Algebraic Geometry III/IV

Solutions, set 6.

Exercise 9. Let $C \subset \mathbb{P}^2_{\mathbb{C}}$ be a non-singular cubic. As mentioned in the exercise, we can projectively transform C into C_F with

$$F(X, Y, Z) = (\alpha X + \beta Y + \gamma Z)YZ + G(X, Z),$$

where $\beta \neq 0$ and

$$G(X,Z) = aX^3 + bX^2Z + dXZ^2 + qZ^3$$

with $a \neq 0$. Combining both expressions and substituting $c = \alpha$, $e = \beta$ and $f = \gamma$, we end up with

$$F(X, Y, Z) = aX^{3} + bX^{2}Z + cXYZ + dXZ^{2} + eY^{2}Z + fYZ^{2} + gZ^{3},$$

where $a \neq 0$ and $e \neq 0$.

(a) The substitution yields

$$\begin{split} aX^3 + bX^2Z + cX(Y - \frac{c}{2e}X - \frac{f}{2e}Z)Z + dXZ^2 + e(Y - \frac{c}{2e}X - \frac{f}{2e}Z)^2Z \\ + f(Y - \frac{c}{2e}X - \frac{f}{2e}Z)Z^2 + gZ^3 &= aX^3 + bX^2Z + cXYZ - \frac{c^2}{2e}X^2Z - \frac{cf}{2e}XZ^2 \\ + dXZ^2 + eY^2Z + \frac{c^2}{4e}X^2Z + \frac{f^2}{4e}Z^3 - cXYZ - fYZ^2 + \frac{cf}{2e}XZ^2 + fYZ^2 - \frac{cf}{2e}XZ^2 \\ - \frac{f^2}{2e}Z^3 + gZ^3 &= aX^3 + b'X^2Z + d'XZ^2 + eY^2Z + g'Z^3, \end{split}$$

with the same non-zero coefficients a and e of X^3 and Y^2Z .

(b) The substitution yields

$$a'(X - \frac{b'}{3a'}Z)^3 + b'(X - \frac{b'}{3a'}Z)^2Z + d'(X - \frac{b'}{3a'}Z)Z^2 + e'Y^2Z + g'Z^3$$

$$= a'X^3 + (-3a'\frac{b'}{3a'} + b')X^2Z + d''XZ^2 + e'Y^2Z + g''Z^3$$

$$= a'X^3 + d''XZ^2 + e'Y^2Z + g''Z^3$$

with the same non-zero coefficients a' and e' of X^3 and Y^2Z .

(c) Since $e'' \neq 0$, we can arrange e'' = 1 by substituting Z by $\frac{1}{e''}Z$. Since $a'' \neq 0$, we can arrange a'' = -4 by rescaling X appropriately. So we end up with

$$Y^2Z = 4X^3 - d''XZ^2 - g''Z^3.$$

Choosing $g_2 = d''$ and $g_3 = g''$, we obtain the desired Weierstraß normal form.

(d) Assume that $C = C_F$ with $F(X, Y, Z) = Y^2 Z - 4X^3 + g_2 X Z^2 + g_3 Z^3$ is a singular cubic. Then there is a point $P = [a, b, c] \in \mathbb{P}^2_{\mathbb{C}}$ with $F(P) = F_X(P) = F_Y(P) + F_Z(P) = 0$. We have

$$F(X,Y,Z) = Y^{2}Z - 4X^{3} + g_{2}XZ^{2} + g_{3}Z^{3},$$

$$F_{X}(X,Y,Z) = -12X^{2} + g_{2}Z^{2},$$

$$F_{Y}(X,Y,Z) = 2YZ,$$

$$F_{Z}(X,Y,Z) = Y^{2} + 2g_{2}XZ + 3g_{3}Z^{2}.$$

From $F_Y(P) = 0$ we conclude that b = 0 or c = 0. If c = 0, we conclude from $F_X(P) = 0$ that a = 0 and from $F_Z(P) = 0$ that also b = 0, which is a contradiction. Therefore, we must have $c \neq 0$ and b = 0. From b = 0 and $F_Z(P) = 0$, we conclude that $2g_2ac + 3g_3c^2 = 0$. Since $c \neq 0$, this implies that $2g_2a + 3g_3c = 0$. We conclude from $0 = F_X(P) = -12a^2 + g_2c^2$ that

$$0 = -12g_2^2a^2 + g_2^3c^2 = -3(2g_2a)^2 + g_2^3c^2 = -3(-3g_3c)^2 + g_2^3c^2 = (-27g_3^2 + g_2^3)c^2.$$

Since $c \neq 0$, we finally conclude that $g_2^3 - 27g_3^2 = 0$.

Conversely, let $g_2^3 - 27g_3^2 = 0$. In the case $(g_2, g_3) = (0, 0)$, we choose $P = [0, 0, 1] \in \mathbb{P}^2_{\mathbb{C}}$, and we see that $F(P) = F_X(P) = F_Y(P) = F_Z(P) = 0$, i.e., C_F is singular. If $(g_2, g_3) \neq (0, 0)$, we choose $P = [3g_3, 0, -2g_2] \in \mathbb{P}^2_{\mathbb{C}}$. Then we have

$$F(3g_3, 0, -2g_2) = -108g_3^3 + 12g_2^3g_3 - 8g_2^3g_3$$

$$= 4g_3(g_2^3 - 27g_3^2) = 0,$$

$$F_X(3g_3, 0, -2g_2) = -108g_3^2 + 4g_2^3 = 4(g_2^3 - 27g_3^2) = 0,$$

$$F_Y(3g_3, 0, -2g_2) = 0,$$

$$F_Z(3g_3, 0, -2g_2) = -12g_2^2g_3 + 12g_2^2g_3 = 0.$$

This shows that C_F is singular.