About me
Research
I am interested in number theory and representation theory, especially in Galois representations and arithmetic properties
of automorphic forms.
Papers.
- Singularities of Steinberg deformation rings.
preprint
pdf, arXiv.
- Irreducible components of the moduli space of Langlands parameters.
International Mathematical Research Notices, 2024(11), 9020-9035 (2024)
pdf, journal.
- On endomorphism algebras of Gelfand--Graev representations II.
with Tzu-Jan Li
Bulletin of the London Mathematical Society, 55(6), 2876-2890 (2023)
pdf, journal.
- Generic local deformation rings when \(l \neq p\).
Compositio Mathematica, 158(4), 721-749 (2022).
pdf, journal.
- Ihara's lemma for Shimura curves over totally real fields via patching.
with Jeffrey Manning.
Mathematische Annalen 379, 187-234 (2021).
pdf, journal.
- The category of finitely presented mod p representations of \(GL_2(F)\).
Documenta Mathematica 25 (2020), 143-157
pdf, journal
- Local deformation rings for 2-adic deformation rings of \(G_{\mathbb{Q}_l}\), \(l \neq
2\).
Appendix
to On crystabeline deformation rings of
\(\mathrm{Gal}(\bar{\mathbb{Q}_p}/\mathbb{Q}_p)\) by
Yongquan Hu and
Vytautas Paškūnas.
Mathematische Annalen 373 (2019), 421-487
pdf, journal.
- The Breuil-Mézard conjecture when \(l \neq p\).
Duke Mathematical Journal 167 (2018), no. 4, 603-678.
pdf, journal.
- Local deformation rings for \(GL_2\) and a Breuil-Mézard conjecture when \(l \neq
p\).
Algebra and Number Theory 10 (2016), no. 7, 1437-1475.
pdf, journal.
There is an error in the proof of Proposition 2.7 that is corrected in the pdf version here.
My thesis essentially contains the last two papers above.
PhD Students
- Daniel Funck (2018-2023), "The geometry of unipotent deformation rings and applications (GOUDA)".
Undergraduate summer students
- Alex Milner (2023), "Invariant factors of elliptic curves", funded by the LMS.
- Patrick Creagh (2022), "Steinitz classes of CM elliptic curves".
- Dylan Johnston (2019), "Positivity and the weight part of Serre's conjecture", funded by the LMS.
- David Lin (2017), "The Kronecker-Weber theorem"
Teaching.
- 2024-2025: Cryptography and Codes III (Michaelmas).
- 2023-2024: Cryptography and Codes III (Michaelmas), Number Theory III (Epiphany).
- 2019-2023: Representation Theory IV. Lecture notes.
- 2018-2019: Cryptography and Codes III (Michaelmas).
In 2024-2025 I will be offering two projects: Modular Forms at level III
and Commutative Rings at level IV.
Before coming to Durham I taught Introduction to Proof in Analysis and Linear Algebra, Honors Calculus, and Honors Basic Algebra at the University of Chicago.