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Problem

▶ Given: univariate count data y1, . . . , yn.

▶ Is it plausible to assume that y1, . . . , yn are generated from a
given (hypothesized) count distribution F?

▶ Specifically, denote F = F (µi , θi ), with both µi = E (Yi |xi )
and θi (possibly) depending on covariates xi .

▶ Assume that a routine to obtain estimates µ̂i = Ê (Yi |xi ) and
θ̂i is readily available.

▶ Denote N(k), for k = 0, 1, 2, . . ., the number of observed
counts k in y1, . . . , yn.

▶ Idea: check whether, for each count k = 0, 1, 2, . . ., the
number N(k) is ‘plausible’ under the distribution F (µ̂i , θ̂i ).
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θ̂i is readily available.

▶ Denote N(k), for k = 0, 1, 2, . . ., the number of observed
counts k in y1, . . . , yn.

▶ Idea: check whether, for each count k = 0, 1, 2, . . ., the
number N(k) is ‘plausible’ under the distribution F (µ̂i , θ̂i ).



Problem

▶ Given: univariate count data y1, . . . , yn.

▶ Is it plausible to assume that y1, . . . , yn are generated from a
given (hypothesized) count distribution F?

▶ Specifically, denote F = F (µi , θi ), with both µi = E (Yi |xi )
and θi (possibly) depending on covariates xi .

▶ Assume that a routine to obtain estimates µ̂i = Ê (Yi |xi ) and
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Poisson-Binomial distribution

▶ The random variable N(k) follows a Poisson–Binomial
distribution with parameters p1(k), . . . , pn(k), where

pi (k) = P(k |µi , θi )

is the probability of observing the count k under covariate xi
and model F (Chen and Liu, 1997).

▶ The pi (k) can be estimated by p̂i (k) = P(k |µ̂i , θ̂i ) from the
fitted model.

▶ For instance, in the special case that F (µi , θi ) corresponds to
Pois(µi ), one has p̂i (k) = exp(−µ̂i )µ̂

k
i /k!.

▶ This scenario was discussed in the previous talk with focus on
the case k = 0.

▶ This talk generalizes those ideas to general k and F and
proposes a generic diagrammatic tool.
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Plausibility intervals for N(k)

▶ Knowing the distribution of N(k), one can derive intervals of
plausible values of N(k) by considering appropriate quantiles
from this distribution.

▶ For fixed k , appropriate lower and upper quantiles, say
qα/2(k) and q1−α/2(k) of the Poisson–Binomial distribution
can be computed using the R package poibin (Hong, 2013).

▶ Do this for a range of values of k, and plot intervals
(qα/2(k), q1−α/2(k)) alongside observed values N(k) as a
function of k .



Example: simulated data

▶ n = 100 observations y1, . . . , yn simulated from a
Zero–inflated Poisson (ZIP) distribution with Poisson
parameter µ = 1.5 and zero–inflation parameter p = 0.2

k N(k)

0 38
1 28
2 15
3 7
4 8
5 1
6 2
7 1
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Example: simulated data

▶ Consider F (µ) ∼ Pois(µ) with µ̂ = ȳ , so p̂(k) = e−ȳ ȳk

k! .

k N(k) q0.05(k) q0.95(k)

0 38 19 33
1 28 27 43
2 15 17 31
3 7 6 16
4 8 1 7
5 1 0 3
6 2 0 1
7 1 0 0
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Median-adjustment
▶ The previous graph can be difficult to read if the sample size

is large, and so the bounds get very tight.
▶ We therefore adjust it by subtracting the medians

M(k) = med(N(k)) from all values, where the median is
taken wrt to the Poisson-Binomial distribution of N(k).
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Median-adjustment

▶ The previous graph can be difficult to read if the sample size
is large, and so the bounds get very tight.

▶ We therefore adjust it by subtracting the medians
M(k) = med(N(k)) from all values, where the median is
taken wrt to the Poisson-Binomial distribution of N(k).

k N(k) M(k) N(k)–M(k) q0.05(k)–M(k) q0.95(k)– M(k)

0 38 26 12 -7 7
1 28 35 -7 -8 8
2 15 24 -9 -7 7
3 7 10 -3 -4 6
4 8 3 5 -2 4
5 1 1 0 -1 2
6 2 0 2 0 1
7 1 0 1 0 0



Median–adjusted bounds

▶ Diagnostic plot for the accuracy of the Poisson assumption.
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Median–adjusted bounds: Variant

▶ Exchange horizontal and vertical axis:
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▶ ‘Christmas tree diagram’/ ‘Quantile band plot’ (Wilson &

Einbeck, 2021)

▶ Adequate models have the ‘decoration’ inside the tree.
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Example: Biodosimetry data

▶ Frequency of dicentric chromosomes in human lymphocytes
after in vitro exposure to doses between 1 and 5Gy of 200kV
X–rays. The irradiated blood was mixed with non–irradiated
blood in a proportion 1:3 in order to mirror a partial body
exposure scenario.

Frequency of counts
dose 0 1 2 3 4 5 6 7 8

1 2713 78 8 0 1 0 0 0 0
2 1302 71 22 5 0 0 0 0 0
3 1116 46 28 7 2 1 0 0 0
4 929 18 14 22 13 2 0 1 1
5 726 17 18 12 9 13 1 4 0



Example: Biodosimetry data

▶ Frequency of dicentric chromosomes in human lymphocytes
after in vitro exposure to doses between 1 and 5Gy of 200kV
X–rays. The irradiated blood was mixed with non–irradiated
blood in a proportion 1:3 in order to mirror a partial body
exposure scenario.

k
x 0 1 2 3 4 5 6 7 8 # cells

1 2713 78 8 0 1 0 0 0 0 2800
2 1302 71 22 5 0 0 0 0 0 1400
3 1116 46 28 7 2 1 0 0 0 1200
4 929 18 14 22 13 2 0 1 1 1000
5 726 17 18 12 9 13 1 4 0 800

N(k) 6786 230 90 46 25 16 1 5 1 n = 7200



Modelling of biodosimetry data

▶ These are n = 7200 observations of the type (dosei , yi ), with
yi being a count in 0, . . . , 8.

▶ X–rays are sparsely ionizing — the literature suggests a
quadratic dose model in this case.

▶ Link function:
▶ Cytogeneticists prefer identity link.
▶ Being among Statisticians (?), I will use the log link.

▶ Response (count) distribution:
▶ It is widely accepted that the number of dicentrics in irradiated

blood samples is Poisson distributed.
▶ However, under partial body exposure, we would expect a

deviation from this assumption...

▶ Consider the initial model yi |dosei ≈ Pois(µi ) with

µi ≡ E (yi |dosei ) = exp
(
β0 + β1dosei + β2dose

2
i

)
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Diagnostics for Biodosimetry data

Do the same as before. That is,

▶ estimate
µ̂i =
exp{β̂0 + β̂1dosei + β̂2dose

2
i };

▶ build
p̂i (k) = exp{−µ̂i}µ̂k

i /k!;

▶ Use Poisson-Binomial
distribution with parameters
p̂i (k).

k N(k) q0.05(k) q0.95(k)

0 6786 6442 6524
1 230 622 700
2 90 41 64
3 46 1 7
4 25 0 1
5 16 0 0
6 1 0 0
7 5 0 0
8 1 0 0



Diagnostics for biodosimetry data

▶ ...without median– adjustment:
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▶ does not look very useful since boundaries are very close.



Diagnostics for biodosimetry data

▶ ...with median– adjustment:
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▶ much better!



Christmas tree diagram: Poisson hypothesis
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▶ We clearly observe zero–inflation (and associated 1–deflation);
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Christmas tree diagram: ZIP hypothesis

▶ Do all the same as before, but now compute µ̂i , θ̂i , and p̂i (k),
using the zero–inflated Poisson (ZIP) model as the
hypothesized model.
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▶ indicates a good fit.
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Christmas tree diagram: NB hypothesis

▶ Repeat the procedure using the negative Binomial model as
the hypothesized model.
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▶ indicates that the NB model does not capture the data well.
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Christmas tree diagram: PIG hypothesis

▶ Repeat the procedure using the Poisson inverse Gaussian
(PIG) model as the hypothesized model.
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Alternative data set: Whole body exposure

▶ Counts of dicentric chromosomes in 4400 blood cells after in
vitro ‘whole body’ exposure with 200kV X-rays from 0 to
4.5Gy.
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▶ indicates that Poisson model is fairly reasonable.
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Multiple testing ?

▶ If considered as a series of statistical tests over counts
k = 0, 1, 2, ..., one can argue that multiple testing issues arise.

▶ For instance, if the tree covers ten possible counts, at a
significance level of 0.1 one would expect one piece of
decoration to fall outside the tree purely by chance.

▶ One could adjust this through a Bonferroni correction etc.

▶ However, we do believe that the corresponding inflated
boundaries would be rather meaningless.

▶ Hence, we do not make such a correction, but explicitly do
not advocate this procedure as a testing procedure.

▶ It should rather be seen as a diagnostic device, similar as a
residual plot or a QQ-plot.
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Comparison with score tests
▶ Alternatively, one can carry out traditional score tests.

▶ For instance, consider H0: Poisson versus H1: ZIP or H1: NB.

▶ Score test statistic T = ST J−1S , where S and J are the score
function and Fisher Information matrix (resp.) evaluated
under the Poisson model. Asymptotically, T ∼ χ2(1).

▶ Resulting values of T , to be compared with χ2
1,0.95 = 3.84:

Test Body exposure

Partial Whole
Pois/ZIP 1996.30 1.00
Pois/NB 6009.35 0.90

▶ Confirms that Poisson is adequate for whole body exposure
but inadequate for partial body exposure (Oliveira et al, 2016).

▶ ...but the score test does not tell us whether it’s the zero’s
which cause the problem, nor whether the data are
zero–inflated or –deflated!
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Conclusion

▶ We have provided a simple diagrammatic tool to assess the
adequacy of any given count data model.

▶ For each count k, bounds are constructed as quantiles of the
Poisson-Binomial distribution.

▶ How exactly to compute the quantiles? Traditional quantiles,
as produced by poibin, can behave infavorably for discrete
distributions; we therefore advocate the use of ‘mid-quantiles’
(Wilson & Einbeck, 2021).

▶ Estimation of model parameters when the model is inadequate
can possibly be tricky!

▶ For the work carried out in this talk, all parameters have been
estimated under the hypothesized model.

▶ In the special case of F ∼ Pois and k = 0, an improved mean
estimator µ̂i has been proposed in the previous talk.

▶ More work required for the more general case of an arbitrary
count/distribution.
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Find our code on ResearchGate...
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