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1. Introduction

Fig 1. Faithful Data

Random effect methodology is proposed for the dimension reduction of multivariate data, xi ∈ Rm. This
is achieved by projecting the original data onto the estimated low-dimensional latent space, α + βz, where
α, β ∈ Rm and z is a one-dimensional random effect represented by a discrete mixture with mass points z1,...,zk

and masses π1,...,πk, k = 1, ..., K. The observed data are assumed to be generated from the ‘generative linear
mixture model’ (Lawson and Einbeck, 2012)

xi = α + βzk + εi,

where α + βzk are the cluster centers on the straight line, and εi ∼ N(0, Σ) is the Gaussian noise added to the
cluster centers. Under the original approach, the variance matrix Σ ∈ Rm×m is assumed to be a diagonal matrix,
diag(σ2

j ){1≤j≤m} and to be the same for all K components of the mixture. The previous assumption on the
variance disregards other geometric features that clusters might have, such as clusters with different sizes, shapes
or orientations determined by the covariance. So, we consider several types of variance matrix parametrizations.
We also solve an identifiability issue inherent to the original approach.

2. Methodology
• The parameters α, β, zk, σj and πk will be estimated through the EM Algorithm. By using the

posterior probability that xi belongs to component k,

wik = πkfik∑K
l=1 πlfil

where for the (original) generative linear mixture model

fik = 1
(2π)m/2

1
|Σ|1/2 exp

(
−1

2(xi − α − βzk)T Σ−1(xi − α − βzk)
)

,

one obtains the corresponding (expected) complete log-likelihood,

l =
n∑

i=1

K∑
k=1

wik log πk + wik log fik.

• The following are the estimators when using the variance parametrizations, with (ii) to (iv)
being new contributions of this work,
(i) Σ ∈ Rm×m, diag(σ2

j ){1≤j≤m}, σ̂2
j = 1

n

∑n
i=1

∑K
k=1 wik(xij − α̂j − β̂j ẑk)2

(ii) Σk ∈ Rm×m, diag(σ2
jk){1≤j≤m}, k = 1, ..., K, σ̂2

jk =
∑n

i=1
wik(xij−α̂j−β̂j ẑk)2∑n

i=1
wik

(iii) Σ ∈ Rm×m, Σ = Σ1 =, ..., = Σk, Σ̂ = 1
n

∑n
i=1

∑K
k=1 wik(xi − α̂ − β̂ẑk)(xi − α̂ − β̂ẑk)T

(iv) Σk ∈ Rm×m, k = 1, ..., K, Σ̂k =
∑n

i=1
wik(xi−α̂−β̂ẑk)(xi−α̂−β̂ẑk)T∑n

i=1
wik

3. Identifiability
There is a product term of βzk in the origi-
nal model, which makes the parameters β, zk

unidentifiable. Furthermore, also α is unidenti-
fiable as the same model could be attained by
translating all zk’s along the line. In order to
fix this identifiability problem, we standardize
zk, by letting

K∑
k=1

πkzk = 0,
K∑

k=1
πkz2

k − (πkzk)2 = 1,

where Var[zk] =
∑K

k=1 πkz2
k −(πkzk)2 (Marques

da Silva Júnior et al. 2018). Additionally, to
identify the direction of the latent variable, we
enforce β̂1 ≥ 0.

4. Simulation
A simulation is set up to test the correctness of
the methodology, after implementing the iden-
tifiability fixes, under variance parametrization
(i). We use 2-dimensional data with three in-
dividual sample sizes n = 100, n = 300, and
n = 500, and generate 1000 data sets for each
sample size. Then we compare the average esti-
mated values to the true values of the parame-
ters used to generate these data, the results are
shown in table below. Most biases are around
0.005, and no biases greater than 0.05. The
estimated parameters are getting closer to the
true values as the sample size gets larger.

5. Application

• From the Soils data set in R package car, we
construct a data frame of six variables: Nitro-
gen, Phosphorous (in ppm), Calcium, Magne-
sium, Potassium (in me/100 gm) and Sodium.
The features in this data frame are on wildly
different scales and in different units. We apply
the methodology with variance parametrization
(ii). Fitting a model with k=4 mass points leads
to an AIC value of 823.34. We obtain projected
data points by x′

i =
∑K

k=1 wikẑk (Aitkin, 1996).
We fit a linear regression model with the vari-
able Density (in gm/cm3) as the response vari-
able and the projected data as the predictor.
For fair comparison, we construct the first prin-
cipal component scores by projecting all data
points onto the 1-dimensional space and use
these scores as the predictor.

• Table 2 shows the statistical measures evaluat-
ing the performance of the two models. We find
that our approach performs better for the non-
scaled data, and that both approaches perform
similarly for the scaled data.

Table 2. Statistical measures of fit for the
two regression models.

Fig 2. Soils Data, cluster centers
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