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Abstract. Let PU(n, 1) denote the isometry group of the n-dimensional complex

hyperbolic space Hn
C . An isometry g is called reversible if g is conjugate to g−1 in

PU(n, 1). If g can be expressed as a product of two involutions, it is called strongly
reversible. We classify reversible and strongly reversible elements in PU(n, 1). We

also investigate reversibility and strong reversibility in SU(n, 1).

1. Introduction

An element g in a group G is called real or reversible if there exists h ∈ G such
that g−1 = hgh−1. If h is an involution, that is h−1 = h, then this equation becomes
g−1 = hgh or equivalently (hg)2 = hghg = e, the identity element. In other words, g
can be decomposed as the product of two involutions h and hg. In this case g is called
strongly real or strongly reversible

Real or reversible elements have been studied in several contexts, for example see
[9, 18, 19, 24, 25, 26]. The strongly reversible elements are also studied in several
contexts, for example see [3, 4, 5, 7, 6, 14, 15, 16, 20, 28]. Some of these authors have
used the terminology ‘bireflectional’ to refer to strongly reversible elements. From a
representation theoretic point of view, the terminology ‘real’ is motivated by a theorem
of Frobenius and Schur (1906) which says that if G is finite, the number of real-valued
complex irreducible characters of G equals the number of real conjugacy classes of G,
cf. [13]. On the other hand from geometric point of view, the terminology ‘reversible’
is more commonly used, cf. [17, 21, 22, 23]. We will mostly restrict ourselves to the
terminology ‘reversible’ and ‘strongly reversible’.

Reversible elements in real hyperbolic geometry have been investigated in many
contexts. Let I(Hn

R ) denote the full isometry group of the n-dimensional real hyperbolic
space and let Io(Hn

R ) denote the identity component, which is the group of orientation
preserving isometries of Hn

R . When n = 2 it is well known that every element of
I(H2

R) is strongly reversible (and so also reversible) but that there are elements of
Io(H2

R) = PSL(2,R) that are not reversible. For example z 7−→ z + 1 is not conjugate
in PSL(2,R) to its inverse, z 7−→ z − 1. Things are slightly different for n = 3. On
page 47 of [10] Fenchel shows that every element of the group Io(H3

R) = PSL(2,C) is
strongly reversible. (Note that this is not possible in SL(2,C) since the only involution
in SL(2,C) is −I.) On page 51 of [10] he also shows that every element of I(H3

R) is
strongly reversible. In higher dimensions, it is well-known that every element of I(Hn

R )
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is strongly reversible, see [3, 14, 15, 20, 28]. The reversible elements in Io(Hn
R ) have

been classified in [12, 23], also see [17]. In [12], the first author obtained a linear-
algebraic classification by identifying the orientation-preserving isometry group with
SOo(n, 1). In [23], a geometric classification of the reversible elements in Io(Hn

R ) was
obtained using the ball model of the hyperbolic space.

Let Hn
C denote the n-dimensional complex hyperbolic space. Let I(Hn

C ) denote
the full isometry group which consists of holomorphic, as well as anti-holomorphic
isometries. The group of all holomorphic isometries can be identified with the projective
unitary group PU(n, 1) which is an index 2 subgroup of I(Hn

C ). Falbel and Zocca [8]
proved that every element in PU(2, 1) can be expressed as a product of two anti-
holomorphic involutions, and so is strongly reversible in I(H2

C). Choi [2] extended this
result to the isometries of Hn

C . It follows from these results that every holomorphic
isometry of Hn

C is reversible in I(Hn
C ).

Strong reversibility is very closely related to decomposable subgroups. Will [27] has
investigates when a subgroup of SU(2, 1) generated by two loxodromic maps can be de-
composed as an index two subgroup of a group generated by three involutions. He says
that such a group is R-decomposable if all three involutions are antiholomorphic, that
is they are in I(H2

C) but not in SU(2, 1), and C-decomposable when all three involu-
tions are in SU(2, 1). Will’s criteria to decide whether a group is R or C-decomposable
involve traces of certain group elements being real. In Corollary 4.10 we relate real
traces in SU(2, 1) and SU(3, 1) to reversibility.

In this note we restrict ourselves to the group PU(n, 1) and ask for reversible and
strongly reversible elements in PU(n, 1). However, for convenience, we work with
the linear group U(n, 1). We also investigate reversibility and strong reversibility in
SU(n, 1). Earlier, strongly reversible and reversible elements in unitary groups over a
field F have been investigated by Djokovich [3] and Singh-Thakur [24] respectively. It is
desirable to have an explicit and actual classification, not just characterisation, of the
reversible elements in unitary groups over the complex numbers. Such a classification
is not known in general. However, for the groups U(n, 1) and SU(n, 1) which are
of interest to complex hyperbolic geometry, we have a very satisfactory answer to
the classification problem of reversible elements. In this paper we offer a complete
classification of the reversible and strongly reversible elements in U(n, 1), in SU(n, 1)
or in PU(n, 1), see Theorem 4.1, Theorem 4.2 and Theorem 4.5 below.

2. Preliminaries

All the assertions made in this section are borrowed essentially from [1].
Let V ≈ Cn+1 be a vector space of dimension (n + 1) over C equipped with the

complex Hermitian form of signature (n, 1),

〈z, w〉 = −z0w0 + z1w1 + · · ·+ znwn,

where z and w are the column vectors in V with entries z0, · · · , zn and w0, · · · , wn
respectively. Define

V0 = {z ∈ V | 〈z, z〉 = 0}, V+ = {z ∈ V | 〈z, z〉 > 0}, V− = {z ∈ V | 〈z, z〉 < 0}.

A vector v is called time-like, space-like or light-like according as v is an element in V−,
V+ or V0. Let P(V) be the projective space obtained from V, i.e, P(V) = V− {0}/ ∼,
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where u ∼ v if there exists λ in C∗ such that u = vλ, and P(V) is equipped with
the quotient topology. Let π : V − {0} → P(V) denote the projection map. We
define Hn

C = π(V−). The boundary ∂Hn
C in P(V) is π(V0 − {0}). The isometry group

U(n, 1) of the Hermitian space V acts as the isometries of Hn
C . The actual group of the

isometries of Hn
C is PU(n, 1) = U(n, 1)/Z(U(n, 1)), where the centre Z(U(n, 1)) can be

identified with the circle group S1 = {λI | |λ| = 1}. Thus an isometry T of Hn
C lifts

to a unitary transformation T̃ in U(n, 1) and in the projective model of Hn
C , the fixed

points of T correspond to eigenvectors of T̃ . For our purpose, it is convenient to deal
with U(n, 1) rather than PU(n, 1). We shall regard U(n, 1) as acting on Hn

C as well as
on V. A subspace W of V is called space-like, light-like, or time-like if the Hermitian
form is positive-definite, degenerate, or non-degenerate but indefinite respectively. If
W is a time-like subspace of V, then the orthogonal complement W⊥ is space-like.

Definition 2.1. An eigenvalue λ of T ∈ U(n, 1) is said to be of negative type, of
positive type or null if every eigenvector in Vλ is in V−, V+ or V0 respectively. The
eigenvalue λ is said to be of indefinite type if Vλ contains vectors in V− and vectors
in V+. Moreover, for λ of indefinite type, the restriction of the Hermitian form to Vλ
has signature (r, 1).

In the ball model of the hyperbolic space, by Brouwer’s fixed point theorem it follows
that every isometry T has a fixed point on the closure Hn

C . An isometry T is called
elliptic if it has a fixed point in Hn

C ; it is called parabolic if it fixes a single point and
this point lies in ∂Hn

C ; it is called hyperbolic (or loxodromic) if it fixes exactly two
points and they both lie on ∂Hn

C . Any non-central element T of U(n, 1) must be one
of the above three types; see [1].

It follows from the conjugacy classification in U(n, 1), see [1, Theorem 3.4.1], that
the elliptic and hyperbolic elements are semisimple, i.e. their minimal polynomial is
a product of linear factors. The parabolic elements are not semisimple. A parabolic
transformation T has the unique Jordan decomposition T = AN , where A is elliptic,
N is unipotent and AN = NA.

Let T be elliptic. From the conjugacy classification it follows that all eigenvalues of
T except for one are of positive type and the remaining eigenvalue is either of negative
type or of indefinite type. Moreover, all eigenvalues will have norm 1.

Suppose T is hyperbolic. Then it has a pair of null eigenvalues reiθ, r−1eiθ, r > 1,
and the eigenspace to each such eigenvalue has dimension one. The other eigenvalues
are of positive type and they all have norm one.

Suppose T is parabolic. If T is unipotent, i.e. all the eigenvalues are 1, then it has
minimal polynomial (x−1)2, or (x−1)3. If T is a non-unipotent parabolic, then it has
the Jordan decomposition T = AN as above. In this case T has a null eigenvalue λ and
the minimal polynomial of T contains a factor of the form (x− λ)2 or (x− λ)3. This
implies that V has a T -invariant orthogonal decomposition V = U⊕W, where T |W is
semisimple, U is time-like, dim U = k with k = 2 or 3 and T |U has characteristic, as
well as minimal polynomial (x− λ)k.

3. Reversible and strongly reversible elements in U(n) and SU(n)

Let U(n) denote the isometry group of Vo ≈ Cn equipped with the positive-definite
Hermitian form 〈z, w〉o = z1w1 + ....+ znwn. In this section we assume the well known
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facts that every eigenvalue of an element of U(n) is a complex number of unit modulus
and that every element of U(n) is diagonalisable.

A polynomial f(x) over C is called self-dual whenever λ ∈ C is a root of f(x) of
multiplicity k, then so is λ−1. Note that when λ = ±1 this statement is vacuous. For
a linear transformation T , let χT (x) denote the characteristic polynomial of T .

Strongly reversible elements in U(n) were considered in the work of Ellers [6], also
see [3, 24].

Proposition 3.1 (Theorem 8 of Ellers [6]). A transformation T in U(n) is strongly
reversible if and only if its characteristic polynomial is self-dual.

Since strongly reversible elements are reversible and having a self-dual characteristic
polynomial necessary for being reversible (see below), we immediately have:

Corollary 3.2. A transformation T in U(n) is reversible if and only if its characteristic
polynomial is self-dual.

In the case of SU(n) things become slightly more delicate.

Proposition 3.3. A transformation T in SU(n) is reversible if and only if its char-
acteristic polynomial is self-dual. However, for an element T in SU(n) with self-dual
characteristic polynomial the following two conditions are equivalent:

(a) T is reversible but not strongly reversible;
(b) n = 4m+ 2 with m ∈ Z and ±1 is not an eigenvalue of T .

Proof. Suppose T is a reversible or strongly reversible element of SU(n). Then we can
find S ∈ SU(n) so that STS−1 = T−1 (if T is strongly reversible then S = S−1). For
each eigenvalue λ of T , it is clear that S bijectively maps the λ eigenspace Vλ to the
λ−1 eigenspace Vλ−1 . Therefore Vλ and Vλ−1 have the same dimension. This implies
λ and λ−1 are roots of χT (x) with the same multiplicity. Hence χT (x) is self-dual.

In the case where n = 4m + 2 and ±1 is not an eigenvalue of T , we observe that
we can decompose Vo as a direct sum Vo = W+ ⊕W− so that S : W+ → W− and
S : W− → W+. (For example we can take W+ to be the direct sum of Vλ where
Im(λ) > 0 and W− to be the direct sum of Vλ−1 where =(λ−1) = −=(λ) < 0.) Note
that W+ and W− both have dimension 2m+1. Let {e1, . . . , e2m+1} be an orthonormal
basis for W+. Then {S(e1), . . . , S(en)} is an orthonormal basis of W−. Hence we can
write S as a block diagonal matrix where each block is a 2 × 2 off-diagonal matrix.
It is clear that if S is an involution then each block has determinant −1 and hence S
has determinant (−1)2m+1 = −1 and so S is not in SU(n). Hence in this case, T is
reversible but is not strongly reversible.

Conversely, suppose χT (x) is self-dual. Let Vλ denote the eigenspace of T corre-
sponding to the eigenvalue λ. Let E denote the set of eigenvalues λ 6= ±1 such that λ−1

is also an eigenvalue with the same multiplicity. Then Vo has a T -invariant orthogonal
decomposition into eigenspaces

Vo = V1 ⊕ V−1 ⊕W,

where W = ⊕λ∈E(Vλ ⊕ Vλ−1) and dim Vλ = dim Vλ−1 . If v ∈ Vλ then T−1v = λ−1v
and so Vλ is the λ−1-eigenspace of T−1. Similarly, Vλ−1 is the λ-eigenspace, of T−1.
Since Vλ and Vλ−1 are non-empty, we can find orthonormal bases {e1, ..., er} and
{f1, ..., fr} of Vλ and Vλ−1 respectively. Define Sλ : Wλ → Wλ by Sλ(ei) = fi and
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Sλ(fi) = −ei for each i = 1, . . . , r. Then SλS|Wλ
S−1
λ = T−1|Wλ

and det(Sλ) = 1.
Note, however that (Sλ)2 = −I on Wλ so Sλ is not an involution. Define

SW = ⊕λ∈ESλ.

Let W1 = V1 ⊕ V−1 and define S1 : W1 →W1 and to be the identity (it may be that
V1 or V−1 is empty). Let S = S1 ⊕ SW. Then S ∈ SU(n) and STS−1 = T−1. Thus T
is reversible. This proves the first part of the theorem.

In the case where we want T to be strongly reversible, then we must change the above
construction to ensure that Sλ is an involution. In this case, we define S̃λ(ei) = fi and
S̃λ(fi) = ei. Then S̃2

λ = I and det(S̃λ) = (−1)dim(Vλ). Define

S̃W = ⊕λ∈ES̃λ.

Then S̃W is an involution and det(S̃W) = (−1)
1
2 dim(W). If T does not have eigenvalue

1 or −1, that is both V1 and V−1 is empty, then dim(W) = n and n is even. We
see that S̃ = S̃W is in SU(n) only when n is a multiple of 4. If either V1 or V−1 is
non-empty, choose v in V1 ⊕V−1 = W1 and define S̃1 by S̃1(v) = (−1)

1
2 dim(W) and S̃1

is the identity on the orthogonal complement of v in W1. Let S̃ = S̃1 ⊕ S̃W. Then S̃

is an involution in SU(n) and S̃T S̃−1 = S̃T S̃ = T−1. Thus T is strongly reversible.
This completes the proof. �

4. Reversible and strongly reversible elements in U(n, 1) and SU(n, 1)

4.1. Statement of main theorems. We now turn our attention to U(n, 1) and
SU(n, 1). In this case it is no longer true that eigenvalues have unit modulus or that
transformations are diagonalisable. Suppose T is a reversible element in U(n, 1) or
SU(n, 1). Then there exist S in U(n, 1), or SU(n, 1) respectively, so that STS−1 = T−1.
This implies that if λ is an eigenvalue of T with multiplicity m, then so is λ−1. Hence
χT (x) is self-dual. What is interesting is the converse.

Theorem 4.1. Suppose T is an element of U(n, 1) or SU(n, 1) whose characteristic
polynomial is self-dual.

(i) Let T be elliptic. Then T is reversible if and only if the eigenvalue of negative
or indefinite type of T is 1 or −1.

(ii) Let T be unipotent with minimum polynomial (x−1)2. Then T is not reversible.
(iii) Let T be unipotent with minimum polynomial (x− 1)3. Then T is reversible.
(iv) Let T = NA be non-unipotent parabolic. Then T is reversible if and only if the

null eigenvalue of T is 1 or −1 and the minimum polynomial of N is (x− 1)3.
(v) Let T be hyperbolic. Then T is reversible.

Note that the statement of part (ii) does not agree with Lemma 3.4.3 of Chen and
Greenberg [1]. In fact there is an error in their proof in the case where F = C. On line
4 of page 71, they state that if s and s′ are two purely imaginary complex numbers
(that is Re(s) = Re(s′) = 0) then we can find λ ∈ C so that s′ = λsλ = |λ|2s. This is
clearly impossible if s′ = −s.

Again, things become slightly more delicate for strongly reversible elements.
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Theorem 4.2. (i) Let T be an element of U(n, 1). Then T is strongly reversible
if and only if it is reversible.

(ii) Let T be an element of SU(n, 1) whose characteristic polynomial is self-dual.
Then the following conditions are equivalent
(a) T is reversible but not strongly reversible.
(b) T is hyperbolic, n = 4m+ 1 for m ∈ Z and ±1 is not an eigenvalue of T .

The following lemma is fundamental to the analysis which follows.

Lemma 4.3. [11, Lemma 6.2.5] Let T be a transformation in U(n, 1). If λ is an
eigenvalue of T , then λ

−1
is also an eigenvalue.

Furthermore, it is not hard to show that if |λ| 6= 1 then λ and λ
−1

are (distinct)
null eigenvalues. Of course, when |λ| = 1 (as in the case of U(n)) we have λ = λ

−1

and so, although true, this lemma does not give us any useful information.
We conclude this section by discussion what happens in PU(n, 1). Suppose that T

is in PU(n, 1). Let T̃ be lift of T to U(n, 1) and note that eiθT̃ corresponds to the same
element of PU(n, 1) for all θ ∈ [0, 2π).

Lemma 4.4. For every T ∈ PU(n, 1) may choose a lift T̂ of T to U(n, 1)so that, for
each fixed point of T in Hn

C ∪ ∂Hn
C , the associated eigenvalue of T̂ is real and positive.

This lemma enables us to state the following.

Theorem 4.5. Let T ∈ PU(n, 1). Then T is reversible, or strongly reversible, if
and only if the lift T̂ of T to U(n, 1) given by Lemma 4.4 is reversible, or strongly
reversible respectively. In particular, T is reversible, or strongly reversible, if and only
if the characteristic polynomial of T̂ is self dual and, if T is parabolic, the minimum
polynomial of the unipotent part of T̂ is (x− 1)3.

4.2. Proof of Theorem 4.1.

Proof. (i) Suppose T is elliptic. Let λ be the eigenvalue of T of negative or indefinite
type. Then V has an orthogonal decomposition into T -invariant subspaces V = Vλ⊕W,
where Vλ is the eigenspace of λ. The space Vλ is time-like and W is the space-like
orthogonal complement. Clearly Vλ would be the eigenspace of T−1 corresponding to
the eigenvalue or indefinite of negative type λ−1. Now T is conjugate to T−1 if and only
if they have the same eigenvalue of negative or indefinite type and T |W is conjugate
to T−1|W. Now, λ = λ−1 if and only if λ = ±1. Further, T |W is a transformation in
U(n + 1 −m) where m = dim Vλ. Since the characteristic polynomial of T |W is self-
dual, it follows from Lemma 3.1 that T |W is conjugate to its inverse. This establishes
the assertion for the case where T in in U(n, 1).

When T ∈ SU(n, 1) we need to be slightly more careful. Let S|W be such that
S|WT |WS|W−1 = T |W−1. By adjusting S|Vλ as in Proposition 3.3 if necessary, we may
ensure that det(S) = 1. Then S ∈ SU(n, 1) and S conjugates T to T−1. Thus (i)
follows in this case too.

(ii) Let T be unipotent. Then T has a minimal polynomial (x− 1)2 or (x− 1)3.
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First, consider the case where the minimum polynomial is (x−1)2. Using the Jordan
normal form for T , we can find vectors u and v so that

T (u) = u, T (v) = v + u, T−1(u) = u, T−1(v) = v − u.

Further u and v generate a non-degenerate T -invariant subspace W so that the restric-
tion of 〈·, ·〉 to W has signature (1, 1). As T preserves 〈·, ·〉 we have

〈u, v〉 = 〈Tu, Tv〉 = 〈u, v + u〉 = 〈u, v〉+ 〈u, u〉.

This implies

(4.1) 〈u, u〉 = 0

Since the Hermitian form has signature (1, 1) on W, we must have 〈u, v〉 6= 0.
If S conjugates T to T−1 then S maps the span of u and v to itself. Furthermore, S

must send u to a multiple of itself and v to a linear combination of u and v. Suppose

S(u) = au, S(v) = bu+ cv.

Since S preserves the Hermitian form then

〈u, v〉 = 〈S(u), S(v)〉 = 〈au, bu+ cv〉 = ac〈u, v〉

where we have used (4.1) at the last stage. Hence ac = 1 since 〈u, v〉 6= 0. If we have
STS−1 = T−1 then ST = T−1S. The images of u and v under these maps are

ST (u) = S(u) = au, ST (v) = S(v + u) = (a+ b)u+ cv,
T−1S(u) = T−1(au) = au, T−1S(v) = T−1(bu+ cv) = (b− c)u+ cv.

Hence (a+ b)u+ cv = (b− c)u+ cv, and so a = −c. Together with ac = 1, this implies
|a|2 = |c|2 = −1, which is clearly impossible.

(iii) Now consider the case where the minimum polynomial is (x − 1)3 Using the
Jordan normal form of T we see that there are vectors u, v and w do that

T (u) = u, T (v) = v + u, T (w) = w + v.

Let W be the span of u, v and w. As T preserves 〈·, ·〉 we must have

(4.2) 0 = 〈u, u〉 = 〈u, v〉 = 〈v, v〉+ 〈u,w〉 = 〈w, v〉+ 〈v, w〉+ 〈v, v〉.

As the restriction of 〈·, ·〉 to W is non-degenerate, we have 〈v, v〉 6= 0. Define k by

k =
〈v, w〉
2〈v, v〉

.

Note that the last identity in (4.2) implies 2k + 2k = −1 Define S on W by

S(u) = −u, S(v) = v + 2ku, S(w) = −w + 2kv + 2|k|2u.

Then

ST (u) = −u, ST (v) = v + (2k − 1)u, ST (w) = −w + (2k + 1)v + (2|k|2 + 2k)u.



8 KRISHNENDU GONGOPADHYAY AND JOHN R. PARKER

It is easy to check that S and ST are involutions. Finally, we can check that S and
ST preserve the Hermitian form. For example:

〈S(w), S(v)〉 = 〈−w + 2kv + 2|k|2u, v + 2ku〉
= −〈w, v〉 − 2k〈w, u〉+ 2k〈v, v〉
= −〈w, v〉+ 4k〈v, v〉
= −〈w, v〉+ 2〈w, v〉
= 〈w, v〉.

Thus T is strongly reversible.

(iv) Suppose T is a non-unipotent parabolic. Let T = AN be the Jordan decom-
position of T , where A is semisimple, N is unipotent and AN = NA. We say that
an eigenvalue µ of T is pure if the corresponding eigenspace {v ∈ V | (T − µI)v = 0}
coincides with the generalised eigenspace {v ∈ V | (T − µI)n+1v = 0} . Otherwise µ is
mixed. Since T is parabolic, the null eigenvalue λ of T must be mixed. However, for
A, λ is the eigenvalue of indefinite type and the generalised eigenspace Vλ of T will be
the usual λ-eigenspace of A.

Also it follows from the Jordan decomposition that T is reversible if and only if A
and N are both reversible, cf. [1, Theorem 3.4.1 (c)]. The result now follows from (i),
(ii) and (iii).

(v) Suppose T is hyperbolic. Let λ be the (null) eigenvalue of T with |λ| > 1. Then
V has a decomposition into T -invariant orthogonal subspaces: V = U⊕W, where U is
the direct sum of the one dimensional null eigenspaces Vλ and V

λ
−1 and W is the space-

like orthogonal complement to U. The Hermitian form restricted to U has signature
(1, 1), hence T |U can be considered as a transformation in U(1, 1). Furthermore Vλ is
the λ−1-eigenspace of T−1|U and V

λ
−1 is the λ-eigenspace of T−1|U. Hence, it is easy

to see that T |U is reversible in U(1, 1) if and only if λ is real. Thus the characteristic
polynomial of T |U is self-dual with real roots λ and λ−1 = λ

−1
, and T |U is in SU(1, 1).

Since 〈, 〉|W is positive-definite, T |W can be considered as a transformation in U(n− 1)
or SU(n− 1). By Lemma 3.1, T |W is reversible. Hence the assertion follows. �

4.3. Proof of Theorem 4.2.

Proof. Let T be an element of U(n, 1) or SU(n, 1). If T is strongly reversible then it is
reversible.

Suppose that T is reversible. Note that if T is not diagonalisable then, since it is
reversible, the null eigenvalue is 1 or −1. Moreover, in the proof of Theorem 4.1 (iii)
we have shown in the that a reversible unipotent map is strongly reversible. Hence
if λ 6= ±1 then the dimension of Vλ is the same as the multiplicity of λ as a root of
χT (x).

Following the proof of Proposition 3.3, let E denote the set of eigenvalues λ 6= ±1
of T and W = ⊕λ∈E(Vλ⊕Vλ−1). (Note that if T is unipotent then W is empty.) Then
we can construct S̃W as in the proof of Proposition 3.3 so that S̃WT |WS̃−1

W = T−1|W
and S̃2

W = I. Note that detSW = (−1)
1
2dim(W). Let U be the orthogonal complement of

W. Then U contains the eigenspaces of ±1 if these are eigenvalues. Defining S̃U to be
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the identity and S̃ = S̃U ⊕ S̃W immediately demonstrates that T is strongly reversible
in U(n, 1). If 1 or −1 is an eigenvalue of T then we can adjust S̃U as in Proposition
3.3 so that det(S) = 1 and so T is strongly reversible in SU(n, 1).

If T is unipotent then, by definition, 1 is an eigenvalue of T . If T is elliptic or
non-unipotent parabolic then, since T is reversible, by Theorem 4.1 it has eigenvalue
±1. In each case, we see that T is strongly reversible in SU(n, 1).

Suppose T ∈ SU(n, 1) is hyperbolic and reversible and that ±1 is not an eigenvalue
of T . Then necessarily n is odd. Let λ be the eigenvalue with |λ| > 1 and let U and
W be as in the proof of Theorem 4.1(iv). Define S̃U to be an involution in U(1, 1) that
swaps the eigenspaces of λ and λ−1. Note that det(SU) = −1. We know that T |W
can be considered to be in SU(n− 1). If T is strongly reversible in SU(n, 1) then T |W
needs to be strongly reversible by an element SW with determinant −1. By adapting
the Proposition 3.3 we see that this is the case if and only if (−1)

1
2 (n−1) = −1 and so

n − 1 = 4m + 2. Hence T is strongly reversible in SU(n, 1) when n = 4m + 3. This
proves the result. �

4.4. Proof of Theorem 4.5. We begin by proving Lemma 4.4

Proof. (Lemma 4.4.) Observe that if T is elliptic or parabolic it fixes a connected
subset of Hn

C ∪ ∂Hn
C and this subset corresponds to an eiθ-eigenspace Veiθ for some

lift T̃ . Then T̂ = e−iθT̃ has the property we claimed. If T is hyperbolic then its fixed
points on ∂Hn

C correspond to eigenspaces Vλ and Vµ of some lift T̃ of T . Using Lemma
4.3 we see that µ = λ

−1
. In other words, λ = reiθ and µ = λ

−1
= r−1eiθ for some

r > 1. Then T̂ = e−iθT̃ has the property we claimed. �

Proof. (Theorem 4.5.) Let T ∈ PU(n, 1) and let T̂ ∈ U(n, 1) be the lift of T coming
from Lemma 4.4.

First suppose that T̂ is reversible. Then we can find Ŝ ∈ U(n, 1) so that ŜT̂ Ŝ−1 =
T̂−1. Applying the canonical projection from U(n, 1) to PU(n, 1) gives S ∈ PU(n, 1)
satisfying STS− = T−1 and so T is reversible. Moreover, if T̂ is strongly reversible
then Ŝ has order two. Hence S has order (at most) 2. Therefore T is strongly reversible.

Conversely, suppose that T ∈ PU(n, 1) is reversible. Then there exists S ∈ PU(n, 1)
so that STS−1 = T−1. Let Ŝ be any lift of S to U(n, 1). Note that the expression
ŜT̂ Ŝ−1 is independent of which lift we choose. If S has order 2 then multiplying Ŝ by
a scalar if necessary, we may suppose that Ŝ also has order 2. Since STS−1 = T−1 we
see that ŜT̂ Ŝ−1 is a multiple of T̂−1, say k and note that |k| = 1. In other words

ŜT̂ Ŝ−1 = kT̂−1.

If z ∈ Hn
C ∪ ∂Hn

C is fixed by T then S(z) is fixed by T−1, and so also by T . By the
definition of T̂ , we know that z corresponds to an eigenvector v of T̂ with eigenvalue
λ, which is real and positive. Now condider Ŝv.

T̂−1Ŝv = k−1(ŜT̂ Ŝ−1)Ŝv = k−1ŜT̂ v = λk−1Ŝv.

Therefore Ŝv is an eigenvalue of T̂−1 with eigenvalue λk−1. That is, Ŝv is an eigenvalue
of T̂ with eigenvalue λ−1k. Now Ŝv corresponds to a fixed point of T in Hn

C ∪ ∂Hn
C ,
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namely S(z). Therefore, by the constrution of T̂ we know that λ−1k is real and positive.
Since λ−1 is real and positive and |k| = 1, we must have k = 1. Hence ŜT̂ Ŝ−1 = T̂−1

and T̂ is reversible.
By construction, if T is elliptic or parabolic, the eigenvalue of T̂ of negative or

indefinite type is 1. Hence, the last part follows by applying Theorem 4.1 to T̂ in the
reversible case and Theorem 4.2(i) in the strongly reversible case. �

4.5. Further characterisations of reversibility. When T ∈ SU(n, 1), the following
lemma provides a necessary and sufficient condition for χT (x) to be self-dual.

Lemma 4.6. Let T be in SU(n, 1). Then χT (x), the characteristic polynomial of T ,
is self-dual if and only if the coefficients of χT (x) are real. In particular, if χT (x) is
self dual, then the trace of T is real.

Proof. Let λ be an eigenvalue of T . Then λ
−1

is an eigenvalue of T , using [11, Lemma
6.2.5]. Since T is self-dual (λ

−1
)−1 = λ is also an eigenvalue of T . Hence the set

of eigenvalues is invariant under complex conjugation. Since the coefficients of the
characteristic polynomial are symmetric polynomials in the eigenvalues, then they must
be real. Conversely, if the coefficients of χT (x) are real then its roots are real or come
in complex conjugate pairs. Again using [11, Lemma 6.2.5] we see that if λ is an
eigenvalue then so is λ−1, and hence χT (x) is self dual. �

Corollary 4.7. Let T be an element in SU(n, 1).
(i) Let T be hyperbolic. Then T is reversible in SU(n, 1) if and only if the charac-

teristic polynomial of T has real coefficients.
(ii) Let T be elliptic. Then T is reversible in SU(n, 1) if and only if the charac-

teristic polynomial of T has real coefficients and the eigenvalue of negative or
indefinite type of T is 1 or −1.

(ii) Let T = NA be parabolic. Then T is reversible in SU(n, 1) if and only if the
characteristic polynomial of T has real coefficients and the null eigenvalue T
is 1 or −1 and the characteristic polynomial of N is (x− 1)3.

Corollary 4.8. Let T be an element in SU(n, 1) such that T is reversible in SU(n, 1).
Then the trace of T is real.

The converse to the above corollary, in general, is false. For example, consider the
hyperbolic element g in SU(4, 1) with eigenvalues

(3 +
√

5)
2

eiπ/5,
(3−

√
5)

2
eiπ/5, −eiπ/5, −eiπ/5, −eiπ/5.

Then g has trace zero, but g is not reversible in U(4, 1). So, for n ≥ 4 the converse of
Corollary 4.8 is not true. However, for n = 2, 3, we have a better situation.

Lemma 4.9. For k = 2, 3, let T in SU(k, 1) be such that the trace of T is real. Then
the characteristic polynomial of T is self-dual.

Proof. We shall prove the lemma for k = 3. The case k = 2 follows similarly. Our
argument is very similar to Goldman’s argument on page 206 of [11].
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Let T be in SU(3, 1). Let λj for j = 1, 2, 3, 4 be the eigenvalues of T and write
τ = tr(T ) = λ1 + λ2 + λ3 + λ4. Since det(T ) = 1, we immediately have

(4.3) λ1λ2λ3λ4 = 1.

Then the characteristic polynomial of T is of the form

χT (x) = x4 − a3x
3 + a2x

2 − a1x+ 1.

Now by the relationship between roots and the coefficients of a polynomial we have

a3 = λ1 + λ2 + λ3 + λ4 = τ,

a1 = λ1λ2λ3 + λ1λ3λ4 + λ2λ3λ4 + λ1λ2λ4

= λ−1
1 + λ−1

2 + λ−1
3 + λ−1

4 ,

where we used (4.3) on the last line. Using [11, Lemma 6.2.5] we know that for each
j, there exists k such that λ−1

j = λk. Therefore

a1 = λ1 + λ2 + λ3 + λ4 = τ .

Hence we can write the characteristic polynomial of T as

χT (x) = x4 − τx3 + σx2 − τx+ 1.

We claim that σ is real. Now

σ = λ1λ2 + λ3λ4 + λ1λ3 + λ2λ4 + λ1λ4 + λ2λ3

= λ−1
3 λ−1

4 + λ−1
1 λ−1

2 + λ−1
2 λ−1

4 + λ−1
1 λ−1

3 + λ−1
2 λ−1

3 + λ−1
1 λ−1

4 , using (4.3)

= λ1λ2 + λ3λ4 + λ1λ3 + λ2λ4 + λ1λ4 + λ2λ3 (after permuting terms)
= σ

Hence, if τ is real, then χT (x) has real coefficients, and so all solutions are either real
or come in conjugate pairs. Together with Lemma 4.3, this implies that if λ is a root,
then so is λ−1. Hence χT (x) is self-dual. �

Combining the above lemma with Corollary 4.7 we have the following, which should
be compared with Theorem 1 of Will [27].

Corollary 4.10. Let T be an element in SU(k, 1) for k = 2 or 3.
(i) Let T be hyperbolic. Then T is reversible in SU(k, 1) if and only if the trace of

T is real.
(ii) Let T be elliptic. Then T is reversible in SU(n, 1) if and only if the trace of T

is real and the eigenvalue of negative or indefinite type of T is 1 or −1.
(ii) Let T = NA be parabolic. Then T is reversible in SU(n, 1) if and only if

the trace of T is real, the null eigenvalue T is 1 or −1 and the characteristic
polynomial of N is (x− 1)3.
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[19] C. Moeglin, M.-F. Vignéras and J.-L. Waldspurger, Correspondences de Howe sur un corps p-

adique. Lecture Notes in Mathematics 1291, Springer-Verlag, Berlin, 1987.
[20] K. Nielsen, On bireflectionality and trireflectionality of orthogonal groups. Linear Algebra Appl.

94 (1987) 197–208.

[21] A. G. O’Farrell and M. Roginskaya, Conjugacy of reversible diffeomorphisms. A survey. Algebra
i Analiz, 22 (2010), 3–56.

[22] A. G. O’Farrell, N. Gill and I. Short, Reversibility in the group of homeomorphism of the circle.

Bull. London Math. Soc 41 (2009), 885–897.
[23] I. Short, Reversible maps in isometry groups of spherical, Euclidean and hyperbolic space. Math.

Proc. R. Ir. Acad. 108 (2008), no. 1, 33–46.

[24] A. Singh and M. Thakur, Reality properties of conjugacy classes in algebraic groups. Israel J.
Math. 165 (2008), 1–27.

[25] A. Singh and M. Thakur, Reality properties of conjugacy classes in G2. Israel J. Math. 145 (2005),
157–192.

[26] P. H. Tiep and A. E. Zalesski, Real conjugacy classes in algebraic groups and finite groups of Lie

type. J. Group Theory 8 (2005), 291–315.
[27] P. Will, Traces, cross-ratios and 2-generator subgroups of PU(2, 1). Canad. J. Math. 61 (2009),

1407–1436.

[28] M. J. Wonenburger, Transformations which are products of two involutions. J. Math. Mech. 16
(1966), 327–338.

Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City,
S.A.S. Nagar, Sector 81, Mohali 140306, India

E-mail address: krishnendug@gmail.com

Department of Mathematical Sciences, University of Durham, South Road, Durham DH1

3LE, England.
E-mail address: j.r.parker@durham.ac.uk


