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Abstract

In this paper, we obtain analogues of Jørgensen’s inequality for non-elementary groups of isome-
tries of quaternionic hyperbolic n-space generated by two elements, one of which is loxodromic.
Our result gives some improvement over earlier results of Kim [10] and Markham [15]. These results
also apply to complex hyperbolic space and give improvements on results of Jiang, Kamiya and
Parker [7].

As applications, we use the quaternionic version of Jørgensen’s inequalities to construct embed-
ded collars about short, simple, closed geodesics in quaternionic hyperbolic manifolds. We show
that these canonical collars are disjoint from each other. Our results give some improvement over
earlier results of Markham and Parker and answer an open question posed in [16].
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1 Introduction

Jørgensen’s inequality [8] gives a necessary condition for a non-elementary two generator subgroup
of PSL(2, C) to be discrete. As a quantitative version of Margulis’ lemma, this inequality has been
generalised in many ways. Viewing PSL(2, R), which is isomorphic to PU(1, 1), as the holomorphic
isometry group of complex hyperbolic 1-space, we can seek to generalise Jørgensen’s inequality to
PU(n, 1) for n > 1, the holomorphic isometry group of higher dimensional complex hyperbolic space.
Examples of this are the stable basin theorem of Basmajian and Miner [1] (see also [20]) and the
complex hyperbolic Jørgensen’s inequality of Jiang, Kamiya and Parker [7].

Kellerhals has generalised Jørgensen’s inequality to PSp(1, 1). This group is the isometry group
of quaternionic hyperbolic 1-space H1

H
, which is the same as real hyperbolic 4-space H4

R
. For more

details of PSp(1, 1), including a classification of the elements, see [3]. It is interesting to seek gener-
alisations of Jørgensen’s inequality to PSp(n, 1) for n > 1, that is to higher dimensional quaternionic
hyperbolic isometries. The first steps in this programme were taken by Kim and Parker [11] who
gave a quaternionic hyperbolic version of Basmajian and Miner’s stable basin theorem. Subsequently,
Markham [15] and Kim [10] independently gave versions of Jørgensen’s inequality for PSp(2, 1). Cao
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and Tan [4] obtained an analogue of Jørgensen’s inequality for non-elementary groups of isometries of
quaternionic hyperbolic n-space generated by two elements, one of which is elliptic.

In this paper we consider subgroups of PSp(n, 1) with a loxodromic generator. Any loxodromic
element g of PSp(n, 1) can be conjugated in Sp(n, 1) to the form:

diag
(

λ1, λ2, · · · , λn−1, λn, λ
−1
n

)

, (1)

where λi ∈ H for i = 1, . . . , n and λ
−1
n are right eigenvalues of g with |λi| = 1 for i = 1, . . . , n−1 and

|λn| > 1. We want to consider loxodromic maps that are close to the identity. To make this precise,
if g ∈ Sp(n, 1) is a loxodromic map conjugate to (1), we define the following conjugacy invariants:

δ(g) = max{|λi − 1| : i = 1, · · · , n − 1}, Mg = 2δ(g) + |λn − 1| + |λ−1
n − 1| (2)

Observe that Mg > 0 and that the smaller Mg is the closer g is to the identity. Note that Mg is a
natural generalisation of the invariant

Mg = 2|λ1 − 1| + |λ2 − 1| + |λ−1
2 − 1|.

defined independently by Kim [10] and Markham [15] for Sp(2, 1).
We consider groups generated by g and h that are close to each other. To make this precise, we

use the cross ratio of the fixed points of the two loxodromic maps g and hgh−1. We define the cross
ratio in Section 2. The statement of our main theorem is:

Theorem 1.1. Let g be a loxodromic element of Sp(n, 1) with Mg < 1 and with fixed points u, v ∈
∂Hn

H
. Let h be any other element of Sp(n, 1). If

∣

∣[h(u), u, v, h(v)]
∣

∣

1/2∣
∣[h(u), v, u, h(v)]

∣

∣

1/2
<

1 − Mg

M2
g

(3)

then the group 〈g, h〉 is either elementary or not discrete.

We remark that this theorem is also valid for SU(n, 1) and is stronger than both Theorems 4.1
and 4.2 of [7]. This theorem has some useful corollaries which we gather into a single result:

Corollary 1.2. Let g be a loxodromic element of Sp(n, 1) with Mg < 1 and with fixed points u, v ∈
∂Hn

H
. Let h be any other element of Sp(n, 1). Suppose that one of the following conditions holds:

∣

∣[h(u), v, u, h(v)]
∣

∣

1/2
<

1 − Mg

Mg
, (4)

∣

∣[h(u), u, v, h(v)]
∣

∣

1/2
<

1 − Mg

Mg
, (5)

∣

∣[u, v, h(u), h(v)]
∣

∣

1/2
< 1 − Mg, (6)

∣

∣[h(u), u, v, h(v)]
∣

∣ +
∣

∣[h(u), v, u, h(v)]
∣

∣ <
2(1 − Mg)

M2
g

. (7)

Then the group 〈g, h〉 is either elementary or not discrete.

When n = 2 the statement of Corollary 1.2 with the conditions (4) and (5) was given independently
by Kim, Theorem 3.1 of [10], and Markham Theorem 1.1 of [15] and for higher dimensions Cao gave
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these conditions in an earlier preprint [2]. These results are a direct generalisation of Theorem 4.1 of
[7]. They all follow from Theorem 2.4 of Markham and Parker [17] and the observation (see the proof
of Theorem 1.4 below) that for all z ∈ V0

∣

∣

∣

〈

g(z), z
〉

∣

∣

∣ ≤ Mg

∣

∣〈z,u〉
∣

∣

∣

∣〈z,v〉
∣

∣, (8)

which, in terms of the Cygan metric, may be rewritten as equation (10) of [17] with dg = |λn|1/2 and

mg = M
1/2
g .

The statement of Corollary 1.2 with condition (7) is stronger than the corresponding results
in dimension n = 2 given by Kim and Markham. Kim’s criterion, Theorem 3.2 of [10], is Mg ≤
√

2
√

2 − 1 − 1 and

∣

∣[h(u), u, v, h(v)]
∣

∣ +
∣

∣[h(u), v, u, h(v)]
∣

∣ <
2 − 2Mg − M2

g +
√

4 − 8Mg − 8M2
g − 4M3

g − M4
g

2M2
g

.

Markham’s criterion, Theorem 1.2 of [15], is Mg ≤
√

2 − 1 and

∣

∣[h(u), u, v, h(v)]
∣

∣ +
∣

∣[h(u), v, u, h(v)]
∣

∣ <
1 − Mg +

√

1 − 2Mg − M2
g

M2
g

,

which is a direct generalisation of Theorem 4.2 of [7]. It is easy to see that (when they are defined)

2(1 − Mg)

M2
g

>
1 − Mg +

√

1 − 2Mg − M2
g

M2
g

>
2 − 2Mg − M2

g +
√

4 − 8Mg − 8M2
g − 4M3

g − M4
g

2M2
g

.

Therefore Kim and Markham’s results follow from (7).

Meyerhoff [18] used Jørgensen’s inequality to show that if a simple closed geodesic in a hyper-
bolic 3-manifold is sufficiently short, then there exists an embedded tubular neighbourhood of this
geodesic, called a collar, whose width depends only on the length (or the complex length) of the
closed geodesic. Moreover, he showed that these collars were disjoint from one another. In [13, 14]
Kellerhals generalised Meyerhoff’s results to real hyperbolic 4-space and 5-space with the aid of some
properties of quaternions. Markham and Parker [16] used the complex and quaternionic hyperbolic
Jørgensen’s inequality obtained in [7, 15], to give analogues of Meyerhoff’s (and Kellerhals’) results
for short, simple, closed geodesics in 2-dimensional complex and quaternionic hyperbolic manifolds.
They showed that these canonical collars are disjoint from each other and from canonical cusps. For
complex hyperbolic space, by using a lemma of Zagier they also gave an estimate based only on the
length, and left the same question for the case of quaternionic space as an open question.

Let G be a discrete group of n-dimensional quaternionic hyperbolic isometries. Let g ∈ G be
loxodromic with axis the geodesic γ. The tube Tr(γ) of radius r about γ is the collection of points
a distance less than r from γ. It is clear that g maps Tr(γ) to itself. The tube Tr(γ) is precisely

invariant under the subgroup 〈g〉 of G if h
(

Tr(γ)
)

is disjoint from Tr(γ) for all h ∈ G − 〈g〉. If Tr(γ)
is precisely invariant under G then Cr(γ

′) = Tr(γ)/〈g〉 is an embedded tubular neighbourhood of the
simple closed geodesic γ′ = γ/〈g〉. We call Cr(γ

′) the collar of width r about γ′.
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As applications of our quaternionic version Jørgensen’s inequalities, we will give analogues of
Markham and Parker’s results for short, simple, closed geodesics in n-dimensional quaternionic hy-
perbolic manifolds.

Given a loxodromic map g with axis γ and satisfying Mg <
√

3 − 1, we define a positive real
number r by:

cosh(2r) =
2(1 − Mg)

M2
g

. (9)

Then we call the tube Tr(γ) with r given by (9) the canonical tube about γ. If γ′ = γ/〈g〉 then we
call the collar Cr(γ

′) with r given by (9) the canonical collar about γ′.

Theorem 1.3. Let G be a discrete, non-elementary, torsion-free subgroup of Sp(n, 1). Let g be a
loxodromic element of G with axis the geodesic γ. Suppose that Mg <

√
3 − 1. Then the canonical

tube Tr(γ) whose width r is given by (9) is precisely invariant under 〈g〉 in G.
In particular, the canonical collar Cr(γ

′) of width r about γ′ = γ/〈g〉 is embedded in the manifold
M = Hn

H
/G.

Furthermore, we have

Theorem 1.4. Let M denote a quaternionic hyperbolic n-manifold. Then the canonical collars around
distinct short, simple, closed geodesics in M are disjoint.

By controlling the rotational part of loxodromic element, we obtain the radius of collars solely in
terms of the length of the corresponding simple closed geodesic as the following, which answers the
open problem posed in [16].

Theorem 1.5. Let N ≥ 35 be a positive integer. Let G be a discrete, torsion-free, non-elementary
subgroup of Sp(n, 1). Let g be a loxodromic element of G with axis γ having the form (1) and let
l = 2 log |λn| be the length of the closed geodesic γ/〈g〉 and suppose that

RN = 2

√

(

cosh
Nnl

2
+ 1

) (

cosh
Nnl

2
− cos

2π

N

)

+ 2

√

2

(

1 − cos
2π

N

)

<
√

3 − 1. (10)

Define the positive number r by

cosh(2r) =
2(1 − RN )

R2
N

.

Then the tube Tr(γ) is precisely invariant under G.

Corollary 1.6. Let G be a discrete, torsion-free, non-elementary subgroup of Sp(2, 1). Let g be a
loxodromic element of G with axis γ having the form (1). Suppose that l = 2 log |λ2| < 0.00017681.
Let r be a positive number defined by

cosh(2r) =
2(1 − R)

R2

where

R = 2

√

(

cosh
1849 l

2
+ 1

) (

cosh
1849 l

2
− cos

2π

43

)

+ 2

√

2

(

1 − cos
2π

43

)

. (11)

Then the tube Tr(γ) is precisely invariant under G.

The structure of the remainder of this paper is as follows. In Section 2, we give the necessary
background material for quaternionic hyperbolic space. Section 3 contains the proof of Theorem 1.1
and Corollary 1.2. In Section 4, we use Theorem 1.1 to obtain the proof of Theorems 1.3 and 1.4. In
Section 5, we give an example to illustrate the idea behind Theorem 1.5. Using the adapted Pigeonhole

Principle (cf. [18]), we obtain the proof of Theorem 1.5 and Corollary 1.6.

4



2 Background

We begin with some background material on quaternionic hyperbolic geometry. Much of this can be
found in [5, 6, 11, 19]. Let H

n,1 be the quaternionic vector space of quaternionic dimension n + 1 (so
real dimension 4n + 4) with the quaternionic Hermitian form

〈z, w〉 = w∗Jz = w1z1 + · · · + wn−1zn−1 − (wnzn+1 + wn+1zn),

where z and w are the column vectors in H
n,1 with entries z1, · · · , zn+1 and w1, · · · , wn+1 respectively,

·∗ denotes quaternionic Hermitian transpose and J is the Hermitian matrix

J =





In−1 0 0
0 0 −1
0 −1 0



 .

We define a unitary quaternionic transformation (or symplectic transformation) g to be an automor-
phism of H

n,1, that is, a linear bijection such that 〈g(z), g(w)〉 = 〈z, w〉 for all z and w in H
n,1. We

denote the group of all unitary transformations by Sp(n, 1).
Following Section 2 of [5], let

V0 =
{

z ∈ H
n,1 − {0} : 〈z, z〉 = 0

}

V− =
{

z ∈ H
n,1 : 〈z, z〉 < 0

}

.

It is obvious that V0 and V− are invariant under Sp(n, 1).
We define an equivalence relation ∼ on H

n,1 by z ∼ w if and only if there exists a non-zero
quaternion λ so that w = zλ. Let [z] denote the equivalence class of z. Let P : H

n,1 − {0} −→ HP
n

be the right projection map given by P : z 7−→ [z]. If zn+1 6= 0 then P is given by

P(z1, . . . , zn, zn+1)
t = (z1z

−1
n+1, · · · , znz−1

n+1)
t ∈ H

n.

We also define
P(0, . . . , 0, zn, 0)t = ∞. (12)

Observe that
〈zλ,wµ〉 = µw∗Jzλ = µ〈z,w〉λ. (13)

We define the Siegel domain model of quaternionic hyperbolic n space to be Hn
H

= P(V−) and its
boundary to be ∂Hn

H
= P(V0). It is clear that ∞ ∈ ∂Hn

H
. Also for all z ∈ V− we have zn+1 6= 0 and

so P is given by the formula above. Likewise for all z ∈ V0, either zn+1 6= 0 or P(z) = ∞.
As in Chapter 19 of [19], the Bergman metric on Hn

H
is given by the distance formula

cosh2 ρ(z, w)

2
=

〈z, w〉〈w, z〉
〈z, z〉〈w, w〉 , where z, w ∈ Hn

H
, z ∈ P

−1(z),w ∈ P
−1(w).

This expression is independent of the choice of z and w. Since Sp(n, 1) preserves the form 〈·, ·〉, it
clearly preserves the right hand side of this expression. Therefore g ∈ Sp(n, 1) acts on Hn

H
∪ ∂Hn

H
as

follows:
g(z) = PgP

−1(z).

This formula is well defined provided the action of Sp(n, 1) is on the left and the action of projection
P of Sp(n, 1) is on the right. It is clear that multiples of g by a non-zero real number act in the same
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way. Since elements of Sp(n, 1) have determinant ±1 this real number can only be ±1. Therefore we
define PSp(n, 1) = Sp(n, 1)/{±In+1}. All elements of PSp(n, 1) are isometries of Hn

H
. We often find

it convenient to work with matrices in Sp(n, 1) rather than projective mappings in PSp(n, 1) and we
will pass between them without comment.

If g ∈ Sp(n, 1), by definition, g preserves the Hermitian form. Hence

w∗Jz = 〈z, w〉 = 〈gz, gw〉 = w∗g∗Jgz

for all z and w in H
n,1. Letting z and w vary over a basis for H

n,1, we see that J = g∗Jg. From this
we find g−1 = J−1g∗J . That is:

g−1 =





A∗ −θ∗ −η∗

−β∗ d b
−α∗ c a



 for g =





A α β
η a b
θ c d



 ∈ Sp(n, 1). (14)

Using the identities gg−1 = g−1g = In+1 we obtain:

AA∗ − αβ∗ − βα∗ = In−1, (15)

−Aθ∗ + αd + βc = 0, (16)

−Aη∗ + αb + βa = 0, (17)

−ηθ∗ + ad + bc = 1, (18)

−ηη∗ + ab + ba = 0, (19)

−θθ∗ + cd + dc = 0, (20)

A∗A − θ∗η − η∗θ = In−1, (21)

A∗α − θ∗a − η∗c = 0, (22)

A∗β − θ∗b − η∗d = 0, (23)

−β∗α + da + bc = 1, (24)

−β∗β + db + bd = 0, (25)

−α∗α + ca + ac = 0. (26)

Following Chen and Greenberg [5], we say that a non-trivial element g of Sp(n, 1) is:

(i) elliptic if it has a fixed point in Hn
H
;

(ii) parabolic if it has exactly one fixed point which lies in ∂Hn
H
;

(iii) loxodromic if it has exactly two fixed points which lie in ∂Hn
H
.

A subgroup G of Sp(n, 1) is called elementary if it has a finite orbit in Hn
H
∪ ∂Hn

H
. If all of its

orbits are infinite then G is non-elementary. In particular, G is non-elementary if it contains two
non-elliptic elements of infinite order with distinct fixed points.

Let o be the origin in H
n and ∞ be as defined in (12). Both these points lie on ∂Hn

H
. In what

follows we make fixed choices of points in H
n,1 that are preimages of these points. Namely

(0, . . . , 0, 0, 1)t ∈ P
−1(o) ⊂ V0, (0, . . . , 0, 1, 0)t ∈ P

−1(∞) ⊂ V0.

Define the stabilisers of the points to be:

Go = {g ∈ Sp(n, 1) : g(o) = o}, G∞ = {g ∈ Sp(n, 1) : g(∞) = ∞}, Go,∞ = Go ∩ G∞.
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Note that if g has the form (14) then if g ∈ Go we have b = 0 and if g ∈ G∞ we have c = 0.
Cross-ratios were generalised to complex hyperbolic space by Korányi and Reimann [12]. We will

generalise this definition of complex cross-ratio to the non commutative quaternion ring.

Definition 2.1. The quaternionic cross-ratio of four points z1, z2, w1, w2 in H
n
H is defined as:

[z1, z2, w1, w2] = 〈w1, z1〉〈w1, z2〉−1〈w2, z2〉〈w2, z1〉−1, (27)

where zi =∈ P
−1(zi) and wi ∈ P

−1(wi) for i = 1, 2.

Using (13) we see that

[z1λ1, z2λ2, w1µ1, w2µ2] = 〈w1µ1, z1λ1〉〈w1µ1, z2λ2〉−1〈w2µ2, z2λ2〉〈w2µ2, z1λ2〉−1

= λ1〈w1, z1〉µ1µ
−1
1 〈w1, z2〉−1λ

−1
2 λ2〈w2, z2〉µ2µ

−1
2 〈w2, z1〉−1λ

−1
1

= λ1[z1, z2, w1, w2]λ
−1
1 .

The quaternionic cross-ratio [z1, z2, w1, w2] depends on the choice of z1 ∈ P
−1(z1). However, its

absolute value
∣

∣[z1, z2, w1, w2]
∣

∣ =
|〈w1, z1〉〈w2, z2〉|
|〈w1, z2〉〈w2, z1〉|

(28)

is independent of the preimage of zi and wi in H
n,1. The following lemma is easy to prove.

Lemma 2.1. Let o,∞ ∈ ∂Hn
H

stand for the images of (0, · · · , 0, 1)t and (0, · · · , 0, 1, 0)t ∈ H
n,1 under

the projection map P, respectively and let h ∈ PSp(n, 1) be given by (14). Then

∣

∣[h(∞), o,∞, h(o)]
∣

∣ = |bc|, (29)
∣

∣[h(∞),∞, o, h(o)]
∣

∣ = |ad|, (30)

∣

∣[∞, o, h(∞), h(o)]
∣

∣ =
|bc|
|ad| . (31)

The following lemma is crucial for us to prove Theorem 1.1.

Lemma 2.2. Let h be as in (14). Then

|β∗α| ≤ 2|ad|1/2|bc|1/2, (32)

|ηθ∗| ≤ 2|ad|1/2|bc|1/2, (33)

|ad|1/2 ≤ |bc|1/2 + 1, (34)

|bc|1/2 ≤ |ad|1/2 + 1, (35)

1 ≤ |ad|1/2 + |bc|1/2. (36)

Proof. Using (25) and (26), we have

|β∗α|2 ≤ |β∗β| |α∗α| = 2ℜ(db) 2ℜ(ca) ≤ 4|ad||bc|. (37)

This gives (32). Similarly, using (19) and (20), we have

|ηθ∗|2 ≤ |ηη∗| |θθ∗| = 2ℜ(ab) 2ℜ(cd) ≤ 4|ad||bc|.

This gives (33).
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Next, using (24) and (37), we have

4ℜ(db)ℜ(ca) ≥ |β∗α|2

= |da + bc − 1|2

= 1 + |ad|2 + |bc|2 − 2ℜ(da) − 2ℜ(bc) + 2ℜ(dacb).

Thus

1 + |ad|2 + |bc|2 ≤ 2ℜ(da) + 2ℜ(bc) − 2ℜ(dacb) + 4ℜ(db)ℜ(ca)

= 2ℜ(da) + 2ℜ(bc) + 2ℜ(bdca)

≤ 2|ad| + 2|bc| + 2|ad| |bc|.

We can rearrange this expression to obtain

(

1 − |ad| − |bc|
)2 ≤ 4|ad| |bc|.

Taking square roots gives

−2|ad|1/2|bc|1/2 ≤ 1 − |ad| − |bc| ≤ 2|ad|1/2|bc|1/2.

Rearranging gives
(

|ad|1/2 − |bc|1/2
)2 ≤ 1 ≤

(

|ad|1/2 + |bc|1/2
)2

.

Taking square roots of both sides, including both choices of sign in the left hand inequality, gives (34),
(35) and (36). ¤

3 The proof of Jørgensen’s inequality

Proof of Theorem 1.1. Since (3) is invariant under conjugation, we may assume that g is of the
form (1) and h is of the form (14). Using (29) and (30) our hypothesis (3) can be rewritten as

|ad|1/2|bc|1/2 <
1 − Mg

M2
g

. (38)

Let h0 = h and hk+1 = hkgh−1
k . We write

hk =





Ak αk βk

ηk ak bk

θk ck dk



 .

Then

hk+1 =





Ak+1 αk+1 βk+1

ηk+1 ak+1 bk+1

θk+1 ck+1 dk+1





=





Ak αk βk

ηk ak bk

θk ck dk









L 0 0
0 λn 0

0 0 λ
−1
n









A∗
k −θ∗k −η∗k

−β∗
k dk bk

−α∗
k ck ak



 ,
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where L = diag(λ1, λ2, · · · , λn−1). Therefore

ak+1 = −ηkLθ∗k + akλndk + bkλ
−1
n ck, (39)

bk+1 = −ηkLη∗k + akλnbk + bkλ
−1
n ak, (40)

ck+1 = −θkLθ∗k + ckλndk + dkλ
−1
n ck, (41)

dk+1 = −θkLη∗k + ckλnbk + dkλ
−1
n ak. (42)

Claim 1: We claim that if |ad|1/2|bc|1/2 < (1 − Mg)/M
2
g then |bkck| tends to 0 as k tends to infinity.

By (19) and (40), we have

|bk+1| = |ηk(In−1 − L)η∗k + ak(λn − 1)bk + bk(λ
−1
n − 1)ak|

≤ δ(g)ηkη
∗
k + (|λn − 1| + |λ−1

n − 1|)|bkak|
= δ(g)2ℜ(akbk) + (|λn − 1| + |λ−1

n − 1|)|bkak|
≤ (2δ(g) + |λn − 1| + |λ−1

n − 1|)|bkak|
= Mg|bkak|.

Similarly, by (20) and (41) we have

|ck+1| = |θ(k)(In−1 − L)θ∗k + ck(λn − 1)dk + dk(λ
−1
n − 1)ck| ≤ Mg|ckdk|.

Therefore, for all k ≥ 0 we have

|bk+1ck+1|1/2 ≤ Mg|akdk|1/2|bkck|1/2. (43)

Using our hypothesis (38) with k = 0 this immediately gives

|b1c1|1/2 ≤ Mg|a0d0|1/2|b0c0|1/2 <
1 − Mg

Mg
.

In particular,
Mg

(

1 + |b1c1|1/2
)

< 1.

From this point on the proof closely follows the proof of the similar result for complex hyperbolic
space given by Jiang, Kamiya and Parker [7].

We claim that for k ≥ 1 we have

|bkck|1/2 ≤
(

Mg

(

1 + |b1c1|1/2
)

)k−1
|b1c1|1/2. (44)

In particular,
|bkck|1/2 ≤ |b1c1|1/2.

Certainly (44) is true for k = 1. Assume that (44) is true for some k ≥ 1. Then, using (43) and (34),
we have

|bk+1ck+1|1/2 ≤ Mg|akdk|1/2|bkck|1/2

≤ Mg

(

1 + |bkck|1/2
)

|bkck|1/2

≤ Mg

(

1 + |b1c1|1/2
)

|bkck|1/2

≤ Mg

(

1 + |b1c1|1/2
)

(

Mg

(

1 + |b1c1|1/2
)

)k−1
|b1c1|1/2

=
(

Mg

(

1 + |b1c1|1/2
)

)k
|b1c1|1/2.

9



Then (44) is true for k + 1. The result follows by induction.
Since Mg

(

1 + |b1c1|1/2
)

< 1, an immediate consequence of (44) is that

lim
k→∞

|bkck|1/2 = 0. (45)

This proves Claim 1.

Claim 2: If there exists some integer k such that

bkck = 0, (46)

then 〈h, g〉 is either elementary or not discrete.
If bk = 0 then, by (25), we have βk = 0 and hk(o) = o. Similarly, if ck = 0 then, by (26), we have

αk = 0 and so hk(∞) = ∞. If bkck = 0 but either bk or ck is non-zero then hk fixes exactly one of o
and ∞. Hence, 〈g, hk〉 is not discrete by Theorem 3.1 of Kamiya [9]. This implies that 〈g, h〉 is not
discrete.

Suppose then that bk = ck = 0 for some k ≥ 1. Then hk fixes both o and ∞. In particular,

o = hk(o) = hk−1gh−1
k−1(o) and ∞ = hk(∞) = hk−1gh−1

k−1(∞).

This means that g fixes h−1
k−1(o) and h−1

k−1(∞). If k ≥ 2 then hk−1 is loxodromic and so cannot swap o

and ∞. Thus hk−1(o) = o and hk−1(∞) = ∞. By induction, we find that g fixes h−1
0 (o) and h−1

0 (∞).
In other words h0 = h preserves the set {o, ∞} and so 〈g, h〉 is elementary.

This proves Claim 2.

Claim 3: If
lim

k→∞
|bkck| = 0 and bkck 6= 0 for all k ≥ 1 (47)

then 〈h, g〉 is not discrete.
Assume that (47) holds. Then from (34) we have

|akdk|1/2 ≤ |bkck|1/2 + 1

and so |akdk| is bounded as k tends to infinity. Hence, from (32) and (33) we have

|β∗
kαk| ≤ 2|akdk|1/2|bkck|1/2 and |ηkθ

∗
k| ≤ 2|akdk|1/2|bkck|1/2

and so
lim

k→∞
|β∗

kαk| = lim
k→∞

|ηkθ
∗
k| = 0.

Likewise,
lim

k→∞
ηkLθ∗k = lim

k→∞
θkLη∗k = 0.

From (24) we have
lim

k→∞
dkak = lim

k→∞

(

1 + β∗
kαk − bkck

)

= 1.

Therefore, from (39) and (42) we have

lim
k→∞

|ak+1| = lim
k→∞

∣

∣−ηkLθ∗k + akλndk + bkλ
−1
n ck

∣

∣ = |λn|, (48)

lim
k→∞

|dk+1| = lim
k→∞

∣

∣−θkLη∗k + ckλnbk + dkλ
−1
n ak

∣

∣ = |λn|−1. (49)

10



When proving Claim 1, we showed that

|bk+1| ≤ Mg|ak| |bk| and |ck+1| ≤ Mg|dk| |ck|.

Since Mg < 1 we can find K so that, using (48) and (49), for all k ≥ K

Mg|ak| < |λn| and Mg|dk| < |λn|−1.

Hence there exist constants κ1 and κ2 so that, for all k ≥ K

Mg|ak| |λn|−1 < κ1 < 1 and Mg|dk| |λn| < κ2 < 1.

Therefore for k ≥ K

|bk+1| |λn|−k−1 ≤
(

Mg|ak| |λn|−1
)

|bk| |λn|−k < κ1|bk| |λn|−k ≤ κk+1−K
1 |bK | |λn|−K ,

|ck+1| |λn|k+1 ≤
(

Mg|dK | |λn|
)

|ck| |λn|k < κ2|ck| |λn|k ≤ κk+1−K
2 |cK | |λn|K .

Since K was chosen so that κi < 1 for i = 1, 2, we see that

lim
k→∞

|bk| |λn|−k = 0 and = lim
k→∞

|ck| |λn|k = 0. (50)

Following Jørgensen, we now define the sequence fk = g−kh2kg
k. As a matrix in Sp(n, 1) this is

given by

fk =







L−kA2kL
k L−kα2kλ

k
n L−kβ2kλ

−k
n

λ−k
n η2kL

k λ−k
n a2kλ

k
n λ−k

n b2kλ
−k
n

λ
k
nθ2kL

k λ
k
nc2kλ

k
n λ

k
nd2kλ

−k
n






. (51)

Using (48) and (49), we have

lim
k→∞

|λ−k
n a2kλ

k
n| = lim

k→∞
|a2k| = |λn| and lim

k→∞
|λk

nd2kλ
−k
n | = lim

k→∞
|d2k| = |λn|−1.

Similarly, using (50). we have

lim
k→∞

|λ−k
n b2kλ

−k
n | = lim

k→∞
|b2k| |λ|−2k = 0 and lim

k→∞
|λk

nc2kλ
k
n| = lim

k→∞
|c2k| |λ|2k = 0.

Then, using (26), (25), (19) and (20) for the matrix fk, we have

lim
k→∞

|L−kα2kλ
k
n|2 ≤ lim

k→∞
2|λk

nc2kλ
k
n| |λ−k

n a2kλ
k
n| = 0,

lim
k→∞

|L−kβ2kλ
−k
n |2 ≤ lim

k→∞
2|λ−k

n b2kλ
−k
n | |λk

nd2kλ
−k
n | = 0,

lim
k→∞

|λ−k
n η2kL

k|2 ≤ lim
k→∞

2|λ−k
n b2kλ

−k
n | |λ−k

n a2kλ
k
n| = 0,

lim
k→∞

|λk
nθ2kL

k|2 ≤ lim
k→∞

2|λk
nc2kλ

k
n| |λ

k
nd2kλ

−k
n | = 0.

Finally, this means that L−kα2kλ
k
n and L−kβ2kλ

−k
n both tend to the zero vector. Hence, using (15)

on the matrix fk, we see that

lim
k→∞

(L−kA2kL
k)(L−kA2kL

k)∗

= In−1 + lim
k→∞

(

(L−kα2kλ
k
n)(L−kβ2kλ

−k
n )∗ + (L−kβ2kλ

−k
n )(L−kα2kλ

k
n)∗

)

= In−1.
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Therefore {fk : k ≥ K} lies in a compact subset of Sp(n, 1) and so contains a convergent subsequence.
This proves Claim 3, and hence completes the proof of Theorem 1.1.

¤

Proof of Corollary 1.2. Without loss of generality, we assume u = ∞ and v = o, and g is of
the form (1) and h is of the form (14). Using the identities (29), (30) and (31) from Lemma 2.1, the
conditions (4), (5), (6) and (7) can be rewritten as

|bc|1/2 <
1 − Mg

Mg
, (52)

|ad|1/2 <
1 − Mg

Mg
, (53)

|bc|1/2

|ad|1/2
< 1 − Mg, (54)

|ad| + |bc| <
2(1 − Mg)

M2
g

. (55)

Our strategy will be to show that each of these conditions implies (38) and the result will then follow
from Theorem 1.1.

Using (34) condition (52) implies

|ad|1/2|bc|1/2 ≤
(

1 + |bc|1/2
)

|bc|1/2 <

(

1 +
1 − Mg

Mg

)

1 − Mg

Mg
=

1 − Mg

M2
g

.

Similarly, using (35), condition (53) gives (38).
Using (34) condition (54) implies

Mg < 1 −
∣

∣

∣

∣

bc

ad

∣

∣

∣

∣

1/2

≤ 1 − |bc|1/2

|bc|1/2 + 1
=

1

|bc|1/2 + 1
.

Rearranging, this is equivalent to (52) and so the result follows from the earlier part of this proof.
Finally, condition (55) implies

|ad|1/2|bc|1/2 ≤ 1

2

(

|ad| + |bc|
)

≤ 1 − Mg

M2
g

.

Therefore in each case 〈h, g〉 is either elementary or not discrete by Theorem 1.1. ¤

4 Collars in Hn
H

We need the following lemma, whose proof can be verified directly, to prove Theorem 1.3.

Lemma 4.1. Let p, q ∈ V0 be null vectors with 〈p,q〉 = −1. For all real t let γ(t) be the point in Hn
H

corresponding to the vector e
t

2 p + e−
t

2 q in H
n,1. Then γ = {γ(t)|t ∈ R} is the geodesic in Hn

H
with

endpoints P(p) and P(q) parametrised by arc length t.HERE

The following Proposition relates cross-ratios to the distance between geodesics. It will be crucial
in our proofs of Theorems 1.3 and 1.4

12



Proposition 4.2. Let γ1 and γ2 be geodesics in Hn
H

with endpoints u1, v1 and u2, v2 respectively.
Then

cosh
(

ρ(γ1, γ2)
)

≥
∣

∣[v2, u1, v1, u2]
∣

∣ +
∣

∣[v2, v1, u1, u2]
∣

∣.

Proof. Without loss of generality, suppose that u1 = o and v1 = ∞. Also, let h ∈ PSp(n, 1) be a map
so that u2 = h(o) and v2 = h(∞). Suppose that h ∈ G has the form (14), and so the cross-ratios are
given by (29) and (30). Let pt and qs be two points on the geodesic γ1 and γ2 = h(γ1), respectively.
Then, letting 0 denote the zero vector in H

n−1, we can choose t, s ∈ R such that

pt =





0
e−t

1



 ∈ P
−1(γ), qs = h(ps) =





A α β
η a b
θ c d









0
e−s

1



 =





αe−s + β
ae−s + b
ce−s + d



 ∈ P
−1(γ).

Since 〈pt, pt〉 = −2e−t, 〈qs, qs〉 = 〈h(ps), h(ps)〉 = 〈ps, ps〉 = −2e−s and

〈pt, qs〉〈qs, pt〉 =
(

ae−s + b + (ce−s + d)e−t
)(

ae−s + b + (ce−s + d)e−t
)

,

we have

cosh
(

ρ(pt, qs)
)

= 2 cosh2 ρ(pt, qs)

2
− 1

= 2
〈pt, qs〉〈qs, pt〉
〈pt, pt〉〈qs, qs〉

− 1

=
1

2

(

|a|2et−s + |d|2es−t + |c|2e−(s+t) + |b|2es+t + (da + bc) + (ad + cb)

+(ab + ba)et + (cd + dc)e−t + (db + bd)es + (ca + ac)e−s − 2
)

.

By (15)-(26) and the property ab + ba = ba + ab for a, b ∈ H, we have

cosh
(

ρ(pt, qs)
)

=
1

2

(

|a|2et−s + |d|2es−t + |c|2e−(s+t) + |b|2es+t + β∗α + α∗β

+ηη∗et + θθ∗e−t + β∗βes + α∗αe−s
)

≥ |ad| + |bc| + ℜ(β∗α) + |η| |θ| + |β∗α|
≥ |ad| + |bc|
=

∣

∣[v2, u1, v1, u2]
∣

∣ +
∣

∣[v2, v1, u1, u2]
∣

∣.

This is true for all points pt and qs and so it proves the proposition. ¤

Proof of Theorem 1.3. Without loss of generality, we suppose that g has the form (1) and so fixes
o and ∞. If h ∈ G maps γ to itself then it must map Tr(γ) to itself.

Therefore we suppose that h does not map γ to itself. We must show that Tr(γ) is disjoint from
its image under h. We first use Proposition 4.2 to estimate the distance between γ and h(γ) and then
use condition (7) from Corollary 1.2 to conclude that, since G is discrete and non-elementary, we have

cosh
(

γ, h(γ)
)

≥
∣

∣[h(∞), o,∞, h(o)]
∣

∣ +
∣

∣[h(∞),∞, o, h(o)]
∣

∣

≥ 2(1 − Mg)

M2
g

.

This implies that Tr(γ) is disjoint from its image under h. ¤
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Proof of Theorem 1.4. Let M = Hn
H
/G where G is a discrete, non-elementary, torsion-free subgroup

of Sp(n, 1). Let g and h be two loxodromic elements of G whose axes, γ1 and γ2, project to distinct
short, simple, closed geodesics γ′

1 = γ1/〈g〉. and γ′
2 = γ2/〈h〉. Reordering if necessary, suppose that

Mh ≤ Mg. Consider tubes Tr1
(γ1) and Tr2

(γ2) around γ1 and γ2 where

cosh(2r1) =
2(1 − Mg)

M2
g

and cosh(2r2) =
2(1 − Mh)

M2
h

.

We want to show that these tubes are disjoint. It suffices to show that ρ(γ1, γ2) ≥ r1 + r2.
Without loss of generality, we suppose that g is of the form (1) and h has fixed points p =

(p1, · · · , pn)t ∈ ∂Hn
H

and q = (q1, · · · , qn)t ∈ ∂Hn
H
. That is

n−1
∑

i=1

|pi|2 = pn + pn,
n−1
∑

i=1

|qi|2 = qn + qn.

Let p = (p1, · · · , pn, 1)t ∈ P
−1(p) and q = (q1, · · · , qn, 1)t ∈ P

−1(q). Then by the definition of
quaternionic cross-ratio, we have

∣

∣[o, q, p,∞]
∣

∣ =
|pn|

|〈p,q〉| ,
∣

∣[o, p, q,∞]
∣

∣ =
|qn|

|〈p,q〉| .

Direct computation implies that

∣

∣〈g(q),q〉
∣

∣ =

∣

∣

∣

∣

∣

−(qnλ
−1
n + λnqn) +

n−1
∑

i=1

qiλiqi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(1 − λn)qn + qn(1 − λ
−1
n ) +

n−1
∑

i=1

qi(λi − 1)qi

∣

∣

∣

∣

∣

≤ |λn − 1||qn| + |λ−1
n − 1||qn| + δ(g)

n−1
∑

i=1

|qi|2

= |λn − 1||qn| + |λ−1
n − 1||qn| + δ(g)(qn + qn)

≤ Mg|qn|.

Similarly, we have |〈g(p),p〉| ≤ Mg|pn|. We remark that these equations are special cases of (8).
Therefore, we get

M2
g

∣

∣[o, p, q,∞]
∣

∣

∣

∣[o, q, p,∞]
∣

∣ =
Mg|qn|
|〈p,q〉|

Mg|pn|
|〈p,q〉| ≥

|〈g(q),q〉||〈g(p),p〉|
|〈p,q〉|2 =

∣

∣[g(p), q, p, g(q)]
∣

∣. (56)

Using Proposition 4.2, we get

cosh
(

ρ(γ1, γ2)
)

≥
∣

∣[o, p, q,∞]
∣

∣ +
∣

∣[o, q, p,∞]
∣

∣

≥ 2
∣

∣[o, p, q,∞]
∣

∣

1/2∣
∣[o, q, p,∞]

∣

∣

1/2

≥ 2

Mg

∣

∣[g(p), q, p, g(q)]
∣

∣

1/2
.
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Using condition (4) with the roles of g and h interchanged we have
∣

∣[g(p), q, p, g(q)]
∣

∣

1/2 ≥ (1−Mh)/Mh.
Using this and Mg ≥ Mh we have

cosh2
(

ρ(γ1, γ2)
)

≥
(

2(1 − Mh)

MgMh

)2

≥
(

2(1 − Mg)

M2
g

) (

2(1 − Mh)

M2
h

)

= cosh(2r1) cosh(2r2)

≥ cosh2(r1 + r2).

Therefore ρ(γ1, γ2) ≥ r1 + r2 as required. ¤

5 Collar width solely in terms of geodesic length

In the complex case Markham and Parker [16] used a lemma of Zagier to obtain the width of the
tubular neighbourhood of the simple geodesic γ entirely in terms of its length. In this section, we
will consider the counterpart in n-dimensional quaternionic hyperbolic manifold. First, we give an
example to illustrate our idea.

Example 5.1. Let G be a discrete, torsion-free, non-elementary subgroup of Sp(2, 1) with

g = diag(eiβ , el/2+iα, e−l/2+iα) ∈ G.

(Here the imaginary units that generate H are denoted i, j and k in order to distinguish them from
the indices denoted by i, j and k.) Define f(k) = Mgk =

∣

∣ekl/2+ikα −1
∣

∣+
∣

∣e−kl/2+ikα −1
∣

∣+2
∣

∣eikβ −1
∣

∣.
Then we have

f(k) = 2

√

(

cosh
kl

2
+ 1

) (

cosh
kl

2
− cos(kα)

)

+ 2

√

2
(

1 − cos(kβ)
)

. (57)

Consider the case where l = 10−3, α = π
3 , β = π

4 .

We see, for k ∈ Z, that if k is not a multiple of 8 then cos(kβ) ≤ 1/
√

2 and so

f(k) ≥ 2

√

2
(

1 − cos(kπ/4)
)

≥ 2

√

2 −
√

2 > 1.

Likewise, when k is not a multiple of 6 then cos(kα) ≤ 1/2 and so

f(k) ≥ 2

√

(

cosh
k

2000
+ 1

) (

cosh
k

2000
− cos

kπ

3

)

≥ 2

√

2

(

1 − cos
kπ

3

)

≥ 2
√

2 − 1 = 2.

On the other hand, if k is a multiple of both 8 and 6, that is a multiple of 24, then

f(k) = 2

√

(

cosh
k

2000
+ 1

) (

cosh
k

2000
− 1

)

= 2 sinh
k

2000
.

Hence as k ranges over positive integers, the minimum value of f(k) is attained for k = 24 and is
approximately 0.024.
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The above example shows that when l and k are small, then cos(kα) and cos(kβ) contribute the
dominant part of the value f(k). Although f(k) → ∞ as k → ∞, we sometimes can choose suitable k
such that kα and kβ are close to multiples of 2π which may lead to f(k) <

√
3− 1. This observation

gives an improvement of Theorem 1.3 by replacing Mg with a suitable Mgk .
We now investigate how Mgk varies with k. Let g be of the form (1). We can conjugate all its

right eigenvalues to unique complex numbers with non-negative imaginary part, that is,

λi = uie
iβiu−1

i , for 1 ≤ i ≤ n − 1,

λn = un|λn|eiβnu−1
n ,

λ
−1
n = un+1|λn|−1eiβnu−1

n+1,

where 0 ≤ βi ≤ π for 1 ≤ i ≤ n. Recall that

Mg =
∣

∣λn − 1
∣

∣ +
∣

∣λ
−1
n − 1

∣

∣ + 2 max
1≤i≤n−1

|λi − 1|

= 2

√

(

cosh
l

2
+ 1

) (

cosh
l

2
− cos(βn)

)

+ max
1≤i≤n−1

2

√

2
(

1 − cos(βi)
)

.

Since the eigenvalues of Mk are λk
i , λk

n, λ
−k
n we have

Mgk = 2

√

(

cosh
kl

2
+ 1

) (

cosh
kl

2
− cos(kβn)

)

+ max
1≤i≤n−1

2

√

2
(

1 − cos(kβi)
)

. (58)

Define T to be the minimum value of Mgk . That is

T = min
1≤k<∞

{

2

√

(

cosh
kl

2
+ 1

) (

cosh
kl

2
− cos(kβn)

)

+ max
1≤i≤n−1

2

√

2
(

1 − cos(kβi)
)

}

. (59)

Then by Theorem 1.3 we have the following corollary.

Corollary 5.1. Let G be a discrete, non-elementary, torsion-free subgroup of Sp(n, 1). Let g be a
loxodromic element of G with axis the geodesic γ. Let T be given by (59) and suppose that T <

√
3−1.

Let r be positive real number defined by

cosh(2r) =
2(1 − T )

T 2
.

Then the tube Tr(γ) is precisely invariant under G.

In order to prove Theorem 1.5, we need the following adapted Pigeonhole Principle.

Lemma 5.2. (cf. Pigeonhole Principle in [18]) Given 0 ≤ β1, · · · , βn < 2π and a positive integer
N ≥ 2, there exists k ≤ Nn such that

cos(kβi) ≥ cos
2π

N
,

for each 1 ≤ i ≤ n.

16



Figure 1: The graph of function l = l(x) defined by (61) for n = 2.

Proof. Consider the solid n-cube [0, 2π]n in R
n and consider the points zk = (kβ1, kβ2..., kβn) for

each 1 ≤ k ≤ Nn. There are Nn of them. For each i ∈ {1, . . . , n} and each k ∈ {1, . . . , Nn} let mik

be an integer so that kβi − 2πmik ∈ [0, 2π). Let

ẑk =
(

kβ1 − 2πm1k, . . . , kβn − 2πmnk

)

∈ [0, 2π]n.

Divide the n-cube into Nn cubes of side length 2π/N and consider which of these small cubes contain
the points ẑk.

If, for some j ∈ {1, . . . , Nn}, the point ẑj lies in the n-cube [0, 2π
N ]n then cos(jβi) ≥ cos 2π

N for
each i ∈ {1, . . . , n} and we have the result.

Suppose that none of the points ẑk lie in the n-cube [0, 2π
N ]n. Then there is at least one small

n-cube with two points in it, say ẑj and ẑk, where j > k. Then ẑj−k is in the n-cube I1 × I2 × · · ·× In,
where each Ii = [0, 2π

N ] or [2π − 2π
N , 2π]. That is cos

(

(j − k)βi

)

≥ cos 2π
N for each i ∈ {1, . . . , n}. The

proof is complete. ¤

Proof of Theorem 1.5. As in (58), we have

Mgk = 2

√

(

cosh
kl

2
+ 1

) (

cosh
kl

2
− cos(kβn)

)

+ max
1≤i≤n−1

2

√

2
(

1 − cos(kβi)
)

.

By Lemma 5.2 for N ≥ 2, there exists k ≤ Nn such that

cos(kβi) ≥ cos
2π

N

for each 1 ≤ i ≤ n. Then there exists k ≤ Nn such that

Mgk ≤ 2

√

(

cosh
Nnl

2
+ 1

) (

cosh
Nnl

2
− cos

2π

N

)

+ 2

√

2

(

1 − cos
2π

N

)

. (60)

Define

h(x, l) = 2

√

(

cosh
xnl

2
+ 1

) (

cosh
xnl

2
− cos

2π

x

)

+ 2

√

2

(

1 − cos
2π

x

)

.
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Notice that h(x, l) is an increasing function of l for fixed x. Therefore when l > 0 we have

h(x, l) > h(x, 0) = 4

√

2

(

1 − cos
2π

x

)

.

When x ≥ 2 the function h(x, 0) is a decreasing function of x. Define x0 by h(x0, 0) =
√

3− 1, that is

x0 =
2π

arccos 14+
√

3
16

≈ 34.284.

Then if 2 ≤ x < x0 and l > 0 we have h(x, l) > h(x, o) > h(x0, 0) =
√

3 − 1. Hence, in order to have
h(x, l) ≤

√
3− 1 we must have x ≥ x0. For all x ≥ x0 the equation h(x, l) =

√
3− 1 defines a function

l(x) =
2

xn
arccosh









√

13 − 2
√

3 − 6 cos 2π
x + cos2 2π

x − 4
(√

3 − 1
)

√

2
(

1 − cos 2π
x

)

− 1 + cos 2π
x

2









.

(61)
Hence for all integers N ≥ 35, we can find l satisfying the condition (10). Then our result follows
from the application of Theorem 1.3. The proof is complete. ¤

With the aid of mathematical software, for case n = 2, we find that when N = 43, we get the
maximal interval 0 < l < l(43) ≈ 0.00017681 to apply our theorem. The graph of function l(x) defined
by (61) is given in Figure 1. This gives the proof of Corollary 1.6.

Given the rotational angles of loxodromic element, we may be able to use Corollary 5.1 to choose
suitable N which may less than 35. For instance in Example 5.1, the optimum value occurs when
N = 24.
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