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The study of Kleinian groups and hyperbolic 3-manifolds involves the interplay of many
different mathematical ideas. Much has been written on the subject from the points of view
of complex analysis, topology, geometry and group theory. In this book Maclachlan and
Reid give a comprehensive treatment of hyperbolic 3-manifolds and Kleinian groups from
the viewpoint of algebraic number theory. Both authors have very successfully exploited
arithmetic techniques in Kleinian groups and it is extremely useful to have a definitive
account of the techniques and ideas they use and have developed.

As is well known, a hyperbolic 3-manifold M may be written as the quotient of
hyperbolic 3-space H3 by a discrete, torsion-free group Γ of PSL(2, C). If we drop the
hypothesis that Γ is torsion-free, then the quotient H3/Γ becomes an orbifold. In both
cases the group Γ is said to be Kleinian. The hyperbolic manifolds and orbifolds discussed
in this book are generally of finite volume (though they may have cusps). In this case
the associated Kleinian group is said to have finite covolume. It is completely standard
to switch between thinking of Γ as a group of Möbius transformations in PSL(2, C) and a
group of matrices in SL(2, C).

If we are given Γ, a possibly torsion-free subgroup of PSL(2, C), then it is not an easy
matter to decide whether or not it is discrete. Roughly speaking, there are three main
techniques for showing the discreteness of Γ. First, following Klein and Maskit, one may be
able to show that Γ can be assembled from smaller groups by the operations of free product
(possibly with amalgamation) and HNN extension. Secondly, we may use the geometry of
Γ acting on H3 by constructing a fundamental polyhedron and using Poincaré’s polyhedron
theorem to show discreteness. Thirdly, we can use arithmetic techniques. This is the focus
of Maclachlan and Reid’s book.

The starting point for use of number theory in Kleinian groups is Mostow’s rigidity
theorem. A consequence of this theorem is that the matrix entries in SL(2, C) of a finite
covolume Kleinian group Γ may be taken to lie in a number field, that is, a finite extension
of Q. For certain Kleinian groups we may exploit a further link with number theory.
This arises as a special case of the connection between lattices in Lie groups and integral
points in algebraic groups defined over the rational numbers, that is arithmetic groups.
A celebrated theorem of Borel and Harish-Chandra says that, under mild hypotheses,
arithmetic subgroups of Lie groups are discrete. The converse is true for lattices in Lie
groups of rank at least 2, using a theorem of Margulis. For SL(2, C) (and certain other
groups of rank 1) this is not true and there exist non-arithmetic lattices.

We may describe arithmetic subgroups of SL(2, C) using quaternion algebras. These
are defined as follows. If K is a field, let A be a four dimensional vector space over K with
basis {1, i, j, k}. Define multiplication on A by letting 1 be the identity element, defining
i2 = a.1, j2 = b.1, ij = −ji = k and extending linearly. Denote A by the Hilbert symbol
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(
a, b
K

)
. For example, Hamilton’s quaternions are H =

(−1,−1
R

)
and M2(K) =

(
1, 1
K

)
. Let

σ : K 7−→ R be a real embedding of a number field K. Then the quaternion algebra
(

a, b
K

)
is said to be ramified at σ if

(σ(a), σ(b)
R

)
is isomorphic to H. That is σ(a) and σ(b) are both

negative.
Arithmetic subgroups of Lie groups are analogous to orders in quaternion algebras.

An order O is a finitely generated submodule of A with a 1. Let K be a number field
with exactly one complex place and A a quaternion algebra over K ramified at all real
places. Let ρ be an embedding of A into M2(C). In this setting, a subgroup Γ of SL(2, C)
is arithmetic if it commensurable with the image under ρ of the elements of O with unit
norm, for some order O of A.

Maclachlan and Reid’s book gives a clear account of the algebraic machinery behind
the constructions outlined above without assuming very much background knowledge from
their readers. The reader is supposed to be familiar with some parts of algebraic number
theory; such material would typically be contained in a standard final year undergraduate
course in the subject. For readers who have not taken such a course, there is an accessible
introductory chapter with background material and references. After this chapter, the
authors introduce Kleinian groups and hyperbolic manifolds before going on to develop
quaternion algebra and invariant trace fields. At this point, there are very useful chapters
on examples and applications. Thereafter quaternion algebras are developed further, so
that the notion of an arithmetic Kleinian group may be introduced. The remainder of the
book is dedicated to giving a comprehensive treatment of arithmetic Kleinian groups and
their quotient orbifolds.

Throughout the book, Maclachlan and Reid use examples to motivate and illustrate
the ideas they develop. This helps the treatment to be very readable. Furthermore, at the
end of each chapter is a section called “Further Reading”. This extremely useful section
both anchors the preceding material in the literature and points the reader to results that
go beyond the scope of the book. Finally, in a series of appendices, the authors gather
together useful reference data in the form of tables and lists.

This book is a welcome addition to the literature on Kleinian groups and hyperbolic
geometry. It is both an accessible introduction to the number theoretic side of the field
and also a convenient source of reference material for the expert.
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