
Analysis 1 Problems (Michaelmas Term 2014)

Remarks:

• Some problems need some explanations. These explanations are usually given
right before the questions and are highlighted in boldface.

• Questions which are particularly difficult are marked by a star ”*”. If they
are extraordinarily difficult, we mark then by two stars ”**”.

1 Basic logic and sets

1. Decide whether the following statements are true or false and give an expla-
nation.

a) The product of two odd numbers is odd.

b) We have for all real numbers p, q: If p2− 4q ≥ 0 then x2+ px+ q = 0 has
two different real solutions.

c) For every ǫ > 0 there exists a natural number n such that 1
n
< ǫ.

d) 1001 is a prime number or
∫ π

0
sin(x2)dx ≥ 4.

2. ”Who is who?” There are three people, Anna, Max and Tom, with three
different professions: builder, electrician and lecturer. Assuming that all of
the following statements are true, find out who is who. Show that this puzzle
has only one solution.

a) Today is Monday or Wednesday.

b) If Tom is not the lecturer then Max is the lecturer.

c) Today is Wednesday or Anna is the lecturer.

d) If Tom is the lecturer then Anna is the electician.

e) If today is Wednesday then Tom or Anna is the lecturer.

f) If Tom is not the builder then today is Wednesday.

g) If Max is the electrician then today is Wednesday.

3. Let A,B be statements. Construct truth tables for the two statements ”(notA) orB”
and ”(A andB) or (notA)”. Are these statements equivalent or not?

4. Use De Morgan’s Laws to express the following combined statements only
with the connectives ”not ” and ’ or ” (in other words, eliminate all ” and ”
connectives):

1



a) not (not (A) and (B and (notC))).

b) (A and not (B)) or not (A and not (C)).

c) A and not (B) and not (C) andD.

5. A tautology is a statement such that the truth table has true for all outputs.
Show that each of the following statements are tautologies:

a) A or not (A).

b) A or (A orB) or not (B).

c) not (((A andB) or (B andC)) and (notB)).

The equivalence symbol ”⇔” can also be considered as a connective
between two statements, having the following truth table:

A B A ⇔ B
false false true
false true false
true false false
true true true

This means ”A ⇔ B” is only true if both statements A and B have
the same truth value. We also say ”A if and only if B”. Then the
fact that A and B are equivalent translates into the fact that the
combined statement ”A ⇔ B” is a tautology (see Problem 5).

6. * Express the combined statement ”A ⇔ B” using only the connectives and ,
or and not .

7. Find the union and intersection of {x ∈ R | x2 − 9x + 14 = 0} and {y ∈ Z |
3 ≤ y < 10}.
A Venn Diagram is useful to represent operations of sets geomet-
rically. If U is a subset of X, we can illustrate this as follows (the
shape of U is not important):

X

U

If V is another subset of X, we can express U ∩ V is the following
way (the intersection set is marked):
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X

U V

This allows us to illustrate complex set theoretic expressions. But be
aware that a Venn Diagram never replaces a proof for a set theoretic
identity.

8. Describe the set illustrated in the following Venn diagram.

X

Y

Z

9. * For two real numbers x, y ∈ R, the minimum of x and y is denoted by
min{x, y}. Let a, b ∈ R be two real numbers. Show the following identity:

{x ∈ R | x ≤ a} ∩ {x ∈ R | min{x, a} ≤ b} = {x ∈ R | x ≤ min{a, b}}.

10. Show the following facts:

a) If X ∪ Y = Y then X ⊂ Y .

b) If X ∩ Y = X then X ⊂ Y .

c) If X ⊂ Y then X ∪ Y = Y .

11. The symmetric difference of two sets X, Y is defined as

X∆Y = (X\Y ) ∪ (Y \X).

a) Draw a Venn Diagram to illustrate X∆Y .

b) Draw Venn Diagrams for (X∆Y )∆Z and X∆(Y∆Z).

c) Show that X∆Z ⊂ (X∆Y ) ∪ (Y∆Z).

If X is a set, then the power set P(X) of a set is the set of all subsets
of X. For example, if X = {1, 2}, then

P(X) = {{}, {1}, {2}, {1, 2}}.

Another example: We have N ∈ P(Q).

3



12. * Think about the following statements about power sets and determine which
of them are true, which are false. Try to explain why you think so.

1. If X is a finite set and has n elements, then P(X) is also finite and has
2n elements.

2. If Z = X ∩ Y , then
P(Z) = P(X) ∩ P(Y ).

3. If Z = X ∪ Y , then
P(Z) = P(X) ∪ P(Y ).

13. Show that the following two sets are equal: X = {(cos(t), sin(t)) | t ∈ [0, 2π)}
and Y = {(x, y) ∈ R2 | x2 + y2 = 1}. You may use without proof that for
every x ∈ [−1, 1] there exists t ∈ [0, π] such that cos(t) = x (this can be seen
from the two facts that cos(t) is continuous and monotone decreasing from 1
to −1 on the interval [0, π])) and also other basic properties of sin and cos.
Give a geometric description of these sets.

14. ** (Jack’s Dilemma) Let U, V,X, Y be four subsets of Z. Jack draws the
following Venn Diagrams to show that

Y ∩ (U c ∩ V c ∩Xc) = (V ∪X ∪ Y c)c, (1)

where complements are taken with respect to the set Z.

U V

X Y

Z

Y ∩ (U c ∩ V c ∩Xc)

U V

X Y

Z

V ∪X ∪ Y c

Then he looks at the following example:

U = {1}, V = {3, 4}, X = {3}, Y = {1, 2, 3}

and Z = {1, 2, 3, 4} and obtains

• Y ∩ (U c ∩ V c ∩Xc) = {2},
• (V ∪X ∪ Y c)c = {1, 2}.

While Jack’s Venn Diagrams confirm (1), his example shows that (1) is not
true.

Check that Jack’s Venn Diagram agrees with (1) and that there is no mistake
in his example. Can you explain this discrepancy?
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2 Numbers and Inequalities

15. Find all those values of x for which
3x+ 4

2
≤ 6− x

4
.

16. Find all those values of x for which x2 − x < 2.

17. Find all those values of x for which
−3

x− 4
≤ x.

18. Find all those values of x for which
3

x− 4
< −x.

19. Find all real values of x such that |x2 + x− 4| = 2.

20. For all real x show that |8x− 9| < 7x− 6 if and only if |x− 2| < 1.

21. For all real x show that |2x+ 1| < 3x if and only if x > 1.

22. Find all values of x for which |2x+ 5| > 4.

23. Find all values of x for which |2x+ 1| ≤ |3x− 6|.

24. Find all real numbers x for which |x− 1|+ |x− 2| > 1.

25. Find all real numbers x for which |x− 1|+ |x+ 1| < 2.

26. Using the triangle inequality, prove that

|a|+ |b| ≤ |a+ b|+ |a− b|.

3 Basics about sequences and limits

27. Calculate limn→∞ xn in each of the following cases (or show that no limit
exists).
(a) xn = cos(n2)/

√
n2 + n (b) xn = (3n+ 1)2(4n4 + 1)−1/2

(c) xn = [(1+2n)/(2n)]n (d) xn = [(2n+1)/(n+1)]2n [Hint: show 2n+1
n+1

≥ 3
2
]

(e) xn = (n2 + logn)/
√
2n3 − 1 (f) xn = (n5 + logn)2/n

(g) xn = n2[1/(n+ 1)− 1/(n− 1)].

28. Calculate limn→∞ xn in each of the following cases.
(a) xn = (2n + 1)2/

√
n4 + 1 (b) xn = n(

√
1 + n2 − n) (c) xn = log(n) −

log(n + 1)
(d) xn = (n2 + e−n)/(log(n) + 5n3) (e) xn = (n!)2/[(n − 2)!(n + 2)!] (f)
xn = n!n−n (g) xn = 2n/n! (h) xn = n sin(π/n) [Use sin θ

θ
→ 1 as θ → 0]

(i) xn = (1 + n2)1/n

(j) xn = (n + 3)!/(n!n3) (k) xn = n2[n−1 − (n + 1)−1] .

29. Let xn be as in (d) of the previous question. Given ǫ > 0, show that the
distance from xn to its limit is less than ǫ if n > 2/(5ǫ).

30. Calculate limn→∞ xn in each of the following cases (or show that no limit
exists).
(a) xn = (n + logn2)/

√
n2 + 2 (b) xn =

√
n (n + e−n)

−1
sin(en)
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31. Find the limit of each of the following sequences as n → ∞, or show that
no limit exists. (a) xn = (n2 + en)1/n (b) xn =

√
n
(√

n+ 1−
√
n− 1

)

(c)

xn =
(

n−1
n+1

)n

32. Compute limn→∞ xn for the following: (a) xn = (n2 + n)1/n (b) xn =

n
(√

n+ 1−√
n
)2

33. If {xn} is a sequence such that xn → x∗ as n → ∞, and xn < 0 for all n, prove
that x∗ ≤ 0. Is it necessarily true that x∗ < 0?

34. Compute limn→∞ [(n+ 1)2 − (n− 1)2] / (n +
√
n), or show that the limit does

not exist.

35. Find limn→∞ for each of the following sequences, or show that no limit exists.
(a) xn = (n2+2)1/n (b) xn = [(n+ 2)/(n+ 1)]2n (c) xn = n

(√
n2 + 1−

√
n2 − 1

)

36. Compute limn→∞ [(n+ 1)2 − n2] / (n+ log n), or show that the limit does not
exist.

37. Find the limit of each of the following sequences as n → ∞, or show that the
limit does not exist.
(a) xn =

(

n
n+1

)n
(b) xn =

(

1
n+1

− 1
n−1

) /

sin
(

1
n2

)

(c) xn =
(

3n+2
2n+1

)n

38. Prove that limits are unique: i.e. if xn → x∗ and xn → x′ as n → ∞, then
x∗ = x′.

39. Let (xn) be a sequence. Show the following fact. If (|xn|) is convergent with
limn→∞ |xn| = 0 then (xn) is also convergent with limn→∞ xn = 0.

The following problem deals with fundamental and important facts
about the geometric series. for c ∈ R, c 6= 1, the geometric series is
defined by

xn = 1 + c+ c2 + · · ·+ cn−1.

We can also define (xn) recursively by x1 = 1 and xn+1 = xn + cn.

40. Let c ∈ R and c 6= 1. Define a sequence (xn)n∈N via

xn = 1 + c+ c2 + · · ·+ cn−1.

a) Calculate (1 − c)xn and conclude from it that xn satisfies the explicit
formula

xn =
1− cn

1− c
.

b) Assume that |c| < 1. Show that (xn) is convergent with limit

lim
n→∞

xn =
1

1− c
.

41. Show that if {xn} is a sequence with xn ≤ b for all n, and limn→∞ xn = x∗,
then x∗ ≤ b.

6



42. * If {xn} is a bounded sequence (i.e., there is a number K such that |xn| ≤ K
for all n), and if yn → 0 as n → ∞, prove that xnyn → 0 as n → ∞.

43. Prove that one of the following statements is true and that the other is false.
(a) If xn → 1 as n → ∞, then (xn)

n → 1 as n → ∞.
(b) * If 0 < r < 1 and xn → r as n → ∞, then (xn)

n → 0 as n → ∞.

44. Compute limn→∞(t+1/n)n for each positive real value of t for which this limit
exists.

45. Determine for which real values of x the sequence {n−1xn} tends to a limit as
n → ∞.

46. Compute limn→∞ xn, or show that the limit does not exist, for each of the
following.
(a) xn = (pn + qn)1/n, with p ≥ q ≥ 0
(b) xn = n

∫ n

0
e−nx dx [Hint: do the integral]

(c) xn = (1 + 1/n)n
2

[Hint: log].

47. Prove the following facts:

a) Let (an) be a real sequence. (a2n) is convergent if and only if (|an|) is
convergent.

b) If (an) is convergent then an+1 − an → 0 as n → ∞.

4 More logic: Quantifiers, negation and proof tech-

niques

48. Give an indirect proof for the following fact: If X ∩ Y ⊂ Z and x ∈ Y , then
x 6∈ X\Z.

49. For each of the following statements, restate it without using the abbreviating
quantifiers. Explain in your own words what it means. Finally, write down its
negation.

a) Let (xn)n∈N be a sequence of real numbers. The first statement reads as
follows:

∀C > 0 ∃n ∈ N : xn > C.

b) Let f : R → R be a given function. The second mathematical statement
reads as follows:

∀ x ∈ R ∀ y ≥ x : f(x) ≤ f(y).

c) Let X, Y be two sets and g : X → Y be a function. The third mathe-
matical statement reads as follows:

∀ y ∈ Y ∃ x ∈ X : y = g(x).

50. Formulate the contrapositive statements of the following true statements (you
do not need to prove them):
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a) If the sides lengths a, b, c of a triangle satisfy a2+b2 = c2 then the triangle
is right-angled.

b) If four points in the plane lie on a common circle then the opposite angles
of the corresponding quadrilateral add up to 180o.

The following three questions deal with unions and intersections of

infinitely many sets. Let Xn with n ∈ N be a family of sets. The
union of these sets is then denoted by

⋃

n∈N Xn and is defined as
follows:

⋃

n∈N
Xn = {x | ∃n ∈ N : x ∈ Xn}.

In other words,
⋃

Xn consists of all elements which are contained in
at least one of the sets Xn. Similarly, the intersection of these sets
is denoted by

⋂

n∈N Xn and is defined as follows:

⋂

n∈N
Xn = {x | ∀n ∈ N : x ∈ Xn}.

In other words,
⋂

Xn consists of all elements which are contained in
all of the sets Xn.

Note also that we can also take unions and intersections over other
index sets, so

⋃

p primeXp and
⋂

q∈Q Uq make perfect sense.

51. Let Xn with n ∈ N be sets. Assume that all these sets Xn are subsets of a set
X . Show the following Laws of De Morgan for infinitely many sets:

X\
(

⋃

n∈N
Xn

)

=
⋂

n∈N
(X\Xn)

and

X\
(

⋂

n∈N
Xn

)

=
⋃

n∈N
(X\Xn).

52. The following infinite unions and intersections represent relatively simple sub-
sets of R. Find these sets in each case and justify your answer:
(i)
⋃

n∈N[1/n, 1) (ii)
⋂

n∈N(−1/n, 2/n) (iii)
⋃

n∈N[1, n).

53. Express the following sets as infinite unions/intersections of concrete sets:
(a) {x ∈ R | 0 < sin(x) ≤ 1} (b) all natural numbers which are not squares or
cubes of primes.

54. * Show that the following statements about the real numbers x and y are
equivalent:
(a) x ≥ y; (b) For every ǫ > 0 we have x > y − ǫ; (c) For every ǫ > 0 we
have x+ ǫ > y.

The following questions deal with an important proof technique
called Proof by Induction. Assume you have a conditional state-
ment A(n) depending on a natural number n ∈ N. Induction is a
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method to prove that ”A(n) is true for all n ∈ N”. Proof by Induc-
tion goes as follows:
(a) Start of Induction: You show that A(1) is true.
(b) Induction Step: You show that if A(n) is true then A(n + 1) is
also true.
The start value does not need to be 1. Here is a concrete example:
Let A(n) be ”2n ≥ n2”. We want to show that A(n) holds for all n ≥ 4.
(a) Start of Induction: We have 24 = 16 = 42.
(b) Induction Step: Assume that n ≥ 4 and we have 2n ≥ n2. Then

2n+1 = 2 · 2n ≥ 2n2 ≥ n2 + 4n ≥ n2 + 2n + 1 = (n+ 1)2.

(a) and (b) together imply that A(n) holds for all n ≥ 4.

55. Show the following formulas by induction:

i) 1 + 2 + 3 + · · ·+ n = n(n+1)
2

.

ii) 12 + 22 + · · ·+ n2 = n(n+1)(2n+1)
6

.

56. Prove the following inequality by Induction.
Bernoulli’s Inequality: Let x > −1 and n ∈ N. Then we have

(1 + x)n ≥ 1 + nx.

57. Use Bernoulli’s Inequality introduced in Problem 56 to prove the following
facts about sequences:

a) If c > 1 then the sequence (cn)n∈N becomes arbitrarily large as n → ∞,
i.e., for every K > 0 there exists N ∈ N such that cn ≥ K for all n ≥ N .
[Hint: Set c = 1 + x.]

b) If 0 < c < 1 then the sequence (cn)n∈N is convergent with limn→∞ cn = 0.
[Hint: Set c = 1/(1 + x).]

58. * Let a1, . . . , an > 0. Then the arithmetic mean is defined by

A(a1, . . . , an) =
a1 + · · ·+ an

n
,

and the geometric mean is defined by

G(a1, . . . , an) = n
√
a1 . . . an.

We now prove the Inequality of the Arithmetic and Geometric Means, namely

G(a1, . . . , an) ≤ A(a1, . . . , an).

Let S(n) be the statement

∀ a1, . . . , an > 0 : G(a1, . . . , an) ≤ A(a1, . . . , an).

Proceed with the proof via the following steps:

a) Prove that S(2) is true.

b) Let n ≥ 2. Prove that if S(2) and S(n) are true then also S(2n).

c) Prove for all n ≥ 2 that if S(n + 1) is true, then also S(n). [Hint: Use
G(a1, . . . , an, G(a1, . . . , an)) = G(a1, . . . , an).]

d) Finally, explain why this show that S(n) is true for all n ≥ 2.
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5 The Completeness Axiom for R

59. Determine the sup and inf, where they exist, of the following sets:
(a) S = {x : |2x− 1| < 11} (b) S = {x+ |x− 1| | x ∈ R}.

60. Determine infimum and supremum of the following sets:
(i) {x | x < 0 andx2 + x− 1 < 0}
(ii) {1/n+ (−1)n | n ∈ N}.

61. Compute the sup and the inf of the function f(x) = ex/(1+ ex), where x ∈ R.

62. Compute the sup and the inf of the function f(x) = x/(1 + |x|), where x ∈ R.

63. Determine the least upper bound and the greatest lower bound of each of the
following sets:
(a) X = {(n2 − n)/(n2 + 1) | n ∈ N} (b) Y = {(2m + n)/(m + 3n) |
n,m ∈ N}.

64. Determine the supremum of g(x) = (x cos2 x− 2)/(2x cos2 x+ 2) for x ≥ 0.

65. Determine the least upper bound and the greatest lower bound of each of the
following functions (where x ranges over the real numbers):
(a) f(x) = (1 + x2 cosx)/(2 + x2) (b) g(x) = x2 exp(−x2).

66. If g is bounded above, and f(x) < g(x) for all x, prove that sup(f) ≤ sup(g).
Is it necessarily true that sup(f) < sup(g)?

67. Compute the supremum and the infimum of the function
f(x) = x2/(1 + x2) on R.

68. Compute the supremum and the infimum of the function
f(x) =

√
x/(2 + x) for x > 0.

69. Compute the supremum and the infimum of the function
f(x) = x/(x2 + 1) for x > 0.

70. ** Let a, b ∈ R with a < b and f : [a, b] → [a, b] be a monotone increasing
function, i.e., we have f(x) ≤ f(y) for all x, y ∈ [a, b] with x ≤ y. Moreover,
we assume that f(a) > a and f(b) < b. Show that there exists x∗ ∈ (a, b) with
f(x∗) = x∗ (i.e., there exists a fixed point x∗ of the map f : [a, b] → [a, b]).
[Hint: Consider sup({x ∈ [a, b] : f(x) ≥ x}).]

6 More on limits of sequences

71. ** The sequence {xn} is defined recursively by x1 = 10 and xn+1 =
√
6 + xn.

Find limn→∞ xn. [Hint: first find the fixed points of the iteration.]

72. Let xn =

(

1 +
1

n

)n

≥ 1. Here is a proof that (xn) is convergent.

10



a) Show for n ∈ N that

xn+1

xn
=

(

1− 1

(n+ 1)2

)n(
n+ 2

n+ 1

)

.

b) * Use Bernoulli’s Inequality (see Problem 56) to show that

xn+1

xn
≥ 1 + (n+ 1)3

(n + 1)3
> 1.

This means that the sequence (xn) is monotone increasing.

c) Use similar arguments to show that the sequence yn =

(

1− 1

n + 1

)n+1

≥
0 is also monotone increasing.

d) Show that xn+1yn ≤ 1 for all n ∈ N and that (xn) is therefore bounded
above by 4.

e) Conclude that (xn) is convergent.

73. Let (an) be the sequence defined by a1 = 1 and an+1 =
√
an + 1.

(a) Show that if 1 ≤ an ≤ (1 +
√
5)/2 then 1 ≤ an+1 ≤ (1 +

√
5)/2, which

implies that (an) is bounded below by 1 and above by (1 +
√
5)/2.

(b) Show that (an) is monotone increasing.

(c) Prove that limn→∞ an = (1 +
√
5)/2.

The number (1 +
√
5)/2 is called the golden ratio.

74. Let In = [an, bn] ⊂ R be a family of a non-empty closed intervals (where
n ∈ N) with the following properties:

(a) We have In+1 ⊂ In for all n ∈ N.

(b) We have bn − an → 0 as n → ∞.

Show that there exists a unique number c ∈ R with c ∈ In for all n ∈ N.
This fact is called the principle of nested intervals.

75. * Give an example that the statement in Problem 74 is no longer true if we
choose open intervals In = (an, bn) instead of closed intervals.

76. (a) Prove the following fact (Proposition 6.4): Let (xn) be convergent with
limit x∗ = limn→∞ xn and (xnj

) be a subsequence. Then (xnj
) is also conver-

gent and we have
lim
j→∞

xnj
= x∗.

(b) Give the contrapositive formulation of the statement proved in (a).

77. Prove the following fact (Theorem 6.8): If (xn) is a Cauchy sequence then (xn)
is bounded.

78. Prove the following fact (Theorem 6.9): If (xn) is convergent then (xn) is also
a Cauchy sequence.
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79. (a) Let a ≤ b be real numbers. Show that the sequence a1 = a, a2 = b and
an+2 = (an+1 + an)/2 for n ≥ 1 is a Cauchy sequence.
(b) ** Find the limit of the sequence introduced in (a).

80. a) ** Let (un)n∈N be a sequence satisfying 0 ≤ un+1 ≤ un/2 + 1/n for all
n ∈ N. Show that (un) is convergent and limn→∞ un = 0. [Hint: Give an
indirect proof.]

b) Let (an)n∈N be a sequence with a1 ≥ 1 and an+1 =
√
an+1/n. Show that

(an) is convergent and limn→∞ an = 1. [Hint: Define un = an− 1 and use
fact a).]

81. Let (un) be defined by u1 = 1 and

un+1 = un +
(−1)n

n
∀n ∈ N.

Show that the subsequence (u2k−1)k∈N is monotone decreasing and that the
subsequence (u2k)k∈N is monotone increasing. Conclude from this that the
sequence (un)n∈N is convergent.

82. Give an indirect proof for the following fact: The real sequence (wn), given by
wn+1 = w2

n + 1 for all n ≥ 1, does not have a limit for any real initial value
w1 ∈ R.

83. * Prove the following fact: Let (un) be a bounded real sequence and c ∈ R. If
we have for every convergent subsequence (unj

)j∈N that limj→∞ unj
= c, then

(un) is convergent and we have

lim
n→∞

un = c.

[Hint: Use an indirect proof.]

84. Use the Newton method to calculate iteratively
√
5 up to an error ≤ 10−4.

7 Functions, Limits and continuity

85. Let f : R3 → R, f(x, y, z) = x2 + y2 + z2. Describe the preimages f−1({−1}),
f−1({0}), f−1({1}) and f−1([1, 2]) geometrically.

86. Let f : [0, 4] → R, f(x) = sin(πx). Sketch the graph of f and determine the
preimage f−1([0, 1)) ⊂ R.

87. Let f : X → Y be a function and X0 ⊂ X and Y0 ⊂ Y . Show the following
facts:

(a) f(f−1(Y0)) ⊂ Y0,

(b) f−1(f(X0)) ⊃ X0.

88. Compute limx→∞ f(x) for the following functions, or show that no limit exists.
(a) f(x) = x/

√
4 + x2 (b) f(x) = (x+ log x2)/(3x+ 2)

(c) f(x) = x
√
x2 + 3− x2 (d) f(x) = x/(1 + x2 sin2 x)
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89. Given f(x) =
√
5x+ 1. Find limh→0

f(x+h)−f(x)
h

when x > −1
5
.

90. Evaluate limx→1
x−1√
x2+3−2

.

91. (a) Show that limx→∞(x−
√
x2 − 1) = 0.

(b) Show that the hyperbola x2/a2 − y2/b2 = 1 gets arbitrarily close to to the
asymptote y = (b/a)x as x → ∞.

92. Find limx→0

√
x+3−

√
3

x
.

93. Calculate limx→1
2x4−6x3+x2+3

x−1
.

94. Calculate limh→0

√
4+h−2
h

.

95. Calculate the limit if it exists:

(a) lim
x→2

(

1

2− x
− 12

8− x3

)

.

(b) lim
x→0

x

|x| .

96. Calculate the following limits:
(a) limx→4

√
x−2
4−x

.

(b) limh→0
(2+h)4−16

h
.

97. Let f(x) = 3x+|x|
7x−5|x| . Evaluate (a) limx→∞ f(x) (b) limx→−∞ f(x) (c) limx→0+ f(x)

(d) limx→0− f(x).

98. Calculate the following limits:

(a) lim
x→∞

(

3x

x− 1
− 2x

x+ 1

)

.

(b) lim
x→1

1

x− 1

(

1

x+ 3
− 2x

3x+ 5

)

.

99. Calculate limh→0

3
√
8+h−2
h

. [Hint: Let x3 = 8 + h.]

100. Assume you know that limx→0
ex−1
x

= 1. Derive from this the following results:

(a) lim
x→0

e−ax − e−bx

x
= b− a.

(b) lim
x→0

ax − bx

x
= log(a/b) if a, b > 0.

(c) lim
x→0

tanh(ax)

x
= a, where tanh(x) =

ex − e−x

ex + e−x
.

101. * Let f : R → R be a function and c ∈ R. Use the contrapositive proof tech-
nique to show: If we have for every convergent sequence (xn) with limn→∞ xn =
c that

lim
n→∞

f(xn) = f(c),

then f is continuous at c.

102. Give ǫ-δ proofs that the functions f(x) = 3x + 1 with x ∈ R and g(x) = 1/x
with x > 0 are continuous.
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103. Show that every function f : N → R is continuous.

104. Prove the following fact: If f is continuous on [a, b] ⊂ R and c ∈ (a, b) with
A = f(c) 6= 0, then there exists δ > 0 with a ≤ c − δ, c + δ ≤ b and
|f(x)| > |A|/2 for all x ∈ (c− δ, c+ δ).

105. ** Give the details of the proof that if f, g : R → R are continuous at a then
their product is also continuous at a (without using COLT).

106. * Show that if the functions f and g are continuous on (a, b), then so are
m(x) = min{f(x), g(x)} and M(x) = max{f(x), g(x)}.

107. ** Let g : [a, b] → R be continuous, and define h(x) = sup{g(y) : a ≤ y ≤ x}
for x ∈ [a, b]. Prove that h is continuous on [a, b].

108. Let f(x) = 2x3 − 3x2 + 7x − 9. Show that there exists a number c ∈ (1, 2)
with f(c) = 1.

109. Prove that f(x) = cos(x)ex + 1 has no zeros in (−∞, 0] and infinitely many
zeros in (0,∞).

110. Let f(x) = xn + an−1x
n−1 + . . . a1x + a0 be a real polynomial. Show the

following facts:

(a) If n is odd and a0 > 0 then f has a zero in (−∞, 0).

(b) If a0 < 0 then f has a zero in (0,∞).

(c) If n is even and a0 < 0 then f has a zero in (−∞, 0).
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