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Abstract

We give a version of Shimizu’s lemma for groups of complex hyperbolic isometries
one of whose generators is a parabolic screw motion. Suppose that G is a discrete
group containing a parabolic screw motion A and let B be any element of G not fixing
the fixed point of A. Our result gives a bound on the radius of the isometric spheres
of B and B−1 in terms of the translation lengths of A at their centres. We use this
result to give a sub-horospherical region precisely invariant under the stabiliser of the
fixed point of A in G.

1 Introduction

Let G be a discrete subgroup of PSL(2,R) containing the parabolic map A(z) = z + t for
some t > 0. Then Shimizu’s lemma [13] says that for any B(z) = (az + b)/(cz + d) ∈ G
with c 6= 0 then |c| ≥ 1/t. Geometrically this result says that the radius rB of the isometric
sphere of B satisfies rB ≤ t. Equivalently, the horoball Ut of height t is precisely invariant
under G∞ in G. Here G∞ denotes those elements of G stabilising the point ∞. A set U
is said to be precisely invariant under a subgroup H of G if B(U) = U for all B ∈ H and
B(U) ∩ U = ∅ for all B ∈ G−H.

Shimizu’s lemma may be generalised to isometries of higher dimensional real hyperbolic
space. If A ∈ Isom(Hn

R) is a pure translation then the result generalises directly. On the
other hand, when n ≥ 4, parabolic maps do not have to be pure translations but may be
screw motions. Ohtake [9] showed that when G contains a screw motion A, there is no
uniform bound on the radii of isometric spheres of elements of G, nor is there a precisely
invariant horoball. However, Waterman [14] showed that one may bound the radii of the
isometric spheres of B and B−1 by a function of the product of the Euclidean translation
length of A at their centres. In consequence, one can find a sub-horospherical region that
is precisely invariant.
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Viewing PSL(2,R) as the isometry group of complex hyperbolic 1-space, H1
C, we can

seek to generalise Shimizu’s lemma to higher dimensional complex hyperbolic isometries.
For the case when A is a vertical translation this was done in [5], and a precisely invariant
horoball was found in [6]. (See the next section for background material including the
definitions of terms used.)

Theorem 1.1 (Theorem 3.2 of [5]) Let A be vertical translation by (0, t) in PU(2, 1)
fixing ∞. Let B be any element of PU(2, 1) not projectively fixing ∞ and let rB denote
the radius of the isometric sphere of B. If

t

rB2
< 1,

then the group 〈A, B〉 is not discrete.

Corollary 1.2 (Theorem 2.2 of [6]) Let A be the vertical translation of Theorem 1.1
and let G be any discrete subgroup of PU(2, 1) containing A. Then the horoball Ut of
height t is precisely invariant under G∞ in G.

For the case where the stabiliser of ∞ is a cyclic group of non-vertical translations it was
shown in [10] that there is no uniform bound on the radii of isometric spheres, nor is there
a precisely invariant horoball. However, there is a bound on the radii of isometric spheres
in terms of the translation lengths at their centres. This leads to a precisely invariant
sub-horospherical region.

Theorem 1.3 (Theorem 2.1 of [11]) Let A be a Heisenberg translation by (τ, t) in
PU(2, 1) fixing ∞. Let B be any element of PU(2, 1) not projectively fixing ∞ and let
rB denote the radius of the isometric sphere of B. If

ρ0

(
B(∞), AB(∞)

)
ρ0

(
B−1(∞), AB−1(∞)

)
+ 4|τ |2

rB2
< 1

then 〈A, B〉 is not discrete.

Corollary 1.4 (Theorem 3.2 of [11]) Let A be the non-vertical translation of Theorem
1.3 and let G be any discrete subgroup of PU(2, 1) and suppose that the stabiliser of ∞ in
G is G∞ = 〈A〉. Then the sub-horospherical region U is precisely invariant under G∞ in
G where

U =
{
z = (ζ, v, u) ∈ H2

C : u > ρ0(z,Az)2 + 8|τ |2
}
.

In this paper we consider parabolic screw motions A in H2
C. If the rotational part of

A has finite order then some power is a vertical translation and we can use Theorem 1.1.
Thus we concentrate on screw parabolic maps A with infinite order rotational part. If
such an A is in a discrete group then the only elements of this group sharing a fixed
point with A are screw parabolic and boundary elliptic maps with the same axis as A.
Our results concern screw motions where the angle of rotation is small and is positively
oriented relative to the direction of translation. It is clear that any parabolic screw motion
with infinite order rotational part has a power satisfying these conditions.
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Theorem 1.5 Let A be a positively oriented screw parabolic element of PU(2, 1) fixing
∞. Let eiθ ∈ U(1) denote the rotational part of A and suppose that |eiθ − 1| < 1/4. Let
B be any element of PU(2, 1) not projectively fixing ∞ and let rB denote the radius of the
isometric sphere of B. If

ρ0

(
B(∞), AB(∞)

)
ρ0

(
B−1(∞), AB−1(∞)

)
rB2

<

(
1 +

√
1− 4|eiθ − 1|

2

)2

,

then 〈A, B〉 is not discrete.

Corollary 1.6 Let A be the screw parabolic map A : (ζ, v, u) 7−→ (eiθζ, v + t, u) where
|eiθ − 1| < 2/9 and t sin(θ) > 0. Let G be a discrete subgroup of PU(2, 1) for which any
element of G∞ has the same axis as A. Then the sub-horospherical region U defined by

U =

(ζ, v, u) : u >
2
∣∣∣2|ζ|2(eiθ − 1) + it

∣∣∣
1− 6|eiθ − 1|+

√
1− 4|eiθ − 1|


is precisely invariant under G∞ in G.

We remark that if θ is a rational multiple of π then some power of A is a vertical
translation and so Corollary 1.2 applies. On the other hand, if θ is an irrational multiple
of π then, since G is discrete, G∞ must be a group of screw parabolic maps (and possibly
boundary elliptic maps) with the same axis as A, and so some power of A satisfies the
conditions of Corollary 1.6. Observe that in the limit as θ tends to zero, Theorem 1.5 and
Corollary 1.6 become Theorem 1.1 and Corollary 1.2 respectively.

In [4] a bound on the radii of the isometric spheres was found but this result does not
immediately give a precisely invariant sub-horospherical region. In Section 5 we explore
the relation between this bound and Theorem 1.5. We also show that, for small θ, Theorem
1.5 implies the relevant case of a result of Basmajian and Miner [1] (compare [7], [8]).

Acknowledgement This research was carried out while the first author was visiting the
University of Durham. He would like to thank JSPS and Grey College, Durham for their
support.

2 Background

We begin with some background material on complex hyperbolic geometry. Much of this
can be found in Goldman’s book [2] or in the introduction to papers in the bibliography.
The Siegel domain model of complex hyperbolic space H2

C with horospherical coordinates
is

H2
C = {z = (ζ, v, u) : ζ ∈ C, v ∈ R, u ∈ R+} .

The level sets where u is constant are called horospheres and each of these bounds a
horoball: for each t > 0 the horoball Ut of height t is defined to be

Ut =
{
(ζ, v, u) ∈ H2

C : u > t
}
.
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The boundary of the Siegel domain comprises the one point compactification of the horo-
sphere of height t = 0:

∂H2
C = {z = (ζ, v, 0) : ζ ∈ C, v ∈ R} ∪ {∞}.

A subset U of H2
C is called a sub-horospherical region based at ∞ if

(i) there exists t > 0 so that U is contained in Ut;

(ii) for each (ζ, v, u) there exists a u1 so that (ζ, v, u1) is contained in U ;

(iii) U does not contain any horoball.

Let C2,1 be the complex vector space with the indefinite Hermitian inner product given
by the matrix

J =

0 0 1
0 1 0
1 0 0

 .

Points in H2
C may be identified with negative vectors in C2,1 and points of ∂H2

C may be
identified with null vectors in C2,1 by the map ψ : H2

C −→ C2,1 given by

ψ : (ζ, v, u) 7−→

−|ζ|2 − u+ iv√
2ζ
1

 , ψ : ∞ 7−→

1
0
0

 .
Using this identification, we obtain a projective action of U(2, 1), the unitary group

of J , on H2
C. The kernel of this action is the set of diagonal matrices, and so we may

take the quotient of U(2, 1) by this kernel to obtain PU(2, 1), which we identify with the
(holomorphic) isometries of H2

C. We can characterise elements B of U(2, 1) by saying that
B−1 = JB∗J . That is

B =

a b c
d e f
g h j

 , B−1 =

j f c

h e b

g d a

 . (1)

An immediate consequence of this is

Lemma 2.1 If B has the form (1) then

|g| = |dh− eg|, |d| = |bg − ah|.

Proof: From elementary linear algebra, we can express B−1 in terms of its determinant
and adjoint as

B−1 =
1

det(B)

ej − fh ch− bj bf − ce
fg − dj aj − cg cd− af
dh− eg bg − ah ae− bd

 .
Comparing this expression with (1) we see that

g det(B) = dh− eg, d det(B) = bg − ah.
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Since B is unitary we have |det(B)| = 1 and the result follows. �

As well as the Bergman metric, which is its intrinsic hyperbolic metric, the Siegel domain
has another metric, the Cygan metric ρ0. The Siegel domain is not complete with respect
to the Cygan metric, which should be thought of as an analogue of the Euclidean metric
on the upper half plane model of the hyperbolic plane. The Cygan metric is defined by
the following distance function

ρ0

(
(ζ1, v1, u1), (ζ2, v2, u2)

)
=
∣∣∣|ζ1 − ζ2|2 + |u1 − u2|+ iv1 − iv2 + 2i=(ζ1ζ2)

∣∣∣1/2
.

Let B ∈ PU(2, 1), that is B is a holomorphic (Bergman) isometry of H2
C. Suppose that B

does not fix ∞, equivalently g 6= 0 when B has the form (1). Then the isometric sphere
of B is the sphere in the Cygan metric with centre B−1(∞) and radius rB = 1/

√
|g|. In

horospherical coordinates

B−1(∞) =
(

h√
2 g
, −=

(
j

g

)
, 0
)
.

Similarly the isometric sphere of B−1 is the Cygan sphere of radius 1/
√
|g| with centre

B(∞) =
(

d√
2 g
, =
(
a

g

)
, 0
)
.

We will need the following proposition.

Lemma 2.2 (Proposition 2.4 of [7]) Let B be any element of PU(2, 1) that does not fix
∞ and let rB be the radius of its isometric sphere. Then for all z ∈ ∂H2

C −{∞, B−1(∞)}
we have

ρ0

(
B(z), B(∞)

)
=

rB
2

ρ0

(
z,B−1(∞)

) .
An isometry of complex hyperbolic space is called parabolic if it has a unique fixed point

on ∂H2
C. Conjugating if necessary, we assume that this fixed point is ∞. Any parabolic

element of PU(2, 1) is a Cygan isometry. A parabolic isometry is a screw motion if and
only if it is conjugate to the map A : H2

C −→ H2
C given by

A : (ζ, v, u) 7−→ (eiθz, v + t, u).

The axis of A is the complex line LA =
{
(0, v, u) ∈ H2

C
}
, and A rotates about the axis with

rotational part eiθ ∈ U(1) and translates along the axis by a Cygan distance
√
|t| ∈ R+,

its translation length. (If t = 0 then such a map is boundary elliptic.) A screw motion is
positively oriented if t sin(θ) > 0 and negatively oriented if t sin(θ) < 0. As an element of
PU(2, 1), the screw motion A is given by

A =

1 0 it
0 eiθ 0
0 0 1

 . (2)
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The Cygan translation length of A is

ρ0

(
(ζ, v, u), A(ζ, v, u)

)
= ρ0

(
(ζ, v, u), (eiθζ, v + t, u)

)
=

∣∣∣2|ζ|2(eiθ − 1) + it
∣∣∣1/2

.

The translation length of positively oriented screw motions is an increasing function |ζ|
but this is not true of those that are negatively oriented. We first estimate the translation
length from below:

Lemma 2.3 Let A be a positively oriented screw motion. Then

2|ζ|2|eiθ − 1| ≤
∣∣∣2|ζ|2(eiθ − 1) + it

∣∣∣.
Proof: ∣∣∣2|ζ|2(eiθ − 1) + it

∣∣∣2 = 4|ζ|4|eiθ − 1|2 + 4|ζ|2 sin(θ)t+ t2

≥ 4|ζ|4|eiθ − 1|2.

�

We now compare the Cygan translation lengths of A at different points of H2
C.

Lemma 2.4 Let A be a positively oriented screw motion. Then∣∣∣2|ξ|2(eiθ − 1) + it
∣∣∣1/2

≤
∣∣∣2|ζ|2(eiθ − 1) + it

∣∣∣1/2
+ |ζ − ξ|

∣∣∣2(eiθ − 1)
∣∣∣1/2

.

In particular, for any points z and w

ρ0

(
A(w), w

)
≤ ρ0

(
A(z), z

)
+ ρ0(z, w)

∣∣∣2(eiθ − 1)
∣∣∣1/2

.

Proof: Using Lemma 2.3 and the triangle inequality we have

tA(w)2 =
∣∣∣2|ξ|2(eiθ − 1) + it

∣∣∣
≤

∣∣∣2|ζ|2(eiθ − 1) + it
∣∣∣+ ∣∣∣2(|ζ|2 − |ξ|2

)
(eiθ − 1)

∣∣∣
=

∣∣∣2|ζ|2(eiθ − 1) + it
∣∣∣+ 2

∣∣∣|ζ| − |ξ|
∣∣∣(|ζ|+ |ξ|

)
|eiθ − 1|

≤
∣∣∣2|ζ|2(eiθ − 1) + it

∣∣∣+ 2|ξ − ζ|
(
2|ζ|+ |ξ − ζ|

)
|eiθ − 1|

≤ tA(z)2 + 2
∣∣∣2|ζ|2(eiθ − 1)

∣∣∣1/2∣∣∣2|ξ − ζ|2(eiθ − 1)
∣∣∣1/2

+
∣∣∣2|ξ − ζ|2(eiθ − 1)

∣∣∣
≤ tA(z)2 + 2tA(z)

∣∣∣2|ξ − ζ|2(eiθ − 1)
∣∣∣1/2

+
∣∣∣2|ξ − ζ|2(eiθ − 1)

∣∣∣
=

(
tA(z) +

∣∣∣2|ξ − ζ|2(eiθ − 1)
∣∣∣1/2
)2

.

�
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3 Proof of the main theorem

The basic structure of this proof resembles Shimizu’s original proof [13] and all its gener-
alisations. In particular, it should be compared to the proof of [11] Theorem 2.1 or [14]
Theorem 8.

Consider the sequence Bn defined by B0 = B and Bn+1 = BnABn
−1. We write

Bn =

an bn cn
dn en fn

gn hn jn

 .
If A has the form (2) then

Bn+1 =

an+1 bn+1 cn+1

dn+1 en+1 fn+1

gn+1 hn+1 jn+1


=

an bn cn
dn en fn

gn hn jn

1 0 it
0 eiθ 0
0 0 1

jn fn cn
hn en bn
gn dn an

 .
Thus the entries of Bn+1 are (see page 660 of [4])

an+1 = 1 + bnhn(eiθ − 1) + angnit, (3)
bn+1 = bnen(eiθ − 1) + andnit, (4)
cn+1 = |bn|2(eiθ − 1) + |an|2it, (5)
dn+1 = enhn(eiθ − 1) + dngnit, (6)
en+1 = 1 + |en|2(eiθ − 1) + |dn|2it, (7)
fn+1 = enbn(eiθ − 1) + dnanit, (8)
gn+1 = |hn|2(eiθ − 1) + |gn|2it, (9)
hn+1 = hnen(eiθ − 1) + gndnit, (10)
jn+1 = 1 + hnbn(eiθ − 1) + gnanit. (11)

For all n ≥ 0 define the quantities rn, tn and t′n to be the radius of the isometric
sphere of Bn and the Cygan translation lengths of A at Bn

−1(∞) and Bn(∞). That is,
rn = |gn|−1/2 and

tn = ρ0

(
ABn

−1(∞), Bn
−1(∞)

)
=
∣∣∣|hn/gn|2(eiθ − 1) + it

∣∣∣1/2
,

t′n = ρ0

(
Bn(∞), ABn(∞)

)
=
∣∣∣|dn/gn|2(eiθ − 1) + it

∣∣∣1/2
.

Use of (9) gives:

1
rn+1

= |gn+1|1/2 = |gn|
∣∣∣|hn/gn|2(eiθ − 1) + it

∣∣∣1/2
=

tn
rn2

. (12)

From Lemma 2.3 we have∣∣∣∣hn

gn

∣∣∣∣ |eiθ − 1|1/2 ≤ tn,

∣∣∣∣dn

gn

∣∣∣∣ |eiθ − 1|1/2 ≤ t′n. (13)
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Using Lemma 2.1 and (13) we have:∣∣∣∣dn+1

gn+1
− dn

gn

∣∣∣∣ =
∣∣∣∣(engn − dnhn)hn(eiθ − 1)

gn+1gn

∣∣∣∣
=

∣∣∣∣hn

gn

∣∣∣∣ |gn|
|gn+1|

|eiθ − 1|

≤ tn
rn+1

2

rn2
|eiθ − 1|1/2

= rn+1|eiθ − 1|1/2.

Similarly ∣∣∣∣hn+1

gn+1

− dn

gn

∣∣∣∣ =
∣∣∣∣(engn − dnhn)hn(e−iθ − 1)

gn+1gn

∣∣∣∣
≤ rn+1|eiθ − 1|1/2.

Thus using Lemma 2.4 we have

t′n+1 ≤ t′n +
∣∣∣∣dn+1

gn+1
− dn

gn

∣∣∣∣ |eiθ − 1|1/2

≤ t′n + rn+1|eiθ − 1|.

Dividing by rn+1 and using (12) we obtain

t′n+1

rn+1
≤ tnt

′
n

rn2
+ |eiθ − 1|. (14)

Similarly we have
tn+1

rn+1
≤ tnt

′
n

rn2
+ |eiθ − 1|. (15)

Let δ denote the larger root of the equation δ2 + |eiθ − 1| = δ, that is

δ =
1 +

√
1− 4|eiθ − 1|

2
< 1.

We claim that tn/rn < δ and t′n/rn < δ for all n ≥ 1. This follows inductively from our
main hypothesis, namely t0t′0/r0

2 < δ2 , and the inequalities (14) and (15).
We now use tn/rn < δ and t′n/rn < δ for all n ≥ 1 to show that Bn is a converging

sequence of distinct elements of PU(2, 1). From (12), we see that

|gn+1| =
1

rn+1
2

=
tn

2

rn2
· 1
rn2

< δ2|gn|.

Thus |gn| < δ2n−2|g1| and gn tends to zero as n tends to infinity.
From (13) we have

|hn|2 ≤
tn

2|gn|2

|eiθ − 1|
=
tn

2

rn2

|gn|
|eiθ − 1|

≤ δ2n|g1|
|eiθ − 1|

.
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Likewise

|dn|2 ≤
t′n

2

rn2

|gn|
|eiθ − 1|

≤ δ2n|g1|
|eiθ − 1|

.

Hence dn and hn tend to zero as n tends to infinity.
Using Lemma 2.1 we have |engn − dnhn| = |gn| and so

|en| ≤ 1 +
∣∣∣∣dnhn

gn

∣∣∣∣ ≤ 1 +
tnt

′
n

rn2
· 1
|eiθ − 1|

≤ 1 +
δ2

|eiθ − 1|
=

δ

|eiθ − 1|
.

Thus ∣∣∣|en+1|2 − 1
∣∣∣ ≤

∣∣|en|2 − 1
∣∣ |en|2 |eiθ − 1|2 + 2|dn|2|en|2|eiθ − 1|t+ |dn|4t2

≤
∣∣|en|2 − 1

∣∣δ2 +
2δ2n+2t|g1|
|eiθ − 1|2

+
δ4nt2|g1|2

|eiθ − 1|2
.

Therefore |en|2 − 1 tends to zero and hence en+1 tends to eiθ as n tends to infinity.
Also using Lemma 2.1 we have |bngn − anhn| = |dn| and so∣∣∣∣an+1 − 1

gn+1
− an

gn

∣∣∣∣ = ∣∣∣∣(bngn − anhn)hn(eiθ − 1)
gn+1gn

∣∣∣∣ = ∣∣∣∣dnhn

gn

∣∣∣∣ |eiθ − 1|
|gn+1|

Therefore

|an+1 − 1| ≤ |an|
|gn+1|
|gn|

+
∣∣∣∣dnhn

gn

∣∣∣∣ |eiθ − 1| ≤ |an − 1|δ2 + 2δ2.

Hence

|an − 1| ≤ |a0 − 1|δ2n +
2δ2(1− δ2n)

1− δ2
.

Thus |an − 1| is bounded. Therefore

|bn+1| ≤ |bn| |en| |eiθ − 1|+ |an| |dn|t ≤ |bn|δ + |an| |dn|t

tends to zero as n tends to infinity. So

|an+1 − 1| ≤ |bn| |hn| |eiθ − 1|+ δ2n−2|g1|t+ |an − 1|δ2n−2|g1|t

also tends to zero as n tends to infinity.
Finally, using (5), (8) and (11) we see that Bn tends to A as n tends to infinity. Since

none of the Bn fix ∞ we see that they are distinct. Hence 〈A, B〉 is not discrete. This
proves the theorem.

4 A precisely invariant sub-horospherical region

In this section we prove Corollary 1.6, giving a precisely invariant sub-horospherical region
for groups containing a screw parabolic map.

We first suppose that B ∈ G − G∞. We must show that B(U) ∩ U = ∅. If 〈A, B〉 is
discrete we have

rB
2 ≤

ρ0

(
B(∞), AB(∞)

)
ρ0

(
B−1(∞), AB−1(∞)

)
δ2
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where

δ =
1 +

√
1− 4|eiθ − 1|

2
.

In what follows we will need to assume that δ2 > 2|eiθ−1|. A brief calculation shows that
this is equivalent to |eiθ − 1| < 2/9.

Using Lemma 2.2, a Cygan sphere of radius r centred at B−1(∞) is mapped by B to
a Cygan sphere or radius r′ = rB

2/r centred at B(∞). Suppose that z = (ζ, v, u) is on
the sphere S0 of radius r = ρ0

(
AB−1(∞), B−1(∞)

)
/δ centred at B−1(∞) = (ζ0, v0, 0).

Therefore
r2 =

∣∣∣−|ζ − ζ0|2 − u+ iv − iv0 + 2i=(ζζ0)
∣∣∣ ≥ |ζ − ζ0|2 + u.

Thus we have

u ≤ r2 − |ζ − ζ0|2 =
ρ0

(
AB−1(∞), B−1(∞)

)2
δ2

− |ζ − ζ0|2.

Thus

δ2u ≤ ρ0

(
AB−1(∞), B−1(∞)

)2 − δ2|ζ − ζ0|2

≤
(
ρ0

(
A(z), z

)
+
(
2|eiθ − 1|

)1/2|ζ − ζ0|
)2
− δ2|ζ − ζ0|2

= ρ0

(
A(z), z

)2 + 2ρ0

(
A(z), z

)(
2|eiθ − 1|

)1/2|ζ − ζ0| −
(
δ2 − 2|eiθ − 1|

)
|ζ − ζ0|2

= ρ0

(
A(z), z

)2(1 +
2|eiθ − 1|

δ2 − 2|eiθ − 1|

)

−
(
δ2 − 2|eiθ − 1|

)(
|ζ − ζ0| −

(
2|eiθ − 1|

)1/2
ρ0

(
A(z), z

)
δ2 − 2|eiθ − 1|

)2

≤ ρ0

(
A(z), z

)2(1 +
2|eiθ − 1|

δ2 − 2|eiθ − 1|

)
=

δ2

δ2 − 2|eiθ − 1|
ρ0

(
A(z), z

)2
.

Therefore

u ≤
ρ0

(
A(z), z

)2
δ2 − 2|eiθ − 1|

=

∣∣∣2|ζ|2(eiθ − 1) + it
∣∣∣

δ2 − 2|eiθ − 1|
.

Furthermore, B(z) = (ζ ′, v′, u′) = z′ is on the sphere S1 with radius r′ = rB
2/r centred

at B(∞) = (ζ1, v1, 0) where r is defined as above. Hence

r′ =
rB

2

r
≤
ρ0

(
AB(∞), B(∞)

)
ρ0

(
AB−1(∞), B−1(∞)

)
δ2r

=
ρ0

(
AB(∞), B(∞)

)
δ

Then, arguing as above,

u′ ≤ r′
2 − |ζ ′ − ζ1|2 ≤

ρ0

(
AB(∞), B(∞)

)2
δ2

− |ζ ′ − ζ1|2.
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A similar argument to that given above shows that

u′ ≤
ρ0

(
A(z′), z′

)2
δ2 − 2|eiθ − 1|

=

∣∣∣2|ζ ′|2(eiθ − 1) + it
∣∣∣

δ2 − 2|eiθ − 1|
.

Let U be the sub-horospherical region defined by

U =

(ζ, v, u) : u >

∣∣∣2|ζ|2(eiθ − 1) + it
∣∣∣

δ2 − 2|eiθ − 1|

 .

Then we see that U lies outside the spheres S0 and S1. Thus B(U) lies inside S1 and
B−1(U) lies inside S0. In particular, U is disjoint from its images under B and B−1.
Repeating this, we see that B(U) ∩ U = ∅ for all B ∈ G − G∞. It is clear that U is
mapped to itself under any screw parabolic or boundary elliptic map with the same axis
as A, that is by the whole of G∞. Hence U is precisely invariant under G∞ in G. This
completes the proof of Corollary 1.6.

5 Relation to other results

Jiang and Parker gave the following theorem.

Theorem 5.1 (Theorem 5.1 of [4]) Let A be a screw parabolic element of PU(2, 1) fix-
ing ∞. Let LA denote the axis of A and eiθ ∈ U(1) denote the rotational part of A. Suppose
that |eiθ−1| < 1. Let

√
t denote the Cygan translation length of A on LA. Suppose that G

is a discrete subgroup of PU(2, 1) containing A. Let B be any element of G not projectively
fixing ∞ and denote the radius of the isometric sphere of B by rB. Let

R = max
{
ρ0

(
LA, B(∞)

)
, ρ0

(
LA, B

−1(∞)
)}
.

Then

rB
2 ≤ 2R2|eiθ − 1|(

1− |eiθ − 1|
) +

t(
1− |eiθ − 1|1/2

)2 . (16)

Observe that

(
1− |eiθ − 1|1/2

)2
≤

(
1 +

√
1− 4|eiθ − 1|

2

)2

≤ 1− |eiθ − 1|.

This enables us to show:

Theorem 5.2 Let A be a positively oriented screw parabolic element of PU(2, 1) and let
B be any element of PU(2, 1) not fixing ∞. If ρ0

(
LA, B(∞)

)
and ρ0

(
LA, B

−1(∞)
)

are
both small enough, then Theorem 5.1 follows from Theorem 1.5. On the other hand, if
ρ0

(
LA, B(∞)

)
equals ρ0

(
LA, B

−1(∞)
)

and is sufficiently large then Theorem 1.5 follows
from Theorem 5.1.
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Proof: Observe that for any point (ζ, v, 0) ∈ ∂H2
C − {∞} we have

ρ0

(
LA, (ζ, v, 0)

)
= |ζ|

Hence
ρ0(z,Az)2 ≤ 2ρ0(LA, z)2|eiθ − 1|+ t.

Therefore

ρ0

(
AB(∞), B(∞)

)
ρ0

(
AB−1(∞), B−1(∞)

)
≤ 2R2|eiθ − 1|+ t.

So provided that

2R2|eiθ − 1| ≤ t

(
1− |eiθ − 1|1/2

)−2 − δ−2

δ−2 −
(
1− |eiθ − 1|)−1

we have

ρ0

(
AB(∞), B(∞)

)
ρ0

(
AB−1(∞), B−1(∞)

)
δ2

≤ 2R2|eiθ − 1|(
1− |eiθ − 1|

) +
t(

1− |eiθ − 1|1/2
)2 .

Conversely, suppose ρ0

(
LA, B(∞)

)
= ρ0

(
LA, B

−1(∞)
)
. Then using Lemma 2.3 we have

2R2|eiθ − 1| ≤ ρ0

(
AB(∞), B(∞)

)
ρ0

(
AB−1(∞), B−1(∞)

)
.

Thus, provided

2R2|eiθ − 1| ≥ t

(
1− |eiθ − 1|1/2

)−2

δ−2 −
(
1− |eiθ − 1|)−1

we have

2R2|eiθ − 1|(
1− |eiθ − 1|

) +
t(

1− |eiθ − 1|1/2
)2 ≤ ρ0

(
AB(∞), B(∞)

)
ρ0

(
AB−1(∞), B−1(∞)

)
δ2

.

�

Jørgensen’s inequality is a generalisation of Shimizu’s lemma and deals with groups with
loxodromic and elliptic generators. Complex hyperbolic versions of Jørgensen’s inequality
were given in [1], [3] and [12]. In particular, in [1] Basmajian and Miner give a version
of Jørgensen’s inequality for groups with a loxodromic generator, Theorem 9.1 of [1]. As
a corollary, they give a generalisation of Shimizu’s lemma, Theorem 9.11 of [1]. It was
shown in Theorem 6.1 of [3] that the hypotheses of Basmajian and Miner’s main theorem
could be weakened somewhat (see also [12] for discussion of this result and Basmajian and
Miner’s stable basin theorem). With this change, their corollary is:

Theorem 5.3 (Theorem 9.11 of [1]) Fix positive numbers r and ε so that r2 +2ε < 1.
Let A ∈ PU(2, 1) be a parabolic map fixing ∞. Let B ∈ PU(2, 1) be a loxodromic map
with attractive fixed point p and repulsive fixed point q. Suppose that neither p nor q is
∞. Suppose that B has complex dilation factor λ with |λ| > 1 and |λ− 1| < ε. If

ρ0

(
A(p), p

)1 + r2 +
√

1 + r2

r2
≤ ρ0(p, q).

then the group generated by A and B is not discrete.
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We now show that when |eiθ − 1| < 3/16 Theorem 5.3 follows from Theorem 1.5. This
should be compared to [7] and [8] where a similar comparison was made between Theorem
5.3 and Theorem 1.3.

Theorem 5.4 Fix positive numbers r and ε satisfying r2 + 2ε < 1. Let A ∈ PU(2, 1)
be the screw parabolic map A : (ζ, v, u) 7−→ (eiθζ, v + t, u) where |eiθ − 1| < 3/16 and
t sin(θ) > 0. Let B ∈ PU(2, 1) be loxodromic with attractive fixed point p and repelling
fixed point q. Suppose that neither p nor q is ∞. Suppose that B has complex dilation
factor λ with |λ| > 1 and |λ − 1| < ε. Suppose that the isometric spheres of B and B−1

have radius rB. If

ρ0

(
A(p), p

)1 + r2 +
√

1 + r2

r2
≤ ρ0(p, q).

then

ρ0

(
AB−1(∞), B−1(∞)

)
ρ0

(
AB(∞), B(∞)

)
rB2

<

(
1 +

√
1− 4|eiθ − 1|

2

)2

.

We first prove a lemma.

Lemma 5.5 Let B be a loxodromic map with complex dilation factor λ ∈ C, attractive
fixed point p and repulsive fixed point q and isometric sphere of radius rB. Suppose that
p, q 6= ∞, and let M = |λ− 1|+ |λ−1 − 1|. Then ρ0(p, q) ≤M1/2rB.

Proof: Let C be any element of PU(2, 1) with C(o) = p and C(∞) = q where
o = (0, 0, 0) ∈ ∂H2

C. Let rC be the radius of its isometric sphere. Then A = C−1BC
fixes o and ∞ and has complex dilation factor λ. Using Lemma 2.2 first for B with
z = q = B(q) and then with C and z = AC−1(∞), A−1C−1(∞) we have

rB
2 = ρ0

(
q,B(∞)

)
ρ0

(
q,B−1(∞)

)
= ρ0

(
C(∞), CAC−1(∞)

)
ρ0

(
C(∞), CA−1C−1(∞)

)
=

rC
4

ρ0

(
C−1(∞), AC−1(∞)

)
ρ0

(
C−1(∞), A−1C−1(∞)

) .
Now using Lemma 2.1 of [12] we have

ρ0

(
C−1(∞), AC−1(∞)

)
≤ |λ|1/2M1/2ρ0

(
o, C−1(∞)

)
ρ0

(
C−1(∞), A−1C−1(∞)

)
≤ |λ|−1/2M1/2ρ0

(
o, C−1(∞)

)
,

where M = |λ− 1|+ |λ−1 − 1|.
Therefore

rB
2 ≥ rC

4

Mρ0

(
o, C−1(∞)

)2 =
ρ0

(
C(o), C(∞)

)2
M

,

where we have used Lemma 2.2 again, but this time with z = o. Substituting p = C(o)
and q = C(∞) gives the result. �

We can now prove the theorem:
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Proof: (Theorem 5.4) Since |λ − 1| < ε < 1/2 we have 1 < |λ| < 3/2. Thus
|λ|1/2 + |λ|−1/2 < 5/

√
6 Also, from Lemma 5.5 we have

ρ0(p, q)2 ≤MrB
2 < 2|λ− 1|rB2 < 2εrB2 < (1− r2)rB2.

Thus

ρ0

(
A(p), p

)
rB

<
r2
√

1− r2

1 + r2 +
√

1 + r2

=

(√
1 + r2 + 1

)(√
1 + r2 − 1

)√
1− r2

√
1 + r2

(√
1 + r2 + 1

)
=

(√
1 + r2 − 1

)√
1− r2

√
1 + r2

.

Using elementary calculus we see that as r varies between 0 and 1, this function attains
its maximum when r2 = 22/3 − 1. The maximum value is (21/3 − 1)3/2 = 0.132514 . . ..

We have ρ0

(
p,B−1(∞)

)
= rB|λ|−1 and ρ0

(
p,B(∞)

)
= rB|λ| from parts (4) and (5) of

[7] Proposition 2.6. Taking these with Lemma 2.4, we obtain

ρ0

(
AB−1(∞), B−1(∞)

)
≤ ρ0

(
A(p), p

)
+ ρ0

(
p,B−1(∞)

)√
2|eiθ − 1|1/2

= ρ0

(
A(p), p

)
+ rB|λ|−1/2

√
2|eiθ − 1|1/2,

ρ0

(
AB(∞), B(∞)

)
≤ ρ0

(
A(p), p

)
+ ρ0

(
p,B(∞)

)√
2|eiθ − 1|1/2

= ρ0

(
A(p), p

)
+ rB|λ|1/2

√
2|eiθ − 1|1/2.

Therefore, using |eiθ − 1| < 3/16, we have

ρ0

(
AB−1(∞), B−1(∞)

)
ρ0

(
AB(∞), B(∞)

)
rB2

≤
ρ0

(
A(p), p

)2
rB2

+
ρ0

(
A(p), p

)
rB

(
|λ|1/2 + |λ|−1/2

)√
2|eiθ − 1|1/2 + 2|eiθ − 1|

< (21/3 − 1)3 + (21/3 − 1)3/2 5√
6

√
2
√

3
4

+
3
8

= (21/3 − 1)3 + (21/3 − 1)3/2 5
4

+
3
8

<
9
16

<

(
1 +

√
1− 4|eiθ − 1|

2

)2

.

�
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