Unfaithful complex hyperbolic triangle groups II:
Higher order reflections

John R. Parker Julien Paupert
Department of Mathematical Sciences, Department of Mathematics
University of Durham, University of Utah
South Road, 155 South 1400 East
Durham DH1 3LE, England. Salt Lake City, Utah 84112, USA.
e-mail: j.r.parker@durham.ac.uk e-mail: paupert@math.utah.edu

November 27, 2007

Abstract

We consider symmetric complex hyperbolic triangle groups generated by three complex reflec-
tions with angle 2w /p. We restrict our attention to those groups where certain words are elliptic.
Our goal is to find necessary conditions for such a group to be discrete. The main application
we have in mind is that such groups are candidates for non-arithmetic lattices in SU(2,1).

1 Introduction

In [11] Mostow constructed the first examples of non-arithmetic complex hyperbolic lattices. These
lattices were generated by three complex reflections R;, Ro and R3 with the property that there
exists a complex hyperbolic isometry J of order 3 so that R;j 1 = J RjR_1 (here and throughout
the paper the indices will be taken mod 3). In Mostow’s examples the generators R; have order
p = 3,4 or 5. Subsequently Deligne-Mostow and Mostow constructed further non-arithmetic
lattices as monodromy groups of certain hypergeometric functions, [3] and [12] (the lattices from
[3] in dimension 2 were known to Picard who did not consider their arithmetic nature). These
lattices are (commensurable with) groups generated by complex reflections R; with other values
of p; see Mostow [12] and Sauter [19]. Subsequently no new non-arithmetic lattices have been
constructed.

In [15] Parker considered the case p = 2. That is, he considered complex involutions I3, I and
I3 with the property that there is a J of order 3 so that I;;; = JIijl. In particular, he used a
theorem of Conway and Jones [1] to classify all such groups where I I, and I;1513 are elliptic.

Remarkably, when p > 3 finding groups for which R; Ry and Ry Ry R3 are elliptic involves solving
the same equation as in the case p = 2. In this paper we use the solutions to this equation found
using [1] in [15] in the general case.

We describe the configuration space of all groups generated by a complex reflection R; of order p
and a regular elliptic motion J of order 3. This configuration space is parametrised by the conjugacy
class of the product R;J, which we represent geometrically in two different manners. The first,
following Goldman, Parker, is to consider the trace of R;J; this determines the conjugacy class of
R, J when it is loxodromic, but there is a threefold indetermination when it is elliptic or parabolic.
The second manner, following Paupert, is to use the geometric invariants of the conjugacy class,
i.e. an angle pair for elliptic isometries and a pair (angle,length) for loxodromic isometries. We
will use both parameter spaces in this paper, where we focus on the elliptic case.



Our first result is the direct analogue of the main theorem of [15], and can be roughly stated
as follows:

Theorem 1.1 Let Ry be a complex reflection of order p and J a regular elliptic of order & in
PU(2,1). Suppose that RiJ and RiRy = RiJRyJ™' are elliptic. If the group I' = (Ry,J) is
discrete then one of the following is true:

e ' is one of Mostow’s lattices.
e [' is a subgroup of one of Mostow’s lattices.

e [ is one of the sporadic groups described below.

The sporadic groups correspond to the 18 exceptional solutions from [1], which do not depend
on p (the groups do change with p of course). We determine for each p > 3 which of these points
lie inside our configuration space. One must then analyse each of these groups to decide whether
or not it is discrete, if so whether or not it is a lattice and if so whether or not it is arithmetic.
We illustrate ways to attack this problem by showing that certain solutions are arithmetic and
certain other solutions are non-discrete. We analyse in detail the situation for p = 3, which can be
summarised as follows:

Theorem 1.2 There are 16 sporadic groups for p = 3, with the following properties:
e Four of them fix a point in H(%
e One stabilises a complex line.
o One is contained in an arithmetic lattice.

e The ten remaining groups are none of the above.

The crucial question is then to determine whether or not the ten remaining groups are discrete. We
give a negative answer for four of them, by finding elliptic elements of infinite order in the group.

2 Parameters, traces and angles

In this section we show how to use a single complex number 7 to parametrise symmetric complex
hyperbolic triangle groups generated by three complex reflections thorough angle 1. This generalises
the construction in [15] where involutions (that is ¢ = ) were considered.

We give an alternative description following Paupert [17] where the same space is parametrised
by a pair of angles. It is fairly easy to pass between then two parametrisations and we shall use
whichever one is best adapted to a particular problem.

We then describe how the properties of the group (for example the type of R; Ry and R; Ry R3)
vary with 7. Much of this section follows the relevant parts of [15] rather closely. Otherwise we will
try to keep this account as self contained as possible. However, we shall assume a certain amount of
background knowledge of complex hyperbolic geometry. For such background material on complex
hyperbolic space see [6] and for material on complex hyperbolic triangle groups see [21] or [18].
Moreover, many of the ideas we use may be traced back to Mostow’s paper [11].



2.1 Complex reflections through angle v

Let L; be a complex line in complex hyperbolic 2-space H% and write R; for the complex reflection
through angle ¢ and fixing L;. In our applications we shall only consider the case where ¢ = 27 /p
for an integer p at least 2. Points of L; are fixed by R; and n;, the polar vector of Li, is sent
by R; to e¥n,. Hence the matrix in U(2,1) associated to R; has determinant e, Since we shall
be dealing with traces, we want to lift R; to a matrix in SU(2,1). Hence we multiply the U(2,1)
matrix by e /3, and take R; to be the map given by:

Ry(z) = e W3 g 4 (em/?’ — ew’/3)7<<;7 I;l>> n. (1)
1,11

We remark that we can add arbitrary multiples of 27 to the angle 9. Equivalently, since SU(2,1)
is a triple cover of PU(2,1) we could have multiplied R; by any power of ¢2™/3. Thus in the case
where R; has order 2, the in the analogous formula (1) in [15], the angle 1) was chosen to be 3w
and so e /3 and e?¥/? become —1 and +1 respectively. Equivalently, to obtain this we multiply
(1) with ¢ = 7 by e=27/3,

2.2 Traces

We define 7 = tr(R1J) to be the parameter in our space. We now show how to express 7 in terms
of the polar vectors and Hermitian form. We go on to find the trace of R; Ry in the same way.

Our first lemma and its corollary generalise Lemma 2.4 and Corollary 2.5 of [15] and are proven
in a similar manner.

Lemma 2.1 Let A be any element of SU(2,1). Then

(R A) = ¢ P (A) + (A3 — o3 (AT 1),
<n17 nl)

Corollary 2.2 Let Ry be a complex involution fizing a complex line Ly with polar vector ny. Let
J € SU(2,1) be a regular elliptic map of order 3. Then

= tr(RyJ) = (23 — eiW?’)% = 2sin(¢/2)¢ei¢/6%. 2)

The following theorem is just a restatement of Theorem 6.2.4 of [6]

Proposition 2.3 Let 7 be given by (2). Then RyJ is reqular elliptic if and only if T lies in the
interior of the deltoid

A={z€C : |z|*—8Re(2*) + 182> — 27 < 0}. (3)

The curve given by the equality in Proposition 2.3 is a deltoid. Groups for which R;.J is regular
elliptic correspond to points in the interior of this deltoid. Points on the deltoid correspond to
points where R;J has repeated eigenvalues, and so is either a complex reflection or is parabolic.
Since R1RoR3 = (R1J)? we can determine the type of Ry RoR3 from R1.J. (Note that it may be
that R;J is regular elliptic and that R; Ry R3 is a complex reflection.)

We now counsider R; Ry, and hence by symmetry RoR3 and R3R; as well. This generalises
Lemma 2.7 of [15] and its proof is analogous.



Proposition 2.4 Let Ly be a complex line in H% with polar vector ny. Let J € SU(2,1) be a
reqular elliptic map of order 8 and write Ly = J(L1). Let Ry and Ry = JRyJ 1 denote the
complex reflections through with angle v fizing L1 and Lo respectively. Then

tr(Ry Ry) = e™/3(2 — |7)?) + e72/3,

where T is given by (2).

Corollary 2.5 If |7| > 2 then R1Ry is lozodromic. If |T| = 2cos(@) then R1Ry has eigenvalues
o 200/3 i [342i0 g g it/3-2i0

PrROOF: Each point on L; is an e~ /3 eigenvector for R; and each point on L9 is an e~ W/3
eigenvector for Ry. Therefore if z € C?! lies on the intersection of L; and Ly we have

RiRy(z) = e /3R, (z) = e 2¥/34.

Hence z is an e 21¥/3 eigenvector for R Rs.

If |[7] > 2 then R; Ry has an eigenvector whose modulus is greater than one. Hence R R is
loxodromic.

So we assume that |7| = 2cos(6). Since R; Ry has an eigenvalue e=2¥/3 and determinant 1, we
see that its other eigenvalues must be —e™/320 and —e¥/3-210 a5 claimed. O

2.3 Angles

Conjugacy classes of elliptic isometries in PU(2,1) are characterised by an unordered angle pair
{61,02} with 6; € R/2xZ. These angles can be defined by noting that an elliptic isometry g belongs
to a maximal compact subgroup of PU(2, 1), which is a group conjugate to U(2). Then all elements
of U(2) which are conjugate to g have the same eigenvalues of norm 1, which we define to be 1
and €2, In concrete terms, a matrix A € U(2,1) whose associated isometry g € PU(2,1) is elliptic
is semisimple with eigenvalues of norm 1, say e’®!, €’®? and e***. One of these is of negative type in
the sense that the associated eigenspace intersects the negative cone in C? of the ambient Hermitian
form (of signature (2,1)). Supposing for instance that e'®* is of negative type, the angle pair of ¢
is then {a] — a3, a2 — ag}. It is thus in general not sufficient to know the eigenvalues of an elliptic
matrix to obtain the angle pair of the corresponding isometry; one must determine which of them
is of negative type.

This can also be seen in terms of the trace of matrix representatives in SU(2,1). Recall from
[6] that elliptic isometries have matrix representatives in SU(2, 1) whose trace lies in the deltoid A
given in (3). Multiplication of A, and hence of its trace, by a cube root of unity corresponds to the
same complex hyperbolic isometry in PU(2,1). Up to this ambigiuty, the map from angle pairs to
traces is given by

(01, 62} —> e2i01/3=i03/3 | 2i02/3~ib1[3 | —ib1/3~i02/3

This map is three-to-one, except at the exceptional central point {47/3,27/3} which is the only
preimage of 0. The three preimages in this case correspond to the fact that one of the three eigenval-
ues corresponds to negative eigenvectors and the other two to positive ones. There are three possible
choices and the trace is the same for each of them. Conversely, given a trace 7 = ¢/ + ¢80 4 ¢ i@ 8
the three preimages of this trace are the three angle pairs

{2044—,3, O[—|—2,8}, {a_ﬁa _a_2/6}7 {,B—O[, —20[—,3}.

In order to get these into the parameter space where 0 < 6; < 27 and 0 < 62 < 01 one may have
to add an integer multiple of 27 to either or both angles and one may have to change their order.
The reader can refer to [16], pp. 29-30, for more details on angle pairs and their relation to traces.



2.4 The trace parameter space

Suppose we are given a symmetrical configuration of three complex lines Ly, Ly and L3 with polar
vectors n, ny and n3. Because they are symmetrical J(n;) = n;;; where j = 1, 2, 3 taken mod
3. Because J preserves the Hermitian form (nj,n;) is the same positive real number for each j.
We normalise n; so that this number is 2sin(+/2). Likewise (nj;1,n;) = (J(n;),n;) is the same
complex number for each 5 which we define to be o. Using Corollary 2.2 we see that

, N\ T(njanj) . —ip/6
(J(n])7 n]> - egiw/3 _ e_iw/3 - e T.
That is
(n,n;) = (n2,n3) = (n3,n3) = 2sin(1p/2), (ng,n1) = (n3,n9) = (ny,n3) = —ie /57, (4)

All of this works for any Hermitian form of signature (2,1). We now make a choice of vectors ny,
n,; and n3. This determines a Hermitian form. We choose

1 0 0
n; = 0 ) n; = 1 ) n3 = 0
0 0 1

Together with (2), this means that, with this choice, the Hermitian form must be (z, w) = w*H,z
where
2sin(1p/2) —ie"W/0r  je¥/0F
H, = | /57 2sin(¢p/2) —ie /07| . (5)
—ie W/6r /5T 2sin(¢p/2)

We can immediately write down J and, using (1), the reflections R;. They are

0 0 1
J = |1 0 0], (6)
0 10
re2iv/3 - /37
R, = 0 e /3 0 , (7)
L0 0 e /3]
[ e W/3 0 0
R2 = _e“p/?’ T 62Z¢/3 T y (8)
L 0 0 e /3]
[e=/3 0 0 ]
Ry = 0 e~ /3 0 |. (9)
7 /3% eZiz/;/3_

From this it is clear that the groups I' = (Ry, J) and A = (R;, R2, R3) are completely determined
up to conjugacy by the parameter 7. However, not all values of 7 correspond to complex hyperbolic
triangle groups. It may be that the Hermitian matrix H, does not have signature (2,1). We now
determine this by finding the eigenvalues of H. In this lemma and throughout the paper we write
w=e™/3 = (=1 +1iV3)/2.

In what follows we will be interested in the case where R;J is elliptic. In this case its eigenvalues
are unit modulus complex numbers whose product is 1. We write then as e, ¢¥ and e,
This means that 7 = e/ 4 ¢/® 4 e~



Lemma 2.6 Let H, be given by (5) where 7 = €' 4 ¢ + e7 =8 Then the eigenvalues of H,
are:

—8sin(a/2 + /6 + 2knw/3) sin(B/2 + /6 + 2kn/3) sin(—«a /2 — B/2 + /6 + 2kn/3)
for k=0,1, 2.

PROOF: We could solve the characteristic polynomial of H,. However, it is easier to observe
that eigenvectors for H, are
1 1
1], wl,
1 w

We can immediately write down the eigenvalues as:
Ao = 2sin(ih/2) — e V/62RTI/3 | i /6+2kmi/3
for kK =0, 1, 2. Subsitituting for 7 gives
A = 2sin(¢/2) + 2sin(—a — f— /6 — 2kn/3)
+2sin(a — /6 — 2knw/3) + 2sin(B — /6 — 2kn/3).
Using elementary trigonometry (and —2k7n/3 = 4km/3 — 2km), we see that
A = —8sin(a/2 + /6 + 2kn/3) sin(B/2 + /6 + 2kn/3) sin(—a /2 — 5/2 + /6 + 2k7/3).

g &g =

Corollary 2.7 When 7 = €' + ¢ + e~ the matriz H, has signature (2,1) if and only if
8sin(3c/2 + 1/2) sin(38/2 + /2) sin(—3(a + B)/2 + ¢/2) < 0. (10)

PROOF: It is easy to check (for example by adding them) that all three eigenvalues cannot
be negative. Thus H, has signature (2,1) if and only if its determinant is negative. Using the
trigonometric identity sin(36) = —4sin(0) sin(f + 27/3) sin(f + 47/3) we see that the product of
the three eigenvalues is.

8sin(3a/2 + 1/2) sin(33/2 + /2) sin(=3(a + B) /2 + 1/2).

Hence H; has signature (2,1) if and only if this expression is negative. O

The locus where each eigenvalue is zero corresponds to a line in C. They divide C into seven
components which fall into three types:

e The central triangle. Here all three eigenvalues are positive and H, is positive definite.

e Three infinite components that each share a common edge with the central triangle. Here
two eigenvalues are positive and one negative. Hence H, has signature (2,1). This is our
parameter space.

e Three infinite components that each only abut the central triangle in a point. Here one
eigenvalue is positive and two are negative. These correspond to groups of complex hyperbolic
isometries generated by three complex involutions that each fix a point.

Therefore the parameter space we are interested in, that is those values of 7 satisfying (10), has
three components related by multiplication by powers of w = e?™/3  This corresponds to that
fact that J € SU(2,1) is only defined up to multiplication by a cube root of unity. Hence 7 is
only defined up to a cube root of unity. If we factor out by this equivalence, our parameter space
becomes one of these components.



2.5 Arithmetic

When we are discussing the discreteness of (R, Ry, R3) below, we shall analyse whether or not the
group is arithmetic. In order to do so one must find a suitable ring containing the matrix entries
(after possibly conjugating).

Proposition 2.8 The maps Ry, Ry and R3 may be conjugated within SU(2,1) and scaled so that
their matriz entries lie in the ring Z[t, T, e, e™™].

ProoOF: Conjugating the matrices Ry, Re and Rj3 given above by C' = diag(e*wm, 1, eiW3)
these matrices become

eV 1 —T

CRiCY = ™30 1 0],

|0 0 1
1 0 0
C’RQC“1 = e W | _givF oW o ,
| 0 0 1
[ 1 0 0

CR;C ' = e ™3| o 1 0
_ewT —eWT e¥

Hence the group generated by e*¥/ 3CR;C~1 for j =1, 2, 3 consists of matrices whose entries lie in
the ring Z[7, 7, ¥, e 7], O

It is very important to keep track of what happens to H, when performing this conjugation.
The matrices above preserve the Hermitian form given by (any real multiple of) CH,C . So we
may take the Hermitian form to be given by:

2—eW —e ™ (e 1)1 (1 —e )7
2sin(¢/2)CH,C = | (¥ —1)F 2—e¥ —e™ (e™ 1)1 |. (11)
(1 —e¥)r (e —1)T 2—eW —e ™

Hence the entries of 2sin(¢/2)CH,C~! also lie in the ring Z[r, 7, eV, e~%].

2.6 The angle parameter space

In [17], Paupert characterised which angle pairs can arise for the product AB (when it is elliptic),
as A and B each vary inside a fixed elliptic conjugacy class (i.e. each have a fixed angle pair). In
the present case, the Ry (the first generator) has angles {0,27/p}, and J (the second generator)
has angles {47/3, 27/3}. The allowable region in the surface T2/G is then a convex quadrilateral
(degenerating to a triangle for p = 3) with the following properties, which we quote from [17]. The
two “totally reducible vertices” Vi and V;, (points representing an Abelian group) have respective
coordinates {47 /3,27 /3 + 2w /p} and {47 /3 + 27/p, 2w /3}. These two vertices are joined by a line
segment of slope —1 corresponding to the reducible groups which fix a point inside H%. Each of
these vertices is also the endpoint of a line segment corresponding to the reducible groups which
stabilise a complex line. The first of these segments starts upward at Vi with slope 2, bounces off
the diagonal and goes on (with slope 1/2) until it reaches the boundary of the square. The second
segment starts upward at Vo with slope 1/2 and goes off to the boundary. The last side of the
quadrilateral is the resulting portion of the boundary segment {27} x [0, 27]; in all corresponding
groups the product R;.J is parabolic as was proven in [17]. The polygons for p = 3, ..., ,10 are



illustrated in Figure 2. In what follows we shall assume that R; Ry is elliptic. From Corollary 2.5,
we see that this implies |7| < 2. This condition does not have a striaghtforward interpretation in
the angle coordinates. In Figure 2 we have drawn the curve corresponding to |7| = 2.

3 When R;RyRj3 is elliptic and R;R; is non-loxodromic

We restrict our attention to those groups for which R; R Rj3 is elliptic of finite order and R; Ro
is either elliptic of finite order or else parabolic. These are groups for which 7 lies inside or on
the deltoid and inside or on the circle. Since they have finite order, the eigenvalues of R;RoR3
and Rj Ry are all roots of unity. This fact leads to a linear equation in certain cosines of rational
multiples of 7. We find all solutions to this equation using a theorem of Conway and Jones [1]. We
then go on find which of these solutions lie in parameter space.

3.1 The eigenvalue equation

We now investigate when both R; Rs and Ry RoRj3 are elliptic of finite order. In fact our proof will
be valid when R; Ry is parabolic as well. We know that, R;J (and hence R;RyR3) is elliptic of
finite order if and only if

T =tr(RJ) = e + eP 4 g iaiB, (12)

where « and 3 are rational multiples of w. Likewise for RjRy. In fact we know slightly more.
Since the intersection of L; and Ly is an e %/ 3_eigenvector for each of Ry and Ry it must be a
e~2/ 3—eigenvect0r for R1Ry. From Proposition 2.4 we know that

tr(RiRy) = e/ 2—|7°) + e B3,

Hence the other two eigenvalues of R; Ry are — /3420 g q —ei®/3-2i0 (We have taken minus
signs in order to make our angles agree with [15].) Thus

|72 — 2 = 2cos(26), (13)

where 6 is a rational multiple of 7.

We solve equations (12) and (13) by eliminating 7. That is, we seek 6, «, § rational multiples
of 7 so that

2c08(20) +2 = |7|> = 3 + 2cos(a — B) + 2cos(a + 28) + 2 cos(—2a — ).
Rearranging, this becomes
% = cos(20) — cos(a — ) — cos(a + 20) — cos(—2a — (). (14)

In [15] Parker used a theorem of Conway and Jones [1] to solve (14). Up to complex conjugating



7 (so changing the sign of « and ) and multiplying by a power of w, the only solutions are:

20 a—pf a+26 2a+p @ I} a+p
(1) 2n/3 | m—@/2 ™ 2r —¢/2 | m— /3 ¢/6 T —¢/6
(i1) | ¢ w/3—¢ w/3+¢ 2m/3 w/3—¢/3 2¢/3 w/3+¢/3
(t30) | /3 |m/4 /2 3 /4 /3 /12 5m/12
(tw) |w/5 |3x/10  2m/5 /10 /3 /30 117/30
(v) 3n/5 | w/10 4r /5 97/10 /3 /30 177/30
(vi) | m/2 |27/7 Ar 7 6m/7 8m/21 2r/21  10m/21
(i) | 7/2 |n/15  117/15  4x/5 130/45  27/9  231/45
(viti) | w/2 |2n/5  Tr/15  137/15 | 197/45  w/45  4x/9
(tz) | /7 | 7/21 Ar [T 137/21 | 2xw/9 117/63 257/63
(x) 5 /7 | 5w/21  197/21 8rn /7 297/63 2n/9  437w/63
(wi) |37/7|2x/7  1lw/21 17x/21 | 237/63  57/63  4n/9

We then write down 7 = tr(RyJ) = € + e + e 8 and tr (R;RyR3) = €3® + 38 4 ¢ 3ia—3i8
using this table. As indicated earlier, the parameters 7w’ for j = 1, 2 correspond to the same group
as 7.

Proposition 3.1 (Proposition 3.2 of [15]) Suppose that Ri Ry and RiRoRs are both elliptic of
finite order (or possibly RyRg is parabolic). Up to complex conjugating T and multiplying by a
power of w, then one of the following is true:

(i) 7= —e "3 = m(p) for some angle ¢;
(ii) T = 213 4 e718/3 = ¢19/6 2 cos(p/2) =: s(p), for some angle b;
(iii) T = e"/® 4 e /62 cos(n/4) =: o(n/6,7/4);
(iv) 7= e + e /0 cos(n/5) =: o(n/6,7/5);
(v) T = e/ 4 e /62 cos(2n/5) =: o(7/6,21/5);
(vi) T = e2mi/T 4 e4mi/T 4 e87i/T —: 5(27/7);
(vii) T = ™% 4 e=7/9 2 cos (27 /5
(viii) T = e*™/9 + e7™/% 2 cos(4n /5

(2m/5) =
(4m/5) =
(iz) 7= ¥ 4 e/ 2c08(2n/T) =:
(x) T =™/ 4+ e /92 cos(dn)T) =
(6m/7) =

(xi) T = 2™/ 4 /92 cos(6m/7

Before proceeding we explain the notation. The possible solutions 7 either lie on one of two
curves or are on a finite list of points. The points on the curve from part (i) (for p > 3) correspond
to Mostow’s groups I'(p,t) (compare [11]). So we call this the Mostow curve and denote points on
it by m(¢). The points on the curve from part (ii) correspond to subgroups of Mostow’s groups,
by the results of section 5.1. These results generalise the isomorphisms discovered by Sauter in
[19], so we call this the Sauter curve and denote points on it by s(¢). The remaining parts (iii) to
(xi) consist of finitely many isolated points which we call sporadic. All the points except for those
in part (vi) depend on two angles and so we write them as o(¢,n) = €*? + e **2cos(n). Note



that complex conjugation sends o($,7) to o(—¢,n) and multiplication by e?7/3

o(¢p—2m/3,n).

We use these various values of 7 = tr(R;J) to parametrise groups in SU(2, 1); note that while
the values of 7 in the above list do not depend on 9 (the angle of rotation of the reflection R;), the
corresponding groups do vary with 1. We will denote by I'(¢, 7) the subgroup of SU(2, 1) generated
by R; and J, where the rotation angle of R; is ¢ and the trace of R;J is 7. Note that there should
be no confusion with Mostow’s notation I'(p, t), where p is an integer and ¢ is real. Explicitly, by a
simple computation using Mostow’s generator R; (appropriately normalised in SU(2, 1)), Mostow’s
group I'(p,t) is our T'(27/p, ™ (3/2+1/p=t/3-2/(p))),

sends o(¢,n) to

3.2 The points in angle parameters

We now list the corresponding points in the angle parameter space. This involves considering the
differences of the eigenvalues and making sure we have a pair {0,602} with 47/3 < 6; < 27 and
21/3 < 62 < 0.

For the groups of Mostow and Sauter type the corresponding points in the angle space are
piecewise linear curves. We now write these down.

Lemma 3.2 (i) The point 7 = m(¢) = —e **/3 corresponds to the angle pair {2 — ¢/2, 7} if
$/2 € [0, 7] and {21 + ¢/2,7 + ¢/2} if $/2 € [, 0].

(ii) The point 7 = s(¢p) = e*?/3 + e /3 corresponds to the angle pair {57/3 + ¢, 4w/3} if
¢ €[—n/3,7/3] and {Tn/3 — ¢,b7/3 — ¢} if ¢ € [7/3,7].

For the sporadic groups, in each case for 7 the angle pair is {27 + f — a, 27 — 2a — 5} and for
7 it is either {27 — a — 203, 2m — 2a — B} or {27 + B — a,a + 2(3}. These angles may be read off
from the table just before Proposition 3.1.

T {91,92}
(ii3) | e™/3 + e ™/%2cos(n/4) | {Tn/4, br/4}
e T3 4 em/62 cos(/4) {3n/2, 5[4}
(iv) | e™/3 4 e ™/%2¢os(n/5) | {17x/10, 137/10}
e~™/3 4 ™62 cos(m /5) {8n/5, 137 /10}
(v) | e™3 +e ™/%2cos(2n/5) | {197/10, 117/10}
e~/ 4 e™i/02 cos(27/5) | {197/10, 4m/5}
(vi) | 2m/T AT 4 /T {127/7, 87 /7}
6727ri/7 + 6747ri/7 + 6787ri/7 {1071_/7’ 871'/7}
(vid) | e>™/9 4 e~/ cos(2m/5) | {297/15, 187/15}
e~ 2mi/9 4 emi/99 cos (2 /5) | {297/15, 117/15}
(viii) | €2™/% 4 e ™92 cos(4n/5) | {87/5, 177/15}
e~2mi/9 4 emi/99 cos (4 /5) | {237/15, 177/15}
(iz) | ¥/ 4 e~/ cos(2n/7) | {41m/21, 297/21}
e 29 4 ™92 cos(27/7) | {1077, 297/21}
(z) | ¥/ 4 e/ cos(dn/T) | {37n/21, 67/7}
e~ 2mi/9 4 emi/99 cos (4 /T) | {377/21, 197/21}
(zi) | €™/ 4 e ™/92cos(67/7) | {127/7, 257/21}
e~ 2mi/9 4 emi/92 cos(2m/7) | {31m/21, 25m/21}
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Figure 2: The points together with the angle parameter spaces for p =3, ..., 10.
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3.3 Points in parameter space

In this section we consider the values of 7 from Proposition 3.1 or the corresponding angle pairs
and we determine which of them is in the parameter space. In each case, we are only interested in
the case where 1) = 27 /p for some integer p > 2. In each case we know the eigenvalues e'®, e and
e~ of Ry;J and we can use the criterion (10) of Corollary 2.7 to determine for which values of
p the form H, has signature (2,1). Alternatively, we could use the angle pairs and check the linear
conditions given in Section 2.6. We have plotted the points and parameter spaces forp =3, ..., 10
in the 7-plane in Figure 1 and we have plotted the same thing in the angle parameter space in
Figure 2.

Proposition 3.3 Let Ry have angle ¢ € (0,27).

(i) Suppose that T = m(¢p) = —e~"*/3. Then H, has signature (2,1) if and only if

sin(y + ¢/2) cos(vp/2 — ¢/2) > 0.

(ii) Suppose that T = s(¢) = e/ + e /3. Then H, has signature (2,1) if and only if
sin(1h/2 + ¢) > 0.

PRrROOF: We insert the values of « and S found above into Corollary 2.7 and simplify.
In (i) we have @ = 7 — ¢/3 and = ¢/6. This leads to

8sin(3m/2 — ¢/2 4+ 1p/2) sin(¢p/4 + 1 /2) sin(=37/2 + ¢/2 +/2) < 0.

In (ii) we have a = 7/3 — ¢/3 and 8 = 2¢/3. This leads to

8 sin(¢ +1/2) sin(—¢/2 + 7/2 +1/2) sin(— /2 — 7/2 + 1/2) < 0

Simplifying, this is equivalent to

sin(¢/2 + ¢) (cos(yp — ¢) + 1) > 0.

We can ignore the possibility cos(i) — ¢) = —1 as this only occurs when 7 = e2¥/3 — ¢~ /3 in
which case H; has a repeated eigenvalue of 0. (By inspection this does not occur in the interval
where H, has signature (2,1)). O
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For the sporadic groups we simply work by inspection. The results are given in the following

table:
e g —a—p0F |(2,1) Degenerate | (3,0)
(130) | /3 /12 —5m/12 |p>3 p=
“x/3 |5n/12 | —x/12 |3<p<T [p=28 |p>9
(tv) | m/3 /30 —117/30 |p >3 p=
—x/3 | 117/30 | —7/30 |3<p<19|p=2,20 |p>21
(v) /3 /30 | =17x/30 |p >3 p=2
—n/3 | 17Tn/30 | =Tw/30 |3<p<6 |p= p>T
(vi) | 2w/7 | 4mw)7 —6m/7 4<p<6 |p=7 p=2,3,p>8
—2m /7 | —4n /7T | 67 /7 p>3 p=2
(vid) | 27/9 | 137/45 | —237/45 | p> 2
—27/9 | 237/45 | 13w/45 | p=2,4 p=3 p>5
(viit) | 2w/9 | 31w /45 | —41m/45 | p >3 p=2
—2/9 | 417/45 | —317/45 |4 <p<29|p=3,30 |p=2 p>31
(iz) | 20/9 | 117/63 | —257/63 | p > 2
—2m/9 | 257/63 | —117w/63 | p =2 p=3 p>4
(z) 2r/9 | 297/63 | —437w/36 |4 <p <4l |p=42 p=2,3,p>43
—2m/9 | 437/63 | —297/63 | p > 4 p=3 p=2
(xi) |2m/9 | 47w/63 | —617/63 | p >3 p=
—2/9 | 617/63 | —47n/63 |4 <p<8 |p=3 P=2p>9

4 Non-discreteness results

There are two simple ways to see that a subgroup of PU(2,1) is not discrete: finding an elliptic
element of infinite order in the group, or finding a subgroup which stabilises a complex line, acting
non-discretely on it. Of course, these elementary facts can only be useful if one finds the appropriate
element (word) or subgroup. We will present in this section some results of this nature.

4.1 Traces for certain words

We compute the traces of certain short words in our generators Ry and J (or Ry, Ry, R3). These
words seem relevant to us for experimental and /or historical reasons (see [11] and [21] for instance).
These traces can be computed in a straightforward manner from the generators, or by using the
formulae from [18].

w tr(W)
RyJ T
J IR —e /37

T2 _2F
e2V/372 4 9o~ 1W/3

RlRQJ_l = (R1J)2
JRyR; = (J71R1)2

R R, e~ 20/3 +6iw/3(2— |T|2)
RiRyR3R,* e72/3 4 W3 (2 — |72 — 7))
RiR;'R3Ry e 2V/3 4 /3 (2 — |72 4 ¢VF2)
RiR,* 1+ 2cos(¢p) + |72
RiRyRy'Ry* 1+ 2cos(yp) + |72 — 7

RiR;'R;'R,
RiRyR3 = (R J)?
RiRyRiR;'Ry'R;!

1+ 2cos(tp) + |12 + 7|2
3—=3|r)2+ 73
34+ (|72 = 1) (J7]* + 6]7]? + 2 — 2cos(v))
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We use this to prove non-discreteness results, some valid for any value of p like the following,
and some depending on the value of p (see last section for p = 3).

Lemma 4.1 Let Ry, Ry and R3 be given by (7), (8) and (9). If |7> —7| > 2 then RiRyR3R; " is
loxodromic. If |7'2 — 7| < 2 then R1R2R3R51 1s elliptic with eigenvalues e_ZiW3, —eW/3+20" g
—e/3=20" ywhere |72 — 7| = 2cos 6.

PROOF: A short computation shows that the trace of RiRyR3R, Lis
(B RaRaRyY) = &3 (2 = 12 — 72) + 2015,

Since all points of Ly (the mirror of R;) and of Ry(L3) (the mirror of RyR3R, ") are e /3 eigen-
vectors for Ry and RoR3 R, ! respectively, we see that their intersection is an e=2%/3 eigenvector
for RiR2 R3 R, L If this point is outside H% then R1RoR3 R, ! is loxodromic. On the other hand, if
this point is inside complex hyperbolic space then RiRoR3 RS s elliptic with eigenvalues e 2W/3,
—eW/3+20" and —e¥/3-20" where |12 — 7| = 2cos ¥ O

We now list |72 — 7|? for the values of 7 given in Proposition 3.1. It is clear that complex
conjugating 7 or multiplying by a cube root of unity does not affect this quantity. We also give the
value of 0 or indicate that RiRoR3R, 1 is loxodromic.

T |7|? 20 |72 — 72 20’
(i) | —e1/3 1 210/3 | 2 + 2cos(¢) )
(i5) | e¥9/3 4 e719/3 2 4+ 2 cos(¢) ) 2 4+ 2cos(¢) )
(i17) | /3 +e"/52cos(nw/4) |3 /3 |2 /2
(iv) | e/ + e /%2¢0s(n/5) |2+ 2cos(n/5) w/5 |3 /3
(v /3 4 e /62 cos(2n/5) | 2+ 2cos(3w/5) 3w/5 |3 /3
(vi) | 2T 4 Ami/T 4 87/ 2 /2 |1 21/3
(vii) | €27/9 4 e~ /92 cos(2n/5) | 2 m/2 | 24 2cos(2n/5) 2m/5
(viii) | e2™/° 4 e /92 cos(4n/5) | 2 7/2 | 2+ 2cos(4n/5) 4n/5
(iz) | e¥7/9 4 e~ /92cos(2n0/7) | 2+ 2cos(n/7) w/7 |3+ 2cos(2n/7) loxodromic
(z 27 /9 4 e=/92 cos(4n/T) | 2+ 2cos(5m/T) 5m/7 | 3+ 2cos(4n/7) irrational
(zi) | e2™/° 4 e /92cos(6m/7) | 2+ 2cos(3n/7) 3w/7 | 3+ 2cos(6m/7) irrational

In case (ix) |72 —7|? > 4 and so R;RyR3R; " is loxodromic.

In the last two cases |7'2 —?|2 is less than 4. Therefore, using Lemma 4.1 we see that B RoR3 Ry !
is elliptic and we find the angle 6 satisfying 2 + 2cos(20') = |12 — 7|? = 3 + 2cos(4r/7) and
3 + 2cos(67/7), respectively. Using the theorem of Conway and Jones (Theorem 7 of [1]), we see
that 6’ is not a rational multiple if 7 and hence Ry RaR3R; ! is elliptic of infinite order. Therefore,
for these values of 7, the group (R;,J) is not discrete. This proves:

Corollary 4.2 Suppose that 7 = e*™/9 4-¢=/92 cos(4n/7) or T = *>™/% 4-¢=/92 cos(67/7). Then
R1R2R3R2_1 is elliptic of infinite order.

Hence when examining possible candidates for discrete groups it suffices to consider the values
of 7 given in parts (i) to (ix) of Proposition 3.1.
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4.2 Triangle subgroups

We will systematically analyse triangle subgroups in order to find conditions for discreteness. By
triangle subgroups we mean subgroups which fix a point in CP?; depending _on the position of that
point, the subgroup will stabilise a complex line (if the point is outside of HZ), fix a point in H?Z
or on its boundary. The two-generator group in question then acts as a hyperbolic, spherical, or
Euclidean triangle group respectively, and the angles of the triangle action are obtained from the
eigenvalues of the generators, see Proposition 4.4 below.

We use the lists which answer the classical question of plane geometry: given three angles «, 3
and 7, when is the group generated by the reflections in the sides of an («, (3,7) triangle discrete?

In the case of a spherical triangle, the list is due to Schwarz ([20]), see table 4.2 below; for
hyperbolic triangles, it is essentially due to Knapp ([8]), see Proposition 4.3 below. In the Euclidean
case there are the three obvious triangles (n/3,7/3,7/3), (7/2,7/4,7/4) and (7/2,7/3,7/6), and
only one other, namely (27/3,7/6,7/6) (see [2]).

We start by listing the Schwarz triangles, i.e. the spherical triangles answering the above
question. The possible triangles are arranged as in [2]: colunar triangles appear together on one
line, in increasing order of size.

Schwarz triangles

(m/2,7/2,pm/q)

(m/2,7/3,7/3), (r/2,2m/3,7/3), (7/2,27/3,2m/3)
(2r/3,7/3,m/3), (2m/3,2m/3,27/3)

(r/2,7/3,w[4), (7/2,2r/3,7/4), (rw/2,7/3,3m/4), (7/2,27/3,3m/4)
(2n/3,m/4,7/4), (w/3,3m/4,7/4), (2m/3,3m/4,3m/4)

(w/2,7/3,7[5), (n/2,27/3,m[5), (w/2,7/3,4n[5), (m/2,2n[3,47/5)

(2n/5,7/3,m/3), (3n/5,2mw/3,7/3), (2r/5,27/3,2m/3)

(2w /3,m/5,7/5), (w/3,4w /5,7 [5), (2m/3,4m[5,4m/5)
(r/2,27/5,7/5), (r/2,37/5,7/5), (n/2,27/5,47]5), (/2,37 /5,47 /5)
(3w /5,7/3,m7/5), (2n/5,2n/3,7/5), (2r/5,7/3,4n/5), (37/5,2n/3,4w/5)

(2w /5,2m /5,27 /5), (37/5,37/5,27/5)

(2n/3,7/3,mw/5), (n/3,m/3,4n/5), (2m/3,2n/3,4m/5)

(4w /5, 7[5, m/5), (4w /5,4m/5,4m/5)
(r/2,27/5,7/3), (7/2,3nw/5,7/3), (w/2,27/5,2m/3), (7/2,3m/5,27/3)
(3w /5,2n/5,7/3), (2m/5,2n/5,27/3), (37/5,37/5,27/3)

Proposition 4.3 (Lemma 2.1 of Klimenko and Sakuma [7]) Suppose that the group gener-
ated by reflections in the sides of a hyperbolic triangle is discrete. Then the angles of the triangle
appear on the following list:

(i) ©/p, w/q, ©/r where 1/p+1/q+ 1/r < 1;

(ii) w/p, w/p, 2w /r where r is odd and 1/p+ 1/r < 1/2;
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(iii) 7 /p, /2, 27 /p where p > T is odd;

(iv) w/[p, ©/3, 3w /p where p > 7 is not divisible by 3;
(v) ©/p, 7/p, 4 /p where p > 7 is odd;

(vi) 2m/p, 27 /p, 27 /p where p > T is odd;

(vii) /7, ©/3, 2n/T.

The case when two of the angles are 7/p and 7 /q was proved by Knapp in Theorem 2.3 of [8].
This list is the same as that above without case (vi). Knapp’s theorem was rediscovered by Mostow
and appears as Theorem 3.7 of [13] except that Mostow missed case (vii).

Given a group generated by reflections in the sides of a triangle (hyperbolic, Euclidean or
spherical) we can consider the index 2 group of holomorphic motions. The product of a pair of
reflections in sides that make an angle 6 is an elliptic rotation through 26. If we represent this map
as a matrix in SU(2) or SU(1, 1) the eigenvalues are —e®™®. This group of holomorphic motions is
generated by A and B where A, B, AB are elliptic rotations corresponding to products of pairs of
reflections.

Proposition 4.4 For j =1, 2 suppose that B; is a complex reflection in SU(2,1) with eigenvalues
e2Wil3 e~ Wil3 o= Wil3 and mirror L;. Then Ly N Ly corresponds to an e W1/3—iva/3 etgenvector
of B1By. Suppose that By By is elliptic and its other eigenvalues are —e™¥1/6+W2/6£1Ws/2  They op
the orthogonal complement of Ly N Lo the group (Bi,Bs) acts as the holomorphic subgroup of a

(¥1/2,42/2,13/2) triangle group.

PROOF: We conjugate so that L; N Ly corresponds to the vector (1,0, O)T. Then B; and By are
block diagonal matrices in S(U(1) x U(1,1)) or S(U(1) x U(2)). Scaling, we may suppose that they
lie in U(1) x SU(1,1) or U(1) x SU(2). Then the action on the orthogonal complement of L; N Lo
is given by the 2 X 2 unimodular matrices in the lower right hand block. These block matrices
have eigenvalues —et™W1/2 _eFiV2/2 _oFiWs/2 for B\ By, BBy (up to maybe scaling by —1). The
result follows from the remarks above. O

For example, consider R; and Ry. Their eigenvalues are 23 /3 /3, Scaling, we
see that the eigenvalues of —e ™/6R; and —e /Ry are —e™/2, —e~ /2 and —e /2. The
eigenvalues of Ry Ry are —e¥/ 3+2i9, —e¥/ 3*%9, and e 2%/ 350 that the eigenvalues of e~/ 3R1Rs
are —e?0 —e=20 and e~ = (—e"™/2)(—e~™/2). Therefore (R;, Ry) acts on the orthognal
complement of L; N Ly as the holomorphic subgroup of a (¢/2,1/2,260) triangle group.

Similarly, Ry and RoR3 Ry ! have a common eigenvector L1 NR2(L3). When Ry RyR3R; Lig ellip-
tic the group (R, RyR3R, ') acts on the orthogonal complement of L N Ry (L3) as a (1/2,1/2,20")
triangle group.

We can apply the result of Klimenko and Sakuma, Proposition 4.3 (in fact we only need the
earlier version of Knapp [8]) to eliminate some of the cases, using the values for 26 and 26’ given
in Table 4.1. This gives the following;:

Proposition 4.5 Suppose that 1 = 2x/p.
(i) If p >3 and 7 or 7 = /3 4 e /62 cos(21/5) then (Ry, Ry) is not discrete.

(ii) If p#3,5 and 7 or T = €2™/° 4 e /92 cos(4n/5) then (Ry, ReR3Ry ') is not discrete.
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5 The two curves in parameter space

In this section we determine exactly which points on the two curves from Proposition 3.1 correspond
to discrete groups.

The first curve corresponds to Mostow’s original groups from [11], where sufficient conditions
for discreteness were found; these sufficient conditions were generalised in [12] (to a condition which
Mostow calls ¥ INT, which also contains the groups from [3]). A necessary condition, using triangle
subgroups, was then found in [13], leaving only nine groups in dimension 2 and one in dimension 3
not covered by either of these criteria. Mostow proves in [13] that all but three of these are discrete;
the last three cases were shown to be discrete by Sauter in [19]. See [13] or [19] for more details on
the history of this question.

Determining which points of the second curve (or Sauter curve) correspond to discrete groups
uses the result that every such group is a subgroup of a group on the Mostow curve, see section 5.1
below. It then remains to discard the possibility that a discrete group on the Sauter curve could
be a subgroup (of infinite index) of a non-discrete group on the Mostow curve (theorem 5.8). This
is done by a careful analysis of triangle subgroups.

5.1 Sauter groups are subgroups of Mostow groups

In this section we prove that each group on the Sauter curve is isomorphic to a subgroup of a group
on the Mostow curve, but for a different value of ¢, the rotation angle of R;:

Proposition 5.1 ['(¢,e?%/3 + e=/3) s isomorphic to a subgroup of T'(¢p, —e 9/3).

Recall that I'(¢, 7) denotes the group generated by R; and J, where 1 is the rotation angle of R;
and 7 is the trace of Ry J.

PROOF: We begin by defining some elements of (Ry, J), with ) as rotation angle of Ry. These
definitions follow Sauter.

—T e“/}/3? eiiw/3
Ay = Ry'R{MY = JTHWITIRNYYT = e WB(1—|r)?) -1 e7WF
0 eZi'(/}/3 0

Ay = JR;'RTY = (JT'RTY?, A3 = J'RIRTYTT = J(JTIRDHAT!

The result follows by noting that the subgroup (A1, J) of (Ry,J) corresponds to the required

parameters. Namely, if 7 = —e~*¥/3 then A; is a complex reflection with angle ¢ (as can be seen
by its trace), and A;J ! has trace e /3(2 — |7]?) + e¥¥/3 = e /3 4 ¢2¥/3. Note that we have
replaced J with J~!, which is conjugate to J (as in Sauter’s isomorphisms). O

In fact we can say more:
Lemma 5.2 (A;, Ag, A3) is a normal subgroup of (Ry,J).
Proor: If |7| =1 then R;R;R; = RjR;R;. Using this and Ry = JR1J~!, we find

RiAIRY = RiR,'R{YJR' = R,'R'RyR,'JT = Ay,
RiAsRY = RyJR,'RI'R;' = RiRyJ 'J 'RyIRYVTVIRIRY = A T Az A,
RiAsRY = RyJ'R'RIMVIIRY = JRIRT = A,

(compare the identities in Section 7 of [14]). Moreover, from the definition of A;, Ay, A3 we have:
JA;J 1 = A;y (taking the index ¢ mod. 3). The lemma follows. O
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When 7 = —e_i¢/3, Sauter considers the map Ry —— As, Ry — A;, R3 — As. That is,
he considers the group for which the trace of the generator is 72 — 27 = e2%/3 4 2¢~%/3 and the
parameter is e2%/3 4 ¢="/3_ This is a point on the curve of the second type. In fact, as Sauter is
only interested in the case of Mostow groups, he only considers this map in the case when ¢ = 27/3,
Theorem 6.1 of [19]. In this case e2¥/3 4+ ¢~/3 = ¢7/9 which is an intersection point of the curves
of Mostow and Sauter types (see section 5.5).

The special case of groups on the Mostow curve with 7 = 1 (or equivalently w or @) was
considered by Livné in [9]. Such groups have signature (2,1) when ¢ < 7/2. In [14] Parker showed
that Livné’s groups contain subgroups that are triangle groups generated by involutions. This is
another special case of Proposition 5.1.

Conversely, if Ry, Re and R3 have the form (7), (8), (9) then the map

e~ie/3 0 0
Q= 0 0 el/3+id/3
0 _e /B Q2ip/3 | o—id/3

satisfies
QRIQ™'=Ri, QRQ '=R;, QR;Q '=R;'RyRs.
Therefore (R, Ry, R3) is a normal subgroup of (Q, Ry, J).

5.2 The Mostow curves

Proposition 5.3 Suppose that » = 27/p and T = —e /3. Then the following subgroups of
(Ry1,J) have a common fized vector and on its orthogonal complement they act as (the holomorphic
subgroup of) a triangle group as follows:

(i) (R1,R2) acts as a (/2,1 /2,27 /3) triangle group;
(i) (R, RoR3R, Y acts as a (¢)2,1/2, ) triangle group;

(iv) (Ay, As) = (R, 'Ry ML, IR, PRY) acts as a (¢/2,0/2,1) triangle group;

(v) (A1, A1A3As) = (Ry PR ML (R PRTY)?) acts as a ()2, 7/2—1p)2—¢/2,7/2—34p/2) triangle
group.

{
{
(iii) (R1, Ry R3Ry) acts as a (1/2,9/2,m — 4 — §) triangle group;
{
{

PROOF: (i) The eigenvalues of Ry and Ry are 62i¢/3, e*“ﬁ/?’, e*“ﬁ/?’, and those of R1Ry are
—eW/3+2im/3  _oip/3=2in/3 o=21/3 The result follows from Proposition 4.4.
(ii) The eigenvalues of R; and R2R3R§1 are 62i¢/3, e*“ﬁ/?’, e /3. The trace of R1R2R3Rf1 is
e 2W/3 _ /32 cos(p). Therefore its eigenvalues are —e¥/3+1¢  _ei/3—i0  o=2i0/3  The result
follows from Proposition 4.4.
(iii) This is similar to (ii) except that

tr(R1 Ry 'R3Ry) = e~ 23 4 W39 cos(p 4 1p) = e /3 — /32 cos(mr — ¢ — ).

(iv) The eigenvalues of A; and Ay are €9/3 ¢=i0/3 ¢=i6/3 The trace of A; Ay is e~ 21%/3—¢i%/32 cos(1).
Hence its eigenvalues are e 2/%/3 _e¥+i1¢/3 and —e~¥+i4/3 The result is again similar.

(v) Finally, the eigenvalues of A; are 203 ¢=i#/3 ¢=i8/3 and those of AjA3Ay = (AyJ~1)3 =
(Ry'R7Y)? are €2, —e ™, —e ™. The eigenvalues of AzA; = (A]')(A14243) are e %9/3)
—eWti0/3 _e=iW+id/3  The result follows from Proposition 4.4. O

Combining Proposition 5.3 with Proposition 4.3 we obtain
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Corollary 5.4 Suppose that ¢ = 27 /p and T = —e~ /3. If (Ry, J) is discrete then either
(i) p=2n/q, m —p—p=7—2n/p—2n/q=2n/r or
(1)) ¢ =2¢p =4n/q and m — 3¢ = 7w — 67 /p = 27 /r where p is odd.

Suppose that p, ¢ and r are integers (or posssibly co) in modulus at least 3 so that 1/p+1/¢+1/r
= 1/2 then up to permutation p, ¢ and r take one of the values in this table:

p 3 3 3 3 3 3 3 3 3 4 4 4 4 5 6
q 3 4 5 6 7 8 9 10 12 4 5 6 8 5 6
r —6 —12 —-30 oo 42 24 18 15 12 oo 20 12 8 10 6

2w/(p—6) | —2 -2 -2 —2 -2 -2 —2 -2 —2 —4 -4 -4 —4 —10 o
2/(q—6)| -2 -4 -10 o~ 14 8 6 5 4 —4 —10 oo 8 —10 oo
o/(r—6) | 1 4/3 5/3 2 7/3 8/3 3 10/3 4 2 2/7 4 8 5 oo

The following theorem is a restatement of work of Mostow [13] and Sauter [19].

Theorem 5.5 Suppose that 1 = 27/p and T = —e /3 where

max{—2zp, Yp—m}<Pp< min{ﬁ + 1, 2w — 2¢}

The group (Ry,J) corresponding to these parameters is discrete if and only if one of the following
18 true:

(i) p=3,4,5,6,7,8,9,10, 12, 18 or co and ¢ = 2r/q, m —1p — ¢ = 27/r for some integers q,
r (possibly infinity);

(i) p=>5,7 or9 and ¢ = 4n/p;

(15i)) p=>5,7 or9 and ¢ =7 — 67/p;

(iv) p=15, 24,42, =30 or —12 and ¢ = 27 /3;

(v) p=15,24,42, —30 or —12 and ¢ = /3 — 27/p.

Theorem 6.1 of Sauter [19] shows that the group from (v) with ¢ = 27/p and ¢ = 27/3 for

p = 15, 24,42, —30 or —12 is isomorphic to the group from (i) with ¢ = 27/3 and ¢ = 27 /p.
This isomorphism is given by identifying A; with Ry and J with J 1. Theorem 6.2 of Sauter [19]
shows that the group from (ii) with ¢ = 27 /p, ¢ = 47 /p is isomorphic to the group from (i) with
¥ = 2x/p and ¢ = 7. This isomorphism is slightly more complicated and involves sending a square
root of Aj to Ry and J to J~!. The groups from (ii) and (iii) are isomorphic as are the groups
from (iv) and (v) via the map that fixes R; but sends .J to J .

5.3 The Sauter curves

Proposition 5.6 Suppose that 1 =27 /p and T = e%9/3 4 e=18/3  Then the following subgroups of
(Ry1,J) have a common fized vector and on its orthogonal complement they act as (the holomorphic
subgroup of) a triangle group as follows:

(i) (R1,R2) acts as a (v/2,1/2,¢) triangle group;
(ii) (Ri,RaR3) acts as a (Y/2,7)2 — ¢/2 —p/2,7/2 — 3¢/2) triangle group.
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PROOF: When 7 = ¢29/3 4 ¢~¢/3 then Ry RyR3 = (R1J)? has one eigenvalue ¢ and a repeated
eigenvalue —e~?. Also, Ry R3 has trace

tr(RaR3) = /3 (2 — |T|2) + e 2W/3 = /39 cos(¢p) + e 2W/3,

Hence R;R3 has eigenvalues 6*2“"/3, —eW/3+19 and eW/3-¢. Then n = Ly N Lysg is a com-
mon eigenvector of Ry and Ry RoR3, and hence of ReR3. The eigenvalues are e W/ 3, —e ' and
—eW/3=1 respectively. Thus on the orthogonal complement of n the group (R;, RyR3) acts as a
(Y/2,m)2 — P]2 —1p/2, /2 — 3¢/2) triangle group.

Od

We again use Proposition 4.3 to eliminate all but finitely many points.

Corollary 5.7 Suppose that ¢ = 2 /p and T = €*9/3 ¢~ 9/3, [f (Ry,J) is discrete then ¢ = 27 /q
where either

(i) m—p —¢p=m—2n/p—2n/q=2r/r and T —3¢p =7 —b67/q = 2m/s or
(i) p=3 and 7/3 —p =7/3 — 27 /q = 27/s.

PRrROOF: Using 9 = 27/p in (R1, R2) and Proposition 4.3, we see that either ¢ = 27 /q or 47 /p
and in the latter case p is odd.

Assume that ¢ = 27/q. Then (R;, RayR3) acts as a (n/p, /2 —w/p —w/q,7/2 — 31/q) triangle
group. From Proposition 4.3 we see that either 7/2—m/p—m/q or 7/2—3n/q has the form 7 /r. The
result follows from the table above. Note that in (ii) we have 37 /s = n/2—3n/q = 3(n/2—7/3—n/q)
and, when s is not divisible by 3 we are in case (iv) of Proposition 4.3.

If ¢ = 4x/p then (Ry, RoR3) acts as a (w/p, n/2—3n /p, n/2—67/p) triangle group. By inspection
we see that the only possible values of p satisfying Proposition 4.3 are p = 6, 8, 9, 10, 12, 14, 18.
Of these, only p =9 is odd. We now eliminate this case.

Suppose that 1 = 27/9 and ¢ = 4x/9. That is:

eAmi/2T 2m/279 cos(2m/9)  —2cos(27/9)
Ri=| o o—2mi/21 0

0 0 6727ri/27

We calculate

/9 (2cos(27/9) — 1) —e!6™/27(2cos(47/9) + 1) 0
(R1R»)® = |e8m/27(2cos(47/9) + 1) —e*/92 cos(27/9) 0
0 0 e—8mi/9

The eigenvalues of (RyRy)® are e'67/9 ¢ =87/9 ¢=87/9 Thus (RyRy)® is a complex reflection with
angle 87/3, that is 27/3. Also

tr((ByRo)° ) = —!97/27 (2cos(4/9) +1).

This trace does not appear on our list of possible values of 7. Therefore (R;,.J) is not discrete.
Indeed, we may calculate that

tr((RlRQ)ﬁ(R2R3)6> _ e87ri/9 (2 COS(27T/9) 11— 2008(47‘(/9)) + 67167rz'/9.
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Now 2cos(2m/9) — 1 — 2cos(4n/9) lies in (—2,2), but is not equal to twice the cosine of a ra-
tional multiple of 7 (for example this follows from the theorem of Conway and Jones). Hence
(R1R2)%(R2R3)® is elliptic of infinite order. O

We now consider the points we have not eliminated by Corollary 5.7. By inspection, we see
that each of these groups is a subgroup of one of the discrete groups from Theorem 5.5. Therefore
we have proven:

Theorem 5.8 Suppose that ¢ = 2 /p and T = 2?3 4 ¢=19/3 where —n/p < ¢ < @ — w/p. The
group (Ry,J) is discrete if and only if ¢ = 2w/q where either

(1) g=3,4,5,6,7,8,9, 10, 12, 18 or co and m — 2w /p — 27 /q = 2mw/r for some integer r;

(i) p=3 and q = 15, 24, 42, —30 or —12.

Note that (i) includes the case where p = 2 and r = —q (where ¢ > 5), which is Proposition 4.5
of [15], and the case where p =3 and ¢ =3, 4, 5, 6, 7, 8, 9, 10, 12, 18 or oo.

5.4 An example of a discrete group on the Sauter curve

In §5.4.1 of [16] Paupert considers the group with p = 3 and angle parameters (57/3,4n/3).
Writing R;J as a unimodular matrix, these angle parameters translate to eigenvalues 1, e™/3 and
e~im/3, (The fixed point of R;J corresponds to the ei”/?’—eigenspace.) Hence the trace of R;J is
T =1+ €™/3 4+ e /3 = 2. This appears on the list of discrete groups. In this case:

'647ri/9 9 _2627ri/9'
R, = 0 e—27ri/9 0 7
|0 0 6727ri/9 |
B 6727ri/9 0 0
Ry, = _2627ri/9 e47ri/9 9
0 0 e—2mi/9
[o—2mi/9 0 0 T
Ry = 0 e MmO 0
9 _2627ri/9 e47ri/9
We can easily check that an e™/3-eigenvector of R;J is
57i/9
1
o—57i/9

which is negative.

We now give another, more direct, way to see that this group is discrete. Using Proposition 2.8
we see that (R, R, R3) may be conjugated in PU(2,1) so that their matrix entries lie in Z [62”/3],
the Eisenstein integers. Since this is a discrete subring of C the group is automatically discrete.

5.5 The two curves are related for p =3

In section 5.1 we have seen that each group on the Sauter curve is a subgroup of a group on the
Mostow curve, but for a different value of ¢ (the angle of rotation of the generators). In the special
case where 1 = 27/3, we can apply this twice to see that each group on the Sauter curve is a
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subgroup of a group on the Mostow curve, for the same value of ¢. Moreover, Theorem 5.8 tells
us that the Sauter subgroup in question is discrete only if the larger Mostow group is discrete. In
other words, in terms of discrete groups, the two curves are the same; this is visible on Figure 4.
The precise statement is the following:

Proposition 5.9 I'(2r/3,e%9/3 4 e~1%/3) is isomorphic to a subgroup of T'(21/3, —e "¢/3).

PROOF: We have seen in section 5.1 that I'(¢, e2W/3 4 e‘iw/3) is isomorphic to a subgroup of
['(¢p, —e*/3). Applying this with ¢ = 27/3, we obtain that T'(¢, e*™/? + ¢~27/%) is isomorphic to
a subgroup of I'(27/3, —e~/3). Now the point is that e*7/9 4 ¢=27/9 = i7/9 — _=817/9 50 that
the former group (of Sauter type) is also of Mostow type, and we can therefore repeat the process.
This tells us that I'(87/3,e%?/3 + ¢~1®/3) is isomorphic to a subgroup of I'(27/3, —e~**/3). Note
that 87/3 = 27/3 mod. 2. O

In fact we can say more and identify the corresponding subgroups in terms of generators:
((R1R2)?,J) is a subgroup of (A, J), which is in turn a subgroup of (R1,J) (see section 5.1), and
these various subgroups correspond to the values of the parameters described above.

Indeed, when p = 3 and |7| = 1, we have tr((R; Ry)?) = e'67/9 4 2¢=87/9  Therefore (R Ry)?
is a complex reflection with angle e247%/% = ¢27/3 We also have tr((R; R2)?J) = 72 4 2 cos(27/3)7.
When 7 = —e~/3 then this trace is €2/9/3 4 ¢="¢/3 as required.

6 Sporadic groups generated by complex reflections of order 3

6.1 Which sporadic points are in the parameter space?

This was determined earlier for all values of p (see Table 3.3). For p = 3, the situation is the
following;:

e H, has signature (2, 1) for the following sporadic values of 7:

/3 4 eim/62 cos(r/4), /3 4 e /62 cos(m/5), €3 4+ e /62 cos(2n/5),

e~im/3 4 ¢in/62 cos(r/4), e T3 4 &m0 cos(m/5), e /3 4 ei™/62 cos(2n/5),
e2mi/9 4 o—mi/99 cos(27/5), e2mi/9 4 e=mi/99 cos(4m/5), e2mi/9 4 ¢=mi/99 cos(2m/7),
627ri/9 + 6771'1:/92 COS(67T/7), 6727ri/7 + 6747ri/7 + 6787ri/7‘

e H, is degenerate (signature (2,0) or (1,1), see below) for 7 = e=27/% 4 ¢™/92 cos(¢p) where
¢ = 2n/5,4n /5,27 /7,47 /7 or 67 /7. The corresponding five points are on the boundary of
our parameter space.

e H, is positive definite when 7 = ¢*™/? 4 ¢=™/92 cos(4n/7) and 7 = 2™/ 4 47/T 4 87T,
The corresponding two points are outside of our parameter space.

6.2 Reducible sporadic groups

These correspond to 7 = e=27/? 4 /92 cos(¢p) where ¢ = 27/5,4n/5,2r/7,47/7 or 6m/7. These
groups have a common eigenvector (1,1,1)7; as in Proposition 4.4 we analyse their action on the
orthogonal complement of this vector. In this case, normalising R; for convenience as —e /IR,
the eigenvalues on this complement are —e'™/3 and —e /3 for Ry, —e'™/3 and —e /3 for J, and
—e'® and —e™* for R;J. Therefore the group (R, J) acts as (the holomorphic subgroup of) a
(r/3,7/3, ) triangle group. For ¢ = 27/5 or 47 /5, this is in fact a (finite) (2, 3,5) triangle group;
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Figure 3: The sporadic points together with the trace parameter space for p = 3.

5
4.5+

3.51

2.5

45 5 55 6

Figure 4: The sporadic points (crosses) together with the angle parameter space for p = 3. We
have also included all discrete points (diamonds) on the two curves.
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3|3 313
5 2|2 5 7 2|2 7
R, 2 J R 3 J
Figure 5: Schematic picture of triangle group action when 1T = e 27/9 4 ¢7i/99 cos(¢p) for

¢ = 21/5(2), 4 /5 (1), 21/7 (3).

for ¢ = 2m/7, it is a discrete hyperbolic (2,3,7) triangle group. For ¢ = 47/7 or 67 /7, it is a non-
discrete spherical triangle group; in fact we already know that these two groups are non-discrete
from Corollary 4.2, as Ri RoR3 RS L is elliptic of infinite order.

In Figure 5 we draw a schematic picture of the triangle group action induced by the generators
in the three discrete cases.

6.3 Non-discrete irreducible sporadic groups

The trace of Rlel is
tr(RiRy ) = 2cos(¢p) + |72 + 1.

When ) = 27/3 we have
tr(R1Ry ') = |7]* = 2 + 2cos(20)

where 260 is given in the table just before Proposition 3.1. Evaluating in each case we can find
whether 1Ry ! is loxodromic, parabolic or elliptic and, in the latter case, whether or not it has
finite order. This enables us to eliminate one pair of complex conjugate 7 (see also Proposition 4.5):

Lemma 6.1 Suppose that ¢ = 21/3 and 7 = €™/3 + e /%2 cos(2n/5) or its complex conjugate.
The Rlel 1s elliptic of infinite order.

PrROOF: We know that
tr(R Ry ") = |7]? = 1 +4cos?(2r/5) = 3 + 2cos(4n/5).

Since R Ry ! has real trace it must have eigenvalues ¢©, e *© and 1. Hence its trace is 1 +2 cos(©).
In other words,
2cos(©) =2 — 2cos(n/5).

Using the theorem of Conway and Jones, Theorem 7 of [1], we see that © is not a rational multiple
of w. This proves the result. O
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The proof of the following lemma is similar to the proof of Lemma 4.1, knowing that:
tr(Ry Ry ' R3Ry) = €™/3 (2 —|r* - eiqﬁ?f) + e 23,

Lemma 6.2 Let Ry, Ry and Ry be given by (7), (8) and (9). If |72 + 7| > 2 then Ry R, Ry Ry
is lozodromic. If |T2 —T7| <2 then R1R2_1R3R2 15 elliptic with eigenvalues 6*2“”/3, —eW/3+210 gng
—ei¥/3=210 ypore |72 + Te¥| = 2cos ©.

Corollary 6.3 Suppose that ¢ = 27/3 and 7 = €2™/% 4+ e~™/92cos(4n/5). Then R1R51R3R2 is
elliptic of infinite order.

PROOF: When ¢ = 27/3 and 7 = €2™/% + ¢ "/92 cos(41/5) we see that
|72+ 7e | = 6 — V.

Hence |72 + Te™| = 2cos © where © is not a rational multiple of . ]

6.4 Arithmeticity of sporadic groups

We begin by applying Proposition 2.8 to show that when 7 = e~ 2T 4 =4mi[T 4 o=8mi/T the
group (Ry, Ry, R3) is contained in an arithmetic lattice. In particular, putting ¢ = 27/3 into the
expression in equation (11) for 2sin(r/3)CH,C~" where C = diag(e=2""/?, 1, ¢*™/9) we obtain:

3 —B+iV3)7/2  (3+iV3)T/2
V3CH,.C™!' = | —(3 — iV3)7/2 3 —(3+iV/3)7/2
(3—iV3)7/2 —(3—1iV3)T/2 3

Proposition 6.4 Let R, Ry and R3 be complex reflections with angle ) = 27/3 so that the group
(Ry, Ry, R3) has parameter T = ¢=2%/T 4 ¢=4m/T 4 =87/ — (1 — §\/T)/2. Then (R, Ry, R3) is

contained in an arithmetic lattice and hence is discrete.

PrOOF: We have ¥ = (—1 +1iv3)/2 and 7 = (—1 — iv/7)/2. Both of these are algebraic
integers in the field Q(\/ﬁ,zx/g) In particular, using Proposition 2.8, we can ensure that the
matrix entries of all elements of (R, Ry, R3) are algebraic integers in Q(\/ﬁ,u/f)_’) This field is
a totally imaginary quadratic extension of the totally real number field Q(\/ﬁ) The only non-
trivial Galois conjugation in Q(\/ﬁ) sends v/21 to —v/21. This is compatible with g, the Galois
conjugation in Q(v/21,4v/3) fixing (—1+iv/3)/2 and sending 7 = (—1—iV/7)/2 to T = (—1+iV7)/2.
The matrix v3CH,C ! has entries in the ring of integers of@(\/ﬁ, z\/g) and signature (2,1). The
Galois conjugation ¢ sends V3H, to V3CH-C~'. But we know that the point 7 lies outside our
parameter space and so corresponds to a group which has signature (3,0). Therefore using standard
arguments (for example [10] or Proposition 4.3 of [15]) we see that this group is arithmetic and
hence discrete. O

There are ten more sporadic groups with signature (2,1). The goal of the rest of this section is
to show that none of them are contained in an arithmetic lattice.

Proposition 6.5 Let Ry, Ry and R3 be complex reflections with angle ) = 27/3 so that the group

(R1, Ry, R3) has parameter T # e*27/7 4 oF4mi/T 1 o287/T — (1 + i\/7)/2. Then (Ry, Ry, R3) is
not contained in an arithmetic lattice.
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The method of proof will be very similar to the proof of Proposition 6.5 and we give an outline.
In each case we conjugate (multiples of) H; and R; so that their matrix entries are algebraic
integers in a number field E. In each case the number field £ will be a purely imaginary quadratic
extension of a totally real field F'. The following lemma, lists the values of 7 and the number fields.
It is easy to verify and we leave the details to the reader. Note that in parts (i) and (ii) we conjugate
by C and in parts (iii) and (iv) we conjugate by C .

Lemma 6.6 Suppose that Ry, Ry and Rz are given by (7), (8) and (9) with ¢ = 27/3 and that
C = diag(e 2™/9, 1, e2™/9),

(i) If T = o(n/6,7/4) or o(—n/6,7/4) then the entries of VB3CH,.C™1 and eZWi/QCRjC_l, for
j=1,2,3, are algebraic integers in the number field Q(v/6,iV3).

(ii) If 7 = o(n/6,7/5), o(n/6,21/5), o(—n/6,7/5) or o(—= /6,21 /5) then the entries of V3CH,C~*
and eZWi/gCRjC_l, for 3 =1, 2,3, are algebraic integers in the number field Q(\/g, \/5,2)

(iii) If T = o(n/9,27/5) or o(r/9,47/5) then the entries of V3C™'H,C and e>™/*C~'R;C, for
j=1,2,3, are algebraic integers in the number field Q(2 cos(27r/5),62m/3).

(iv) If 7 = o(n/9,27/)7), o(n/9,4n/7) or o(n/9,67/7) then the entries of v/3C'H,C and
62“/96'_1]%]-0, for 3 =1, 2,3, are algebraic integers in @(2 cos(27r/7),e27ri/3).

We then examine all Galois conjugations in E that are compatible with non-trivial Galois
conjugations in F'. For the number fields in Lemma 6.6 the Galois conjugations permute the values
of 7 given in each part.

For example, in part (ii) of Lemma 6.6 E is @(\/?_), \/5,2) and F is @(\/?_), \/5) The Galois
conjugation in F fixing v/3 and changing the sign of /5 extends to a Galois conjugation g; in E that
fixes €2™/3 and swaps o(n/6,7/5) and o(n/6,27/5) and swaps o(—n/6,7/5) and o(—=/6,27/5).
Likewise, the Galois conjugation in F' fixing v/5 and changing the sign of v/3 extends to a Galois
conjugation go in E that fixes e?™/3 and swaps o(7/6,7/5) and o(—7/6 + 21/3,7/5) and swaps
o(n/6,2n/5) and o(—n/6 + 27/3,27/5). Note that o(¢ + 27/3,n) is equivalent to o(¢p,n). The
remaining Galois conjugation in E is the product of g1 and gs.

In each case all non-trivial Galois conjugations will send our value of 7 to one of the other
sporadic values of 7. Since we have analysed which of the points 7 lie in our parameter space we
know the signature of the corresponding Hermitian form H,. In each case there will be at least one
non-trivial Galois conjugation that sends H, to another form of signature (2,1). This is sufficient
to ensure that (R;, Rg, R3) is non-arithmetic; compare Proposition 12.6.1 of [4]. This completes
our sketch proof of Proposition 6.5.
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