and

lim
x→∞

(

− 1

x2
+

1

x
− 1

)

= −0 + 0− 1 = −1.

This shows that inf(f) = −1. For the supremum we need some
school maths and look out for local maxima of f(x). Since f

is differentiable, a necessary condition for such a maximum is
f ′(x) = 0. This leads to

f ′(x) =
2

x3
− 1

x2
=

1

x3
(2− x) = 0,

with the only solution x = 2. Considering

f ′′(x) =
2

x2

(

1− 3

x

)

,

we obtain f ′′(2) < 0, which shows that x = 2 is a local maximum

with

f(2) = −1

4
+

1

2
− 1 = −3

4
.

This is our guess: sup(f) = 3/4, which we need to prove.
Proof of sup(f) = 3/4: f(x) ≤ −3/4 for x > 1 is equivalent to

(x − 2)2 ≥ 0, which is true. So −3/4 is an upper bound of f .
Finally, f(2) = −3/4 shows that sup(f) = −3/4.

Reader’s Task. Let f : X → R. Check that we have

sup(−f) = − inf(f).

Proposition 5.5. Let f, g : X → R. Then we have

sup(f) + inf(g) ≤ sup(f + g) ≤ sup(f) + sup(g).

Proof. Note that f(x) ≤ sup(f) for all x ∈ X, since sup(f) is an upper
bound of f(X). This implies that, for all x ∈ X,

f(x) + g(x) ≤ sup(f) + sup(g),

in other words, sup(f) + sup(g) is an upper bound for

(f + g)(X) = {f(x) + g(x) | x ∈ X}.

Since sup(f + g) is the smallest upper bound for (f + g)(X), we have

sup(f + g) ≤ sup(f) + sup(g).
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For the other inequality, we start with

f(x) + g(x) ≤ sup(f + g) ∀ x ∈ X,

which implies

f(x) ≤ sup(f + g)− g(x) ≤ sup(f + g)− inf(g) ∀ x ∈ X.

In other words, sup(f+g)− inf(g) is an upper bound for f . Therefore,

sup(f) ≤ sup(f + g)− inf(g),

which finishes the proof.

Important concepts/typical problems in this chapter that you should
try without looking anything up:

• Formulate the Completeness Axiom for R.

• Give an example of a set X ⊂ R which is bounded above but
does not have a maximum.

• Show rigorously the following fact: If X ⊂ R has a maximum,
then X has also a supremum and sup(X) = max(X).

• Find infimum and supremum of the following set:

X =

{

x+
1

x
| 1
2
< x < 2

}

.

Does X have a minimum or a maximum?
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6 More on limits of sequences

6.1 Roadway to Bolzano-Weierstrass

Definition 6.1. A sequence (xn)n∈N is called monotone increasing if
xn ≤ xn+1 for all n ∈ N. Analogously, (xn) is called monotone de-

creasing if xn ≥ xn+1 for all n ∈ N. monotone
increas-
ing/
decreas-
ing
sequences

Recall that we already introduced the notion of boundedness of se-
quences in Theorem 3.4. Now we state a crucial consequence of the

Completeness Axiom for bounded increasing sequences, namely that
they must have a limit in the set of real numbers. In fact, this limit

is nothing but the least upper bound of the sequence considered as a
set.

Theorem 6.2. Let (xn) be a monotone increasing real sequence. If
(xn) is bounded, then (xn) is convergent and we have

lim
n→∞

xn = sup(X),

where X = {xn | n ∈ N}. There is an analogous statement for
bounded, monotone decreasing sequences, namely,

lim
n→∞

xn = inf(X).

A simple example here is the sequence xn = 1/n. This sequence is

bounded and monotone decreasing and we have limn→∞ xn = inf(X) =
0, in accordance with the theorem.

Remarks. (a) Note that we do not have monotone increasing com- �
plex sequences, since xn ≤ xn+1 does not make sense generally if
xn ∈ C. Therefore, Theorem 6.2 does not have a counterpart in

the context of complex sequences.

(b) Note also in the theorem above that X and (xn) are two very

different mathematical objects. While (xn) is a sequence, in other
words, a map N → R (namely, n 7→ xn), the object X is a set,
consisting of all the elements of the sequence. For example, if

xn = (−1)n, then we have, on the one hand,

x1 = (−1), x2 = 1, x3 = (−1), x4 = 1, x5 = (−1), . . . ,

and X = {−1, 1} on the other hand. So X is here a finite set
with only two elements. Note that the set X does not change if
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we change the sequence xn = (−1)n to the very different sequence

xn =

{

1, if n = 1,

−1, if n ≥ 2.

Proof. Since X is bounded above, there exists sup(X) by the Com-
pleteness Axiom for R. Note that xn ≤ sup(X) for all n ∈ N. For
every ǫ > 0, there must be xN ∈ X with xN > sup(X) − ǫ by the

definition of the supremum. By the monotonicity of (xn), we have for
all n ≥ N ,

sup(X)− ǫ < xN ≤ xn ≤ sup(X),

in other words

|xn − sup(X)| < ǫ ∀ n ≥ N.

This shows that xn → sup(X) as n → ∞.

Next we introduce the important notion of a subsequence.

Definition 6.3. Let (xn)n∈N be a sequence. A subsequence of (xn) is subsequence

a sequence (xnj
)j∈N with n1 < n2 < n3 < . . . .

Example. Let xn = (−1)n(1− 1/n). Then we have

x1 = 0, x2 =
1

2
, x3 = −2

3
, x4 =

3

4
, x5 = −4

5
, x6 =

5

6
, x7 = −6

7
, . . .

It is easy to check that this sequence does not have a limit. But the

subsequence (x2j)j∈N, given by x2j = 1− 1/(2j), is convergent and we
have

lim
j→∞

x2j = 1.

Note, however, that the sequence yn = x1+2|3−n| is not a subsequence
of (xn), since we have

y1 = x5, y2 = x3, y3 = x1, y4 = x3, y5 = x5, y6 = x7, y7 = x9, . . . ,

and the sequence of x-indices 5, 3, 1, 3, 5, 7, 9, . . . is not strictly mono- �
tone increasing. But this condition is required for a subsequence.

Proposition 6.4. Let (xn) be convergent with limit limn→∞ xn = x∗

and (xnj
) be a subsequence. Then (xnj

) is also convergent and

lim
j→∞

xnj
= x∗.
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Reader’s Task. It is a very useful exercise for the reader to proof Propo-
sition 6.4 and to check that our earlier Proposition 3.13 is a special
case of this fact (by choosing nj = j +K).

Here we state our first lemma. Lemmas are mathematical structures Lemma

containing smaller facts that may become useful at a later stage.

Lemma 6.5. Every real sequence (xn) contains a subsequence which
is either increasing or decreasing.

Here is the neat proof of this fact:

Proof. Given a sequence (xn)n∈N. We call an element xn0
a peak ele-

ment of the sequence if we have xn0
≥ xn for all n > n0. The corre-

sponding index n0 is called a peak index. Now one of the following two

cases must be true.

Case 1: There are infinitely many peak indices n1 < n2 < n3 < . . . . This

means that (xnj
)j∈N is a monotone decreasing subsequence.

Case 2: There are only finitely many peak indices. Then there is n1 ∈ N

such that all peak indices are < n1. Since n1 is not a peak index,

there must be n2 > n1 with xn1
< xn2

. Since n2 is not a peak
index, there must be n3 > n2 with xn2

< xn3
. Continuing this way,

we obtain a subsequence (xnj
)j∈N, which is monotone increasing

(even strictly).

Now we formulate the main result of this chapter. The theorem is

named after the mathematicians Bolzano18 and Weierstrass19. We
like to mention as a rule of thumb, that theorems which have names

attached are usually particularly important facts.
Bolzano-
WeierstrassTheorem 6.6 (Bolzano-Weierstrass). Let (xn) be a bounded real se-

quence. Then (xn) has a subsequence which is convergent.

Proof. Let (xn) be a bounded real sequence. Lemma 6.5 tells us that

there exists a monotone subsequence (xnj
). This monotone subse-

quence is also a bounded sequence and, by Theorem 6.2, conver-
gent.

18Bernard Bolzano (1781-1848) was born and lived in Prague. Besides being a mathematician
and a philosopher, he was also a Catholic priest.

19Karl Weierstrass (1815-1897) was a German mathematician. Before he became professor
at the Technical University of Berlin, he worked as a highschool teacher. He is considered to be
the ”father of modern analysis”.
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Remarks. (a) If we reconsider the proof sequence leading to the Bolzano-
Weierstrass Theorem, we see that a crucial ingredient is the Com-
pleteness Axiom for R.

(b) While Theorem 6.2 has no counterpart for complex sequences,
the Bolzano-Weierstrass Theorem holds also for bounded complex

sequences (since C is also a complete space in an appropriate
sense). But the proof of the Bolzano-Weierstrass Theorem in the
case of a complex sequence cannot use Theorem 6.2.

6.2 Cauchy sequences

Often, we have to show that a sequence (xn) is convergent without
knowing its limit x∗. In this case, we cannot give a direct proof that

|xn − x∗| → 0 as n → ∞. Theorem 6.2 may help in special situa-
tions, but it only treats the very restricted case of bounded monotone
real sequences. A very useful concept to prove convergence without

knowing the limit is the concept of a Cauchy sequence20.

Definition 6.7. A sequence (xn)n∈N is called a Cauchy sequence if, Cauchy
sequencefor every ǫ > 0, there exists N ∈ N such that

|xm − xn| < ǫ ∀ n,m ≥ N.

Intuitively, the elements xn of a Cauchy sequence become closer and
closer to each other as their indices increase.

Reader’s Task. The following two facts are important and their proofs
are useful exercises for the reader. The proof of the first theorem is

very similar to the proof of Theorem 3.4. For the proof of the second
theorem, you need to use the triangle inequality.

Theorem 6.8. Let (xn) be a Cauchy sequence. Then (xn) is bounded.

Theorem 6.9. Let (xn) be a convergent sequence. Then (xn) is also
a Cauchy sequence.

Of particular importance is the converse of Theorem 6.9, which holds

in R but not inQ, since a crucial ingredient is the Completeness Axiom
for R.

20Baron Augustin-Louis Cauchy (1789-1857) was a French mathematician who became a full
professor at École Polytechnique in 1816. He was the first mathematician to introduce techniques
and notions (the ǫ, δ-terminology) to prove certain fundamental theorems in calculus with full
rigour.
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Theorem 6.10. Let (xn) be a real Cauchy sequence. Then (xn) is
convergent with real limit x∗ ∈ R.

Proof. Let (xn) be a real Cauchy sequence. Then (xn) is bounded,

by Theorem 6.8. Therefore, there exists a convergent subsequence
(xnj

)j∈N, by the Bolzano-Weierstrass Theorem. Let

x∗ = lim
j→∞

xnj
∈ R.

It remains to prove that x∗ is also the limit of (xn). Let ǫ > 0 be
given. Then there exists J ∈ N such that

|xnj
− x∗| < ǫ

2
∀ j ≥ J. (9)

Since (xn) is Cauchy, there exists N ∈ N with

|xn − xm| <
ǫ

2
∀ n,m ≥ N. (10)

Choose j∗ ≥ J such that nj∗ ≥ N . Then we have for all n ≥ N , using

(9), (10) and the triangle inequality,

|xn − x∗| ≤ |xn − xnj∗
|+ |xnj∗

− x∗| < ǫ

2
+

ǫ

2
= ǫ.

Remark. Here again, Theorem 6.10 has an analogue for complex se-

quences. Once, the Bolzano-Weierstrass Theorem for complex se-
quences is established, the same proof as the one above can be used
to derive Theorem 6.10 for complex sequences.

Example. Let a, c > 0 and (un)n∈N be the sequence defined by u1 = c

and

un+1 =
1

2

(

un +
a

un

)

∀n ≥ 1. (11)

Our goal is to prove that (un) is convergent. To do so we first derive
for all n,m ≥ N ≥ 2 that

|un − um| ≤
1

2N−3
|u3 − u2|, (12)

which implies that (un) is Cauchy. The convergence of (un) follows

then via Theorem 6.10.
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So we only need to prove (12). Let n ≥ 2. From the recursion relation
(11) and a, c > 0 we conclude that un > 0 for all n ∈ N. Moreover, we
obtain

un+2 − un+1 =

(
1

2
− a

2un+1un

)

(un+1 − un). (13)

If we show that 0 < a/(2un+1un) < 1, we derive from (13) the useful

relation

|un+2 − un+1| <
1

2
|un+1 − un| ∀n ≥ 2. (14)

But 0 < a/(2un+1un) < 1 follows directly from

un+1un =
un

2

(

un +
a

un

)

=
a

2
+

u2
n

2
>

a

2
> 0.

Applying (14) repeatedly, we obtain

|un+1 − un| ≤
1

2n−2
|u3 − u2| ∀n ≥ 2.

Assuming n ≥ m ≥ N ≥ 2, we derive via the geometric series and the
triangle inequality

|un − um| ≤ |un − un−1|+ · · ·+ |um+1 − um|

≤
(

1

2n−3
+ · · ·+ 1

2m−2

)

|u3 − u2|

≤ 1

2m−2

(

1 +
1

2
+ . . .

1

2n−m−1

)

|u3 − u2|

≤ 1

2m−2

1− (1/2)n−m

1− (1/2)
︸ ︷︷ ︸

<2

|u3 − u2| ≤
1

2N−3
|u3 − u2|,

finishing the proof of (12).

Interestingly, knowing that (un) satisfying (11) is convergent, we are

now even able to derive the limit u∗. We know from Proposition 3.13
that

u∗ = lim
n→∞

un = lim
n→∞

un+1.

Multiplying (11) by 2un > 0, we obtain

2un+1un = a+ u2
n, (15)

and we conclude from (11) and COLT that

2(u∗)2 = 2 lim
n→∞

un+1un = a+ lim
n→∞

u2
n = a+ (u∗)2,
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which yields u∗ = ±√
a. Since un > 0, we must have u∗ =

√
a. So we

derived the explicit value of the limit u∗, using the fact that (un) is
convergent.

Note that this result has a practical application: We can use the
sequence (un) to calculate arbitrarily good rational approximations of√
a for any a ∈ N. Moreover, letting m → ∞, the inequality (12)

leads to

|un − u∗| ≤ 1

2n−3
|u3 − u2| ∀n ≥ 2,

which can be used as a very crude estimate of the error of the approx-

imation. In most cases, the method is much more efficient and has
an extremely good convergence rate (namely, quadratic convergence:

with every iteration the number of correct decimals roughly doubles).

Moreover, the sequence (11) is derived from a general numerical method

to find the zeros of a differentiable function f , the so-called Newton
method21. The Newton method recursion takes the form Newton

method

un+1 = un −
f(un)

f ′(un)
∀n ∈ N, (16)

where f ′ denotes the derivative of f , and we obtain (11) by choosing
f(x) = x2 − a.

21The method is named after the English mathematician and physicist Sir Isaac Newton

(1642-1726), who was Lucasian Professor of Mathematics at the University of Cambridge. We
like to mention, amongst his many fundamental contributions, the development of Calculus and
notations used today. He shares this achievement with the German mathematician and philosopher
Gottfried Wilhelm Leibniz (1646-1716), who developed similar concepts at the same time and
independently.
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Important concepts/typical problems in this chapter that you should
try without looking anything up:

• State the Theorem of Bolzano-Weierstrass.

• Give an example of a Cauchy sequence (xn) in Q which is not

convergent in Q.

• Give an example of a bounded sequence which has two subse-

quences with different limits.

• Let a, b ∈ R. Show that the sequence (an) given by a1 = a, a2 = b

and an+2 = (an+1 + an)/2 for n ≥ 1 is convergent.

• Give an indirect proof for the following fact: The real sequence

(wn), given by wn+1 = w2
n +1 for all n ≥ 1, does not have a limit

for any real initial value w1 ∈ R.
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7 Functions, Limits and continuity

7.1 Preimage of a function

Recall that a function f : X → Y is a map between sets. In accordance
with Definition 5.4, we define the image of a set X0 ⊂ X under the image of

a set
under a
function

function by
f(X0) = {f(x) | x ∈ X0} ⊂ Y.

In other words, f(X0) is the set of all y ∈ Y which are obtained

as values f(x) for x ∈ X0. Another useful concept is the notion of
the preimage of a set under the function f . We will see below the
surprising fact that the concept of preimage is more consistent with

set theoretical operations than the concept of an image set.

Definition 7.1. Let f : X → Y be a function and Y0 ⊂ Y . The

preimage of the set Y0 under f is a subset of X and given by preimage

f−1(Y0) = {x ∈ X | f(x) ∈ Y0}.

In other words, the preimage f−1(Y0) consists of all elements in X

which are mapped into Y0 under the function f (see the Venn Diagram
illustation in Figure 3).

x1

x2

x3

x4 x5

x6

x7

y1

y2

y3

y4

y5

y6

y7

X
Y

Y0

f

Figure 3: Only the elements x3, x6, x7 are mapped into Y0 = {y5, y6, y7} ⊂ Y under
f , so we have here f−1(Y0) = {x3, x6, x7} ⊂ X .

CAUTION. Note that the preimage of a set is defined for any function
f . In contrast to the definition of the inverse function, which has
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the same notation f−1, we do not need bijectivity22 of f to consider
preimages. However, if f is bijective with inverse f−1 and Y0 ⊂ Y ,
then the preimage f−1(Y0) agrees with the image set of Y0 under the

function f−1. Be aware that the preimage f−1({y}) is a subset of X �
(namely the set of all elements x ∈ X which satisfy f(x) = y), whereas

in the case of bijectivity with inverse function f−1, the expression
f−1(y) is an element of X.

Examples. (a) Let f : R → R be given by f(x) = x2. Since f(−1) =
f(1) = 1, the function f is not injective. But we have

f−1({3}) = {−
√
3,
√
3},

f−1({0}) = {0},
f−1({−1}) = {},
f−1((1, 10]) = [−

√
10,−1) ∪ (1,

√
10],

f−1((−1, 4)) = (−2, 2).

(b) Let g : [0, 2π] → R be given by g(x) = sin(x). Then we have

g−1({0}) = {0, π, 2π},
g−1([−1, 1]) = [0, 2π],

g−1([0, 1)) = [0, π/2) ∪ (π/2, π] ∪ {2π}.

(c) Let h : R → R, h(x) = x2 − 4x + 2. Then the preimage
h−1((−∞, 2]) is

h−1((−∞, 2]) = {x ∈ R | h(x) ≤ 2}.

h(x) ≤ 2 is equivalent to x(x− 4) ≤ 0, which implies

{x ∈ R | h(x) ≤ 2} = [0, 4].

Figure 4 illustrates the preimage h−1((−∞, 2]) as the set of points
of the real axis whose images are ≤ 2.

Proposition 7.2. Let f : X → Y be a function and Y0, Y1 ⊂ Y . Then
we have the following facts.

a) f−1(Y ) = X

b) f−1(Y0 ∪ Y1) = f−1(Y0) ∪ f−1(Y1)

22Recall from the Calculus 1 course that bijectivity of f is defined as follows: if x 6= y then
f(x) 6= f(y).
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Figure 4: Graph of the parabola h(x) = x2 − 4x + 2. The preimage h−1((−∞, 2])
are all x-values for which the graph stays below the horizontal line y = 2.

c) f−1(Y0 ∩ Y1) = f−1(Y0) ∩ f−1(Y1)

d) f−1(Y1\Y0) = f−1(Y1)\f−1(Y0)

Proof. We only prove b) and leave the other identities to the reader.

x ∈ f−1(Y0 ∪ Y1) ⇔ f(x) ∈ Y0 ∪ Y1

⇔ f(x) ∈ Y0 or f(x) ∈ Y1

⇔ x ∈ f−1(Y0) or x ∈ f−1(Y1)

⇔ x ∈ f−1(Y0) ∪ f−1(Y1)

Reader’s Task. Find a simple example of a function f : X → Y and
two subsets X0, X1 ⊂ X such that f(X0 ∩ X1) 6= f(X0) ∩ f(X1).

This shows that taking preimages behaves more consistently under
set operations than taking images.

7.2 Limits of a function

Next we introduce properly expressions like limx→∞ f(x) and limx→c f(x).

It is intuitively clear what we mean by that. limx→∞ f(x) = A means
that if x gets large then f(x) comes closer and closer to the value A.

limx→c f(x) = A means that if x 6= c comes closer and closer to c (note
that f(c) may not be defined) then f(x) comes closer and closer to A.

Here are the precise definitions.

Definition 7.3. let X ⊂ R and f : X → R. For c ∈ R, we say that
”f(x) → A as x → c” or ”limx→c f(x) = A”, if the following holds: limx→c f(x)
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i) For every δ > 0 the intersection ((c− δ, c)∪ (c, c+ δ))∩X is not
empty.

ii) For every ǫ > 0 there exists δ > 0 such that

|f(x)− A| < ǫ ∀ x ∈ ((c− δ, c) ∪ (c, c+ δ)) ∩X.

We say that ”f(x) → A as x → ∞” or ”limx→∞ f(x) = A”, if the
following holds: limx→∞ f(x)

i) X ⊂ R is not bounded above.

ii) For every ǫ > 0 there exists K ∈ R such that

|f(x)− A| < ǫ ∀ x ∈ (K,∞) ∩X. (17)

The expression limx→−∞ f(x) is defined analogously.

Note that in each of the two cases of the above definition, i) guaran-
tees that ii) is actually a proper condition. For example, if X ⊂ R is
bounded, it does not make sense to consider f(x) as x → ∞. More-

over, in this case (K,∞) ∩ X becomes empty if K ∈ R is chosen
sufficiently large, in which case (17) is not a proper condition. The set

(c− δ, c)∪ (c, c+ δ) carries a name: it is the punctured open δ-interval
around c.

The concept of a limit of a function is very similar to the concept of
a limit of a sequence. In fact, the Theorems for limits of sequences
presented in Chapter 3 have counterparts for limits of functions and

the proofs are very similar. As an example, we only present the coun-
terpart of COLT (”Calculus of Limits Theorem”) for sequences.

COLT for
limits of
functions

Theorem 7.4 (COLT). Let A = limx→c f(x) and B = limx→c g(x)
with c ∈ R ∪ {±∞}. Let a, b be constants. Then we have

(i) af(x) + bg(x) → aA+ bB as x → c.

(ii) f(x)g(x) → AB as x → c.

(iii) f(x)
g(x)

→ A
B

as x → c, provided B 6= 0 and g is nowhere zero near

c.

Reader’s Task. Give a proof of statement (ii) in Theorem 7.4. You

may consult the proof of Theorem 3.7 as a guideline.
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The following proposition tells us that if limx→c f(x) = A, then we
have f(xn) → A for every sequence xn → c in the domain of f with
all its terms xn different from c.

Proposition 7.5. Let X ⊂ R, f : X → R and limx→c f(x) = A. Let
(xn) be a sequence in X (in other words, xn ∈ X for all n ∈ N) with
limn→∞ xn = c and xn 6= c for all n ∈ N. Then we have

lim
n→∞

f(xn) = A.

Proof. Let f and (xn) be as in the proposition. We need to show that
the sequence (f(xn)) has the limit A. Choose ǫ > 0. Then there exists

δ > 0 such that

|f(x)− A| < ǫ ∀ x ∈ (c− δ, c+ δ). (18)

Since xn → c, there exists N ∈ N such that

|xn − c| < δ ∀ n ≥ N. (19)

Combining (18) and (19), we obtain

|f(xn)− A| < ǫ ∀ n ≥ N,

finishing the proof of f(xn) → A.

Examples. 1. Compute lim
x→∞

log(x3 + e2x)

x+ 3
. Using COLT and the rule

”powers beat logarithms”, we have

log(x3 + e2x)

x+ 3
=

log(e2x(1 + x3e−2x))

x+ 3
=

2x+ log(1 + x3e−2x)

x+ 3

=
2 + x−1 log(1 + x3e−2x)

1 + 3/x
= 2 as x → ∞.

2. Compute lim
x→1

x3 + x− 2

x− 1
. Here we have limx→1 x

3 + x − 2 = 0

and limx→1 x− 1 = 0, so we cannot use COLT directly. But this
tells us that x3 + x− 2 is divisible by x− 1, and we obtain by a

polynomial division

x3 + x− 2 : x− 1 = x2 + x+ 2.

So we have

lim
x→1

x3 + x− 2

x− 1
= lim

x→1
x2 + x+ 2 = 4.
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3. Check whether f(x) =
x2 cos(x)

2x3 + 3
has a limit as x → −∞. We

have |x2 cos(x)| ≤ x2 and

lim
x→−∞

x2

2x3 + 3
= 0.

Therefore, by an analogue of the Squeezing Theorem (see Theo-
rem 3.5), we also have

lim
x→−∞

x2 cos(x)

2x3 + 3
= 0.

4. Check whether f(x) =
x2

2x3 sin2(x) + 1
has a limit as x → ∞.

We can choose a sequence xn → ∞ for which 2x3
n sin

2(xn) = 0,

namely, xn = nπ. Then we have f(nπ) = n2π2 and see that there
is no limit as x → ∞.

5. Check wether the function f : R → R,

f(x) =

{

1, if x ∈ Q,

0, if x ∈ R\Q
has a limit as x → 0. Note that we can find two different se-
quences xn → 0 and yn → 0 with f(xn) = 1 and f(yn) = 0 for

all n ∈ N (simply choose xn = 1/n and yn =
√
2/n). Therefore,

a limit does not exist by Proposition 7.5.

Remark. We can also define one-sided limits of a function f : X → R

with X ⊂ R. Let c ∈ R. Then we write ”limx→c+ f(x) = A” (or limx→c+ f(x)

”f(x) → A as x → c from the right”) if the following holds:

i) For every δ > 0 the intersection (c, c+ δ) ∩X is not empty.

ii) For every ǫ > 0 there exists δ > 0 such that

|f(x)−A| < ǫ ∀ x ∈ (c, c+ δ) ∩X.

Analogously, we define limx→c− f(x) and call it the ”limit of f(x) as limx→c− f(x)

x → c from the left”. It is an easy exercise to show that if

lim
x→c+

f(x) = lim
x→c−

f(x) = A

then

lim
x→c

f(x) = A.
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Example. let f : R → R be defined by

f(x) =

{

x2 − 2, if x ≥ 1,

−2x, if x < 1.

Then it is easy to see that limx→1− f(x) = −2 and limx→1+ f(x) =
12 − 2 = −1.

7.3 Continuity

Note that for limx→c f(x) to be defined, f(c) does not need to exist.
But if f(c) exists, we may like it to coincide with limx→c f(x), which

leads naturally to the notion of continuity at c.

Definition 7.6. Let X ⊂ R and f : X → R be a function. Then f is

continuous at c ∈ X if we have continuous
at c

f(c) = lim
x→c

f(x).

In other words, f is continuous at c ∈ X if we have

∀ ǫ > 0 ∃ δ > 0 : |f(x)− f(c)| < ǫ ∀x ∈ X with |x− c| < δ.

We say that f : X → R is continuous if f is continuous at all points continuous
functionin X.

In the above example we have f(1) = 12−2 = −1 and limx→1− f(x) =

−2 6= f(1). Therefore, f is not continuous at 1.

An immediate application of Proposition 7.5 is the following.

Corollary 7.7. Let X ⊂ R and f : X → R be continuous at c ∈ X.
Then we have for every sequence (xn) with xn ∈ X for all n ∈ N and
limn→∞ xn = c:

lim
n→∞

f(xn) = f(c).

Remark. In fact, the converse of Corollary 7.7 is also true: If we have
for every sequence (xn) with xn ∈ X for all n ∈ N and limn→∞ xn = c:

lim
n→∞

f(xn) = f(c),

then f is continuous at c. Some books use this fact about sequences
as the definition of continuity. We do not prove the converse here.
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Example. We give a direct ǫ-δ proof that f(x) =
√

|2x+ 4| is contin-
uous at x = −2. We first compute

|f(x)− f(−2)| =
√
2
√

|x+ 2|.

If we assume that |x− (−2)| < δ, then we obtain

|f(x)− f(−2)| <
√
2
√
δ.

If ǫ > 0 is given, we need to find δ > 0 such that ǫ =
√
2
√
δ. This is

equivalent to δ = ǫ2/2. Therefore, for this choice of δ > 0 we have

|f(x)− f(−2)| < ǫ ∀ |x− (−2)| < δ.

It is easy to show that the functions f(x) = c for any c ∈ R and

f(x) = x are continuous. From this we can derive continuity of many
other functions using the following theorem.

Theorem 7.8. Let f, g be continuous at x = c and a, b be constant.
Then we have

(i) af + bg is continuous at x = c.

(ii) fg is continuous at x = c.

(iii) f
g is continuous at x = c, provided g is nowhere zero near c.

(iv) h◦f is continuous at x = c, provided h is continuous at y0 = f(c).

Proof. (i)-(iii) are direct applications of the Calculus of Limits The-
orem 7.4. It remains to prove (iv). To avoid notational difficulties

with the domains of f and h, we assume that both functions f, h are
defined on all of R. Let ǫ > 0 be given. Continuity of h at y0 = f(c)
implies that there exists α > 0 such that

|h(y)− h(y0)| < ǫ ∀ |y − y0| < α. (20)

Continuity of f at c implies that there exists δ > 0 such that

|f(x)− f(c)| < α ∀ |x− c| < δ. (21)

Combining (20) and (21) and using y0 = f(c), we conclude that

|h ◦ f(x)− h ◦ f(c)| < ǫ ∀ |x− c| < δ.
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Now we present three theorems about continuous functions on com-
pact intervals which are of fundamental importance. Before doing so,
we need to explain the notion of a compact interval.

Definition 7.9. Let a < b be two real numbers. A real interval I ⊂ R

of the form I = [a, b] is called closed23 and bounded24. Closed and compact
intervalbounded intervals are also called compact.

In his ”Calculus” book, M. Spivak dedicates a chapter to the following

theorems entitled ”Three Hard Theorems”. He does not prove them
there, but he discusses many important consequences. It is worth to

have a look at this alternative source.

Theorem 7.10 (Intermediate Value Theorem). If f : [a, b] → R is
continuous and f(a) < 0 < f(b), then there exists c ∈ [a, b] with Intermediate

Value
Theorem

f(c) = 0.

Obviously, there are several variations of the Intermediate Value The-

orem which hold also true. For example, we may have f(a) < y < f(b)
and deduce the existence of c ∈ [a, b] with f(c) = y; or we may have

f(a) > y ≥ f(b) and deduce the same fact.
The Intermediate Value Theorem states generally the intuitively clear

fact that if a continuous function, defined on a real interval, assumes
both the real values A < B then it must also assume every value in
between A and B. But we like to mention that the Completeness

Axiom for R plays a crucial role in the proof below.

Theorem 7.11. If f : [a, b] → R is continuous, then f is a bounded

function.

The following third theorem can be rephrased as ”Every continuous

function on a compact interval assumes its maximum”.

Theorem 7.12. If f : [a, b] → R is continuous, then sup(f) exists

and there exists c ∈ [a, b] with f(c) = sup(f).

Now we present the proofs. For Theorem 7.10 we present a proof
which also contains an iterative method to find the value c ∈ [a, b]

with f(c) = 0. There are other shorter proofs for this theorem, but
they are not as constructive.

23Closed refers here to the fact that both end points a and b belong to the interval I.
24Boundedness refers here to the fact that the subset I ⊂ R is a bounded set.
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Proof of Theorem 7.10. The main idea is to construct two sequences
(xn), (yn) with x1 = a and y1 = b, satisfying the following properties

i) (xn) is monotone increasing with f(xn) ≤ 0.

ii) (yn) is monotone decreasing with f(yn) > 0.

iii) We have xn ≤ yn and yn+1 − xn+1 = (yn − xn)/2 for all n ∈ N.

The construction is very easy and called the bisection procedure: Hav- bisection
procedureing already xn and yn, we consider the mid point ξ = (xn + yn)/2 of

the interval [xn, yn] and choose

xn+1 = ξ and yn+1 = yn if f(ξ) ≤ 0 (22)

or
xn+1 = xn and yn+1 = ξ if f(ξ) > 0. (23)

It is easy to see that this construction provides two sequences (xn)
and (yn) with the above properties.

Having such a pair of sequences, we know that (xn) and (yn) are con-
vergent ((xn) is monotone increasing and bounded because of a ≤ xn ≤
b, therefore convergent by Theorem 6.2; similarly for (yn)). Moreover,

we have
lim
n→∞

xn = lim
n→∞

yn,

by the Squeezing Theorem 3.5, since iii) implies that

yn − xn ≤ 1

2n−1
(b− a)

and (b− a)/(2n−1) → 0 as n → ∞.

It remains to show that f(c) = 0 for c = limn→∞ xn. We use continuity,
property i) and Proposition 3.12 to derive

f(c) = lim
n→∞

f(xn)
︸ ︷︷ ︸

≤0

≤ 0.

Analogously, we obtain

f(c) = lim
n→∞

f(yn)
︸ ︷︷ ︸

>0

≥ 0.

Both inequalities together imply that f(c) = 0.
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Example. We like to use the bisection procedure to obtain good ap-
proximations of

√
3. We choose f(x) = x2 − 3 and have f(1) = −2

and f(2) = 1. Therefore, we set x1 = 1 and y1 = 2 and we obtain,

using the rules (22) and (23):

n xn yn yn − xn

2 1.5 2 0.5

3 1.5 1.75 0.25
4 1.625 1.75 0.125

5 1.6875 1.75 0.0625
6 1.71875 1.75 0.03125
7 1.71875 1.734375 0.015625

8 1.7265625 1.734375 0.0078125

After 8 iterations, we know that
√
3 = 1.7320508 . . . lies between

1.7265625 and 1.734375. We like to mention that this is not a very
efficient method to find approximations for

√
3 and that the Newton

method (16) converges much faster. Such considerations are obviously
of practical importance.

Proof of Theorem 7.11. We prove indirectly that f is bounded above.
The fact that f is bounded below is proved analogously. Let us assume
that f : [a, b] → R is continuous and unbounded above. Then there

exists a sequence yn ∈ f([a, b]) with yn ≥ n. Let xn ∈ [a, b] such
that yn = f(xn). Using the Bolzano-Weierstrass Theorem 6.6, we

conclude that there exists a convergent subsequence (xnj
)j∈N. Let

c = limj→∞ xnj
∈ [a, b]. Continuity of f yields

lim
j→∞

f(xnj
) = f(c),

in other words (f(xnj
) is a convergent sequence and, therefore, bounded.

But this is in contradiction to f(xnj
) = ynj

≥ nj ≥ j → ∞ as
j → ∞.

Proof of Theorem 7.12. Let y = sup(f). From property (ii’) we con-
clude that there exists a sequence yn ∈ f(X) with y = limn→∞ yn.

Let yn = f(xn) with xn ∈ [a, b]. Then xn has a convergent subse-
quence (xnj

)j∈N, by the Bolzano-Weierstrass Theorem 6.6. Let c =
limj→∞ xnj

∈ [a, b]. Using continuity of f and Proposition 6.4, we

obtain

f(c) = lim
j→∞

f(xnj
) = lim

j→∞
ynj

= lim
n→∞

yn = y = sup(f).
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Reader’s Task. A good method to fully understand a theorem is to
check whether all assumptions are really necessary. Find examples

that show that the statements in Theorems 7.11 and 7.12 are no longer
true if we replace the compact interval [a, b] by the open and bounded
interval (a, b).

Important concepts/typical problems in this chapter that you should

try without looking anything up:

• Let f : X → Y be a function and Y0 ⊂ Y1 ⊂ Y . Show that

f−1(Y1\Y0) = f−1(Y1)\f−1(Y0).

• Compute lim
x→2

4− x2

3−
√
x2 + 5

.

• Let f : R → R be a function and c ∈ R. Use the contrapositive

proof technique to show: If we have for every convergent sequence
(xn) with limn→∞ xn = c that

lim
n→∞

f(xn) = f(c),

then f is continuous at c.

• Prove the following fact: Let f, g : [a, b] → R be two continuous

functions with f(a) < g(a) and f(b) > g(b). Then there exists
c ∈ [a, b] with f(c) = g(c).
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