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Introduction.

The group of isotopy classes of diffeomorphisms from a surface of finite type to itself (oth-

erwise known as the mapping class group) is a familiar object. There are two fundamental

theorems which enable one to describe elements of this group. The first theorem is due

to Nielsen [9], [10], [11] and says (in the later reformulation of Thurston [13]) that surface

diffeomorphisms may be classified as (i) periodic, (ii) reducible or (iii) pseudo-Anosov.

The second theorem is due to Dehn [3] and says that the mapping class group is finitely

generated by elementary diffeomorphisms called Dehn twists.

There are various algorithms for deciding whether a given diffeomorphism is periodic,

reducible or pseudo-Anosov. In particular, there are algorithms due to Bestvina and

Handel [1] and Hamidi-Tehrani and Chen [4]. The latter algorithm uses the piecewise

linear action of the mapping class group on the piecewise linear structure of projective

measured lamination space given by the π1-train tracks of Birman and Series [2]. This

piecewise linear structure and piecewise linear action was worked out in detail for the

twice punctured torus by Parker and Series [12]. The purpose of this note is to use this

description to give an algorithm which takes a particular diffeomorphism specified as a

word in a given set of Dehn twist generators and decides whether or not it is pseudo-

Anosov. Thus it can be thought of as a realisation of part of the Hamidi-Tehrani and

Chen algorithm in this case.

It is known that the mapping torus of a pseudo-Anosov diffeomorphism is a hyperbolic

3-manifold. However there are very few descriptions in the literature of concrete examples

of such manifolds. An application of our method is that we can construct many examples

of hyperbolic 3-manifolds which fibre over the circle with fibre the twice punctured torus.

In particular, we can construct the Whitehead link complement in this way (see [7]) using
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one of the simplest pseudo-Anosov diffeomorphisms. We work this example out in detail

in the last section.

The results of this paper arose out of discussions during the memorial conference for

Wilhelm Killing held in Braniewo (Poland) from 31st August to 2nd September 1998.

They were continued during visits of CM to Durham and JRP to Bielefeld. The results

were presented by JRP at the workshop on Algebra and Topology held at Pusan National

University (Korea) from 14th to 26th August 2000. We would like to thank the organisers

of both conferences and both universities, including SFB 343 in Bielefeld, for their support

and hospitality.

1. Projective measured lamination space.

Let Σ be the twice punctured torus. In what follows we do not use the conventional

Thurston theory of train tracks but a variant due to Birman and Series [2]. See [5] and

[12] for more details.

A simple loop on Σ is a closed curve with no self intersections. A simple loop is

boundary parallel or peripheral if it is homotopic to a loop around a puncture. A

multiple simple loop is a collection of pairwise disjoint simple loops none of which

is either homotopically trivial or boundary parallel. It is easy to see that for the twice

punctured torus any multiple simple loop contains loops from at most 2 homotopy classes.

Thus a multiple simple loop γ on Σ can be written as m1γ1 + m2γ2 where m1 and m2

are non-negative integers and γ1 and γ2 are distinct non-trivial homotopy classes of non-

peripheral disjoint simple closed curves on Σ.

We fix a hyperbolic structure on Σ by specifying a fundamental polygon for the action

of π1(Σ) on H
2. The fundamental domain R that we choose to work with has six vertices,

all of which project to punctures of Σ (see [5], [12]). We label these v1, . . . , v6 in clockwise

order. The side pairings will be S1 identifying v1v2 to v4v3, S2 identifying v6v1 with v5v4

and T identifying v5v6 with v3v2. We assume that S1, S2 and T match the endpoints of

the respective sides. Clearly v1 and v4 project to one of the punctures and the other four

vertices project to the other. The maps S1, S2 and T correspond to homotopy classes of

simple closed curves that generate the fundamental group π1(Σ).

Let R be the closure of R in H
2. A π1-train track τ is a collection of pairwise disjoint

arcs, called strands, αj: [0, 1] −→ R so that

(i) αj(0) ∈ vavb and αj(1) ∈ vcvd,

(ii) αj(λ) ∈ R◦ for λ ∈ (0, 1),

(iii) at most one strand joins each pair of sides.

(iv) no strand goes from one side to itself.

An arc of τ is called a corner arc if it joins adjacent sides of R (that is, it joins vavb

and vbvc). Each corner arc faces a particular vertex of R (in our example vb) and for each
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vertex cycle in the side pairing of R we have the corresponding corner cycle consisting

of all corner arcs corresponding to the same puncture.

A weighting w on a π1-train track τ is an assignment of a non-negative number w(αj)

to each arc αj of τ . A weighting w on a π1-train track τ is called a proper weighting if

it satisfies the following two conditions:

(i) For each side pairing µk: σk −→ σk′ , the sum of the weights of arcs with endpoints on

σk is the same as the sum of the weights of arcs with endpoints on σk′ .

(ii) At least one arc in each corner cycle must have weight zero.

By a theorem of Birman and Series [2] the collection of all proper weightings on π1-train

tracks may be identified with the space ML(Σ) of measured laminations on Σ. Moreover,

proper integral weightings on π1-train tracks may be identified with multiple simple loops

on Σ.

A π1-train track τ is said to be recurrent if there exists a proper weighting w so that

w(αj) is non-zero for all branches αj of τ . Such a π1-train track τ is said to be maximal

if there does not exist a recurrent π1-train track τ ′ so that τ is properly contained in τ ′

in the obvious sense. We call the collection of all proper weightings ∆(τ) on a maximal

recurrent π1-train track τ a maximal cell. It follows from Thurston’s theory, or as can

be verified along the lines given in [12], that if τ is a maximal recurrent train track on the

twice punctured torus then the dimension of ∆(τ) is 4. It was shown in [12] that there are

28 maximal recurrent π1-train tracks on Σ. We denote these by τ1, . . . , τ28. Each maximal

cell, ∆(τj) (or to make the notation easier ∆j) is the positive linear span of four out of

eleven elementary recurrent π1 train train tracks. This gives a piecewise linear structure

on ML(Σ). The details of this are given below, following [12].

The space ∆j = ∆(τj) may be projectivised in a natural way to obtain P∆j . The

space PML = PML(Σ) is the union over all 28 of the τj of the corresponding cones P∆j ,

which we call π1-cones, glued along their lower dimensional common simplices. Using the

Birman-Series identification, the space PML(Σ) can be naturally identified with the space

of projective measured laminations on Σ. The space PML is the Thurston boundary of

the Teichmüller space of Σ and is a 3-sphere. This can be checked directly using the

piecewise linear structure given above (see [12]).

We now introduce the elementary recurrent π1-train tracks that will form the basis of

ML(Σ). Fig. 1 is a schematic picture of the eleven recurrent π1-train tracks as they appear

on the fundamental domain R. The end of a strand on one side of R is glued by a side-

pairing transformation to the corresponding end of the paired side. Thus shortest words

representing these loops can be either computed directly or read off using the method of

cutting sequences, see [2] or [5]. For example, in the loop e1
1 there are three strands. The

end of the strand on v4v3 is glued to the end on v1v2; the end on v2v3 is glued to the end on

v5v6, and the end on v5v4 is glued to the end on v1v6. Thus the cutting sequence is S1TS2,
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Fig. 1. The elementary recurrent π1-train tracks.

which as one may easily verify represents this loop in π1(Σ). Since we are only interested

in the unoriented loop up to free homotopy, any cyclic permutation of this sequence or its

inverse would work just as well. The full list of cutting sequences for loops is

e0 = S1, e1
∞ = S1T, e−1

∞ = S1
−1T, e1

−1 = S1TS2
−1,

e0 = S2, e∞1 = TS2, e∞−1 = TS2
−1, e−1

1 = S1
−1TS2,

e∞∞ = T, e1
1 = S1TS2, e−1

−1 = S1
−1TS2

−1.

The reason for our notation is the following. If we split R into two boxes, the upper

one with vertices v1, v2, v3, v4 and the lower with vertices v1, v4, v5, v6 (see [5]) then ei
j

has gradient i in the upper box and j in the lower box. Where there is no superscript

(subscript) then the relevant loop has no arcs in the upper (respectively lower) box. This

idea is developed further in [5].

We now define 28 cells ∆j in ML(Σ). As we shall indicate (see also [12]), these cells

are maximal, meeting only on lower dimensional faces, and their union is ML(Σ).

∆1 = sp+{e0, e0, e
1
1, e

1
−1}, ∆2 = sp+{e0, e1

∞, e1
1, e

1
−1},

∆3 = sp+{e∞1 , e0, e
1
1, e

1
−1}, ∆4 = sp+{e∞1 , e1

∞, e1
1, e

1
−1},

∆5 = sp+{e∞1 , e0, e
∞

−1, e
1
−1}, ∆6 = sp+{e∞1 , e∞∞, e∞−1, e

1
−1},

∆7 = sp+{e∞∞, e∞1 , e1
∞, e1

−1}.
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∆8 = sp+{e0, e0, e
−1
−1, e

−1
1 }, ∆9 = sp+{e0, e−1

∞ , e−1
−1, e

−1
1 },

∆10 = sp+{e∞−1, e0, e
−1
−1, e

−1
1 }, ∆11 = sp+{e∞−1, e

−1
∞ , e−1

−1, e
−1
1 },

∆12 = sp+{e∞−1, e0, e
∞

1 , e−1

1 }, ∆13 = sp+{e∞−1, e
∞

∞, e∞1 , e−1

1 },
∆14 = sp+{e∞∞, e∞−1, e

−1
∞ , e−1

1 }.

∆15 = sp+{e0, e
0, e1

1, e
−1

1 }, ∆16 = sp+{e0, e
∞

1 , e1
1, e

−1

1 },
∆17 = sp+{e1

∞, e0, e1
1, e

−1
1 }, ∆18 = sp+{e1

∞, e∞1 , e1
1, e

−1
1 },

∆19 = sp+{e1
∞, e0, e−1

∞ , e−1
1 }, ∆20 = sp+{e1

∞, e∞∞, e−1
∞ , e−1

1 },
∆21 = sp+{e∞∞, e1

∞, e∞1 , e−1
1 }.

∆22 = sp+{e0, e
0, e−1

−1, e
1
−1}, ∆23 = sp+{e0, e

∞

−1, e
−1
−1, e

1
−1},

∆24 = sp+{e−1
∞ , e0, e−1

−1, e
1
−1}, ∆25 = sp+{e−1

∞ , e∞−1, e
−1
−1, e

1
−1},

∆26 = sp+{e−1
∞ , e0, e1

∞, e1
−1}, ∆27 = sp+{e−1

∞ , e∞∞, e1
∞, e1

−1},
∆28 = sp+{e∞∞, e−1

∞ , e∞−1, e
1
−1}.

The statement that ∆j is a cell should be interpreted in the following way. One needs to

check that the four irreducible loops defining ∆j are all supported on a common π1-train

track τj . This is immediate since one checks that, in each case, all four loops can be

drawn in R in such a way that they intersect only on the boundary ∂R. The arcs may

be homotoped so that their endpoints are at the midpoints of the sides of R. Since the

midpoints are identified by the side pairings, this exactly gives a π1-train track in the sense

of [2]. The cell ∆j consists of all proper weightings on the π1-train track τj .

Notation. When we want to speak of a point of one of these cells we write it as an

ordered quadruple (a, b, c, d) to represent aei + bej + cek + dek ∈ sp+{ei, ej, ek, el} where

the irreducible loops are taken in the order given above. When we want to refer to a

general point of ML(Σ) we refer to it as (j; a, b, c, d) which means (a, b, c, d) ∈ ∆j .

For example (1; a, b, c, d) means (a, b, c, d) ∈ ∆1 or equivalently ae0 +be0 +ce1
1 +de1

−1.

We will view these coordinates projectively. That is, we do not distinguish between

(j; a, b, c, d) and (j; λa, λb, λc, λd) where λ is any positive real number. We say that the

coordinates (a, b, c, d) are rationally dependent if there exists such a positive constant

λ so that λa, λb, λc, λd are all rational numbers. This is the same as saying that the

ratios of non-zero elements of the set {a, b, c, d} are all rational. If (a, b, c, d) are rationally

dependent then it is clear that we may choose λ so that λa, λb, λc, λd are all integers.

Hence a point of ML(Σ) with rationally dependent coordinates corresponds to a multiple

simple loop. The converse is not true, that is it may be that a point does not have rationally

dependent coordinates but the underlying lamination is supported on the homotopy classes

of two disjoint simple closed curves. For example, consider e0 +
√

2e0.
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Fig. 2. Generic points in the maximal cells ∆1, . . . , ∆7.

We now indicate how the lower dimensional facets in the boundaries of the maximal

cells ∆j for j = 1, . . . , 28 fit together in such a way that the resulting cell complex is

homeomorphic to a 3−sphere. The 1-skeleton of this cell complex is the suspension of

a certain triangulation of the 2-sphere. This triangulation is shown in Fig. 3. Observe

that there are fourteen maximal cells containing the irreducible loop e1
−1 and fourteen

containing e−1
1 . Moreover, these two irreducible loops never occur together in one of the

cells (or else there would be loops around both punctures). Thus each maximal cell is

a cone with apex e1
−1 or e−1

1 over the cell spanned by the other three irreducible loops.

One can verify that there are fourteen possibilities for these cells spanned by three loops

and that each one arises. Moreover, these fourteen cells may be glued together to form

a triangulation of the 2−sphere as indicated in Fig. 3. Thus the fourteen maximal cells

involving e1
−1 form a cone over the 2−sphere, that is a 3−ball. Similarly the other fourteen

maximal cells also give a 3−ball. When the boundaries of these two balls are glued together

in the obvious manner they form a 3−sphere.
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Fig. 3. How the maximal cells fit together.

Dehn twist generators for MCG(Σ)

Let the Dehn twists about e∞∞, e0 and e0 be denoted by δ0, δ1 and δ2 respectively. These

three Dehn twists generate the orientation preserving mapping class group MCG(Σ) [12].

We now give the action of these Dehn twists on the cell structure of ML(Σ) given in the

previous section. Again this follows [12].

We begin by introducing some symmetries which fix the punctures. These will simplify

matters. The symmetry group will be isomorphic to Klein’s four group and we describe

its non-trivial elements by their action on the vertices of R2:

ι1 interchanges the pairs (v1, v4), (v2, v3), (v5, v6);

ι2 interchanges the pairs (v1, v4), (v2, v5), (v3, v6);

ι3 fixes v1, v4 and interchanges the pairs (v2, v6), (v3, v5).

When necessary we shall denote the identity by ι0. It is clear that ι1 and ι3 are orientation

reversing homeomorphisms of Σ and that ι2 is orientation preserving. We easily see that

ιj has the following effect on the eleven irreducible loops:

ι1: e
i
j 7−→ e−i

−j, e0 7−→ e0, e0 7−→ e0,

ι2: e
i
j 7−→ e

j
i , e0 7−→ e0, e0 7−→ e0,

ι3: e
i
j 7−→ e

−j
−i , e0 7−→ e0, e0 7−→ e0
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where i, j ∈ {∞,±1} and −∞ = ∞.

Thus these actions clearly respect the cell structure of ML(Σ). In particular, the

maximal cells ∆8, . . . , ∆28 can be expressed as ∆j+7k = ιk(∆j) for j = 1, . . . , 7 and

k = 1, 2, 3.

The symmetries ιk conjugate the Dehn twists δj to one another. It is easy to check

that

ι1δ0ι1 = δ0
−1, ι1δ1ι1 = δ1

−1, ι1δ2ι1 = δ2
−1,

ι2δ0ι2 = δ0, ι2δ1ι2 = δ2, ι2δ2ι2 = δ1,
ι3δ0ι3 = δ0

−1, ι3δ1ι3 = δ2
−1, ι3δ2ι3 = δ1

−1.

We can also express ι2 in terms of the δj as

ι2 = δ2δ0δ2δ1δ0δ2 = (δ0δ1δ2)
2.

Using general results of Birman-Series [2] and Hamidi-Tehrani-Chen [4] we know that

the Dehn twist generators of MCG(Σ) act piecewise linearly on π1-train tracks (see also

the final paragraph of [13]). These piecewise linear maps were found explicitly in [12]. We

now summarise these results for the action of δk
±1 on ∆j for j = 1, . . . , 7 and k = 0, 1, 2.

For the action on ∆8, . . . , ∆28 we need to apply the symmetries.

δ0(1; a, b, c, d) = (7; c, b + c, a + c, d)

δ0(2; a, b, c, d) = (7; b + c, c, a + b + c, d)

δ0(3; a, b, c, d) = (7; a + c, a + b + c, c, d)

δ0(4; a, b, c, d) = (7; a + b + c, a + c, b + c, d)

δ0(5; a, b, c, d) =

{
(5; a + b, c − a, a, d) if a ≤ d
(6; a + b, a− c, c, d) if d ≤ a.

δ0(6; a, b, c, d) =

{
(5; a, c− a − b, a + b, d) if a + b ≤ c
(6; a, a + b − c, c, d) if c ≤ a + b.

δ0(7; a, b, c, d) = (7; a + b + c, b, c, d).
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δ0
−1(1; a, b, c, d) = (25; a, b, c, d)

δ0
−1(2; a, b, c, d) = (24; a, b, c, d)

δ0
−1(3; a, b, c, d) = (23; a, b, c, d)

δ0
−1(4; a, b, c, d) = (22; a, b, c, d)

δ0
−1(5; a, b, c, d) =

{
(5; c, a− c, b + c, d) if c ≤ a
(6; a, c− a, b + c, d) if a ≤ c.

δ0
−1(6; a, b, c, d) =

{
(5; b + c, a − b − c, c, d) if b + c ≤ a
(6; a, b + c − a, c, d) if a ≤ b + c.

δ0
−1(7; a, b, c, d) =





(7; a− b − c, b, c, d) if b + c ≤ a
(4; a− c, a − b, b + c − a, d) if b, c ≤ a ≤ b + c
(3; a− c, b − a, c, d) if c ≤ a ≤ b
(2; c − a, a − b, b, d) if b ≤ a ≤ c
(1; c − a, b − a, a, d) if a ≤ b, c.

δ1(1; a, b, c, d) =






(1; a − c − d, b, c, d) if c + d ≤ a
(3; c + d − a, b, a− d, d) if d ≤ a ≤ c + d
(5; c, b, d− a, a) ∈ ∆5 if a ≤ d.

δ1(2; a, b, c, d) =





(2; a − b − c − d, b, c, d) if b + c + d ≤ a
(4; b + c + d − a, b, a− b − d, d) if b + d ≤ a ≤ b + c + d
(7; b + d − a, c, a− d, d) if d ≤ a ≤ b + d
(6; c, b, d− a, a) if a ≤ d.

δ1(3; a, b, c, d) = (12; d, b, c, a)

δ1(4; a, b, c, d) = (13; d, b, c, a)

δ1(5; a, b, c, d) = (10; d, b, c, a)

δ1(6; a, b, c, d) = (11; d, b, c, a)

δ1(7; a, b, c, d) = (14; c, d, a, b).

δ1
−1(1; a, b, c, d) = (1; a + c + d, b, c, d)

δ1
−1(2; a, b, c, d) = (2; a + b + c + d, b, c, d)

δ1
−1(3; a, b, c, d) = (1; c + d, b, a + c, d)

δ1
−1(4; a, b, c, d) = (2; b + c + d, b, a + c, d)

δ1
−1(5; a, b, c, d) = (1; d, b, a, c + d)

δ1
−1(6; a, b, c, d) = (2; d, b, a, c + d)

δ1
−1(7; a, b, c, d) = (2; c + d, a + c, b, d).
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δ2(1; a, b, c, d) =

{
(1; a, b + d − c, c, d) if c ≤ b + d
(2; a, c− b − d, b + d, d) if b + d ≤ c.

δ2(2; a, b, c, d) =

{
(1; a, d− c, c, b + d) if c ≤ d
(2; a, c− d, d, b + d) if d ≤ c.

δ2(3; a, b, c, d) =






(3; a, b + d − a − c, c, d) if a + c ≤ b + d
(4; a, a + c − b − d, b + d − a, d) if a ≤ b + d ≤ a + c
(7; a − b − d, b + d, c, d) if b + d ≤ a.

δ2(4; a, b, c, d) =





(3; a, d− a − c, c, b + d) if a + c ≤ d
(4; a, a + c − d, d − a, b + d) if a ≤ d ≤ a + c
(7; a − d, d, c, b + d) if d ≤ a.

δ2(5; a, b, c, d) =

{
(5; a, b + c + d − a, c, d) if a ≤ b + c + d
(6; b + c + d, a − b − c − d, c, d) if b + c + d ≤ a.

δ2(6; a, b, c, d) =

{
(5; a, c + d − a, b + c, d) if a ≤ c + d
(6; c + d, a − c − d, b + c, d) if c + d ≤ a.

δ2(7; a, b, c, d) =

{
(5; b, d− b, a, c + d) if b ≤ d
(6; d, b− d, a, c + d) if d ≤ b.

δ2
−1(1; a, b, c, d) =

{
(1; a, b + c − d, c, d) if d ≤ b + c
(2; a, d− b − c, c, b + c) if b + c ≤ d.

δ2
−1(2; a, b, c, d) =

{
(1; a, c− d, b + c, d) if d ≤ c
(2; a, d− c, b + c, c) if c ≤ d.

δ2
−1(3; a, b, c, d) =

{
(3; a, a + b + c − d, c, d) if d ≤ a + b + c
(4; a, d− a − b − c, c, a + b + c) if a + b + d ≤ d.

δ2
−1(4; a, b, c, d) =

{
(3; a, a + c − d, b + c, d) if d ≤ a + c
(4; a, d− a − c, b + c, a + c) if a + c ≤ d.

δ2
−1(5; a, b, c, d) =






(5; a, a + b − c − d, c, d) if c + d ≤ a + b
(6; a, c + d − a − b, a + b − d, d) if d ≤ a + b ≤ c + d
(7; c, a, d− a − b, a + b) if a + b ≤ d.

δ2
−1(6; a, b, c, d) =





(5; a + b, a − c − d, c, d) if c + d ≤ a
(6; a + b, c + d − a, a− d, d) if d ≤ a ≤ c + d
(7; c, a + b, d − a, a) if a ≤ d.

δ2
−1(7; a, b, c, d) =

{
(3; a + b, b − d, c, d) if d ≤ b
(4; a + b, d − b, c, b) if b ≤ d.
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Classification of diffeomorphisms

A diffeomorphism φ from Σ to itself is said to be pseudo-Anosov if there is a num-

ber λ > 1 and a pair of transverse measured foliations F and F ′ so that φ(F) = λF
and φ(F ′) = 1/λF ′. A consequence of the correspondence between measured foliations

and π1-train tracks [2] is that there are properly weighted π1-train tracks (j; a, b, c, d) and

(j′; a′, b′, c′, d′) corresponding to F and F ′ so that φ(j; a, b, c, d) = (j; λa, λb, λc, λd) and

φ(j′; a′, b′, c′, d′) = (j′; a′/λ, b′/λ, c′/λ, d′/λ) for the same value of λ. Moreover, the mea-

sured laminations F and F ′ are not multiple simple loops and therefore the coordinates

(j; a, b, c, d) and (j′; a′, b′, c′, d′) are not rationally dependent. A consequence of piecewise

linearity is that there is a closed subset U of ∆j containing (j; a, b, c, d) so that on U the

diffeomorphism φ is given by a matrix A with eigenvector (a, b, c, d) with eigenvalue λ.

Likewise there is U ′ ⊂ ∆j′ containing (j′; a′, b′, c′, d′) so that φ′ is given by a matrix A′ on

U ′ and A′ has an eigenvector (a′, b′, c′, d′) with eigenvalue 1/λ.

The basis of this section is the following classification of diffeomorphisms of Σ to itself

(see [9], [10], [11] and [13]).

Theorem. Let φ be a diffeomorphism of the twice punctured torus Σ to itself. Then φ is

isotopic to a diffeomorphism φ′ for which one one of the following holds:

(i) φ′ has finite order,

(ii) φ′ is pseudo-Anosov,

(iii) φ′ fixes a non-trivial, non-peripheral simple closed curve γ on Σ and is the identity or

pseudo-Anosov on each component of the complement of a tubular neighbourhood of

γ,

(iv) φ′ fixes a multiple simple loop on Σ which consists of two disjoint non-trivial, non-

peripheral simple closed curves.

We now investigate these possibilities a little more closely.

Proposition. Any periodic orientation preserving automorphism of the twice punctured

torus has order at most 12.

Proof. This follows from the possible torsion in MCG(Σ) and may be deduced from the

presentation of MCG(Σ) given in [12] Theorem 3.2.1. Alternatively, a diffeomorphism of

finite order gives rise to an isometry of a suitable geometrical structure on Σ. The group

of isometries of a twice punctured torus has order at most 12. �

Proposition. Suppose that φ leaves simple closed curves γ1 and γ2 invariant. Then φ2 is

isotopic to a word in the Dehn twists about γ1 and γ2. In this case each of the curves γ1

and γ2 is both an attractive as well as a repulsive fixed point.

Proof. The diffeomorphism φ either interchanges γ1 and γ2 or maps them to themselves.

Thus φ2 leaves γ1 invariant and γ2 invariant. Each component of the complement of a

11
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tubular neighbourhood of γ1∪γ2 is homotopic to a three holed sphere (pair of pants). The

diffeomorphism φ2 leaves invariant each boundary component of these three holed spheres.

Thus φ2 is homotopic to the identity on each component of the complement of a tubular

neighbourhood of γ1 and γ2. The only possibility on these tubular neighbourhoods is that

φ2 is a power of a Dehn twist. The result follows. �

Proposition. Let φ be reducible with one invariant simple closed curve γ. Suppose that

φ is pseudo-Anosov on one component of the complement of a tubular neighbourhood of

γ. Then:

(i) φ has three fixed points in PML: an attractive fixed point x∞, a repulsive fixed point

x−∞ and an indifferent fixed point x0 (which corresponds to γ),

(ii) either x∞ and x−∞ both lie the same maximal cell ∆j or x∞ ∈ ∆j , x−∞ ∈ ∆k and

x0 ∈ ∆j ∩ ∆k,

(iii) φ acts linearly on the sp+{x∞, x0} and sp+{x−∞, x0}.

Proof. By construction φ has three fixed points. One corresponding to the simple closed

curve γ which we call x0 and two corresponding to the fixed points of the pseudo-Anosov

on the complement of a tubular neighbourhood of γ. One of these x∞ is attractive and the

other x−∞ is repulsive. In order to see that x0 is indifferent, we observe that φ is either

the identity or a power of a Dehn twist on a tubular neighbourhood of γ. In both cases

any matrix A0 representing φ near x0 has x0 as an eigenvector with eigenvalue 1. Any

convergence to x0 is dominated by the exponential convergence to x∞. This gives (i).

By construction, the simple closed curve γ corresponding to x0 is disjoint from both

the laminations corresponding to x∞ and x−∞. Thus x0 and x∞ lie in the same maximal

cell and also x0 and x−∞ lie in the same maximal cell. Thus either all three of them lie in

the same maximal cell or else x0 lies on the common boundary of two maximal cells, one

containing x∞ and the other containing x−∞. This gives (ii).

Finally, consider sp+{x∞, x0}. This consists of all π1-train tracks which are supported

on x∞ and x0 with different relative weightings. The image of x∞ and x0 under any of

the elementary Dehn twists δj
±1 are disjoint and so lie in the same maximal cell. By

inspection we see that this means δj
±1 acts linearly on sp+{x∞, x0}. Since φ is a word

in the elementary Dehn twists, applying this argument repeatedly shows that φ also acts

linearly on sp+{x∞, x0}. Similarly for {x−∞, x0}. �

Finally, analysis of all the other cases gives the following result.

Proposition. The diffeomorphism φ is pseudo-Anosov if and only if it has exactly two

fixed points neither of which is a multiple simple loop.

12
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The procedure

Let φ be a diffeomorphism given as a word in the elementary Dehn twists δ0, δ1, δ2 and

their inverses. By composing the piecewise linear actions of the elementary Dehn twists

we can produce a piecewise linear action of φ on ML(Σ). In this section we give the

procedure for determining whether or not φ is pseudo-Anosov.

Start with x ∈ ML(Σ) with integer coordinates. By definition x corresponds to a

multiple simple loop and so cannot be a fixed point of a pseudo-Anosov diffeomorphism.

Now iterate φ to obtain a sequence of points xn = φn(x). The points xn all lie in ML(Σ).

We are only interested in their image under projectivisation. Therefore it can be useful to

normalise these points in a suitable way.

If φ were periodic then after n (which is at most 12) iterations we will have φn(x) = x.

If xn = x for some 1 ≤ n ≤ 12 then φn is not pseudo-Anosov and so φ is not pseudo-

Anosov. If xn 6= x for all n = 1, . . . , 12 then φ cannot be periodic and we see numerical

convergence towards a fixed point. After a certain number of iterations either all the xn

lie in the same maximal cell or else there is a repeating cycle of m ≤ 5 maximal cells. In

the latter case replace φ with φm. In either case we find a sequence of points lying in the

same maximal cell whose coordinates appear to converge numerically to a point x∞. An

approximation x̃∞ of x∞ with finitely many decimals is called an approximate fixed

point.

Our procedure relies on the following proposition:

Proposition. Suppose that the approximate fixed point x̃∞ agrees with the true fixed

point x∞ up to N decimal places. We can choose N so that there is a small closed subset

U containing x̃∞ and x∞ with the property that φ acts linearly on U . This choice of N

only depends on the length of the word φ in the generating Dehn twists.

Proof. The diffeomorphism φ acts piecewise linearly on ML(Σ). There are finitely

many closed subsets of ML(Σ) on which φ acts linearly. The number of these subsets is

bounded by a function of the length of the word φ in the elementary Dehn twists. If we

have convergence of the sequence xn to a fixed point x∞ then for all n ≥ N the points xn

will lie in a closed subset containing x∞ on which φ acts linearly. By making our numerical

convergence sufficiently accurate the point x̃∞ will lie in this subset. �

Let x̃∞ ∈ ∆j be an approximate fixed point. There is a closed subset U of ∆j on

which φ acts linearly for which x̃∞ ∈ U and so that φ(U) ⊂ ∆j .

We now work out the linear map A of φ on U . We can solve the eigenvalue problem

for A. Observe that the characteristic polynomial of A has degree 4 and integral coeffi-

cients. We can use the standard formulae for solutions of quartic polynomials to obtain the

eigenvalues of A in terms of radicals. From this it is clear whether or not these eigenvalues

are rational or not. A (non-repeated) eigenvector corresponding to a rational eigenvalue
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must have rationally dependent entries and so corresponds to a multiple simple loop. This

cannot be a fixed point of a pseudo-Anosov diffeomorphism. Similarly an eigenvector cor-

responding to an irrational eigenvalue must have rationally independent entries but, as we

remarked earlier, this does not determine whether or not such an eigenvector corresponds

to a multiple simple loop.

Thus we may assume that we have found a fixed point x∞ of φ with an irrational

eigenvalue λ. Otherwise we will have already determined that φ is not pseudo-Anosov.

Now apply the same procedure to φ−1 to obtain a fixed point x−∞. If x∞ = x−∞

then φ is not pseudo-Anosov.

Thus we have φ having an attractive fixed point x∞ and a repulsive fixed point x−∞.

There are two possibilities. First, that φ is indeed pseudo-Anosov and secondly that φ

fixes a simple closed curve γ and acts as a pseudo-Anosov on (one component of) the

complement. In order to distinguish between them we need to decide whether or not φ

has an indifferent fixed point x0 corresponding to γ.

We know that, if x0 exists, then it intersects neither x∞ nor x−∞. Thus either all

three lie in the same maximal cell or else x∞ and x−∞ lie in neighbouring maximal cells

and x0 lies on their common intersection. This means that if the cells containing x∞ and

x−∞ are disjoint then there can be no point x0 and so φ is pseudo-Anosov.

If the cells containing x∞ and x−∞ have a non-empty intersection (that is they are

the same or have a common lower dimensional face) then we need to investigate more

closely. Suppose that φ has an additional fixed point x0. We know that φ acts linearly

on sp+{x∞, x0}. This means that, if A is the matrix of φ near x∞, then A will have

an eigenvector corresponding to x0. Therefore, if A only has one eigenvector with non-

negative real entries this must correspond to x∞ and so φ does not have an indifferent fixed

point x0. Thus φ is pseudo-Anosov. On the other hand, if A has a second eigenvector

with non-negative entries this may be an additional fixed point. (It may be the case that,

although this is fixed by A, this point is outside the set where φ is given by A.) In order

to check whether this is the case we must check that this point is fixed by φ. If it is then φ

is not pseudo-Anosov. If the only eigenvector of A with non-negative entries that is fixed

by φ is x∞ then φ is pseudo-Anosov.

In each case we have determined whether or not φ is pseudo-Anosov.

Example. In [7] Menzel showed that the Whitehead link complement fibres over the

circle with fibre the twice punctured torus. Menzel gives the corresponding pseudo-Anosov

diffeomorphism φ in terms of the presentation for MCG(Σ) given by Magnus in section 5

of [6]. Namely, in Magnus’ notation φ = r−1sr−1τ [7]. In section 3.2 of [12] Parker and

Series show that one may write Magnus’ generators in terms of δk as follows: One may
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pass from our presentation to Magnus’ presentation via the substitution

r = δ1, s = δ1δ0δ1, ρ = δ1δ0δ1δ2
−1δ0

−1δ1
−1,

σ = δ1
−1δ0

−1δ1
−1δ1

−1δ0
−1δ1

−1, τ = δ1δ2
−1.

Hence, we see that φ = δ0δ1δ2
−1.

We now show how to use the above procedure to show that φ is indeed pseudo-

Anosov. We did this using Mathematica routines written by Menzel [8]. Iterating φ using

iterate.m we see convergence from the starting point (1; 1, 1, 1, 1) to an approximate fixed

point x̃∞ = (21; 1, 2.29663, 5.83909, 5.27451) (here we have chosen the first coordinate to

be 1). Using findmatrix.m we find that near x̃∞ the diffeomorphism φ is given by the

matrix 


0 1 0 0
0 0 0 1
0 1 1 1
1 0 1 1


 .

There is only one non-negative eigenvector of this matrix. This has eigenvalue

1

2
+

√
3

2
+

√√
3

2
.

An eigenvector for this eigenvalue corresponds to the true fixed point x∞. Up to scalar

multiples, we have:

x∞ =
(
21;

√
2(
√

3 − 1), 31/4(
√

3 − 1) +
√

2, 31/4(
√

3 + 1) +
√

6, 2(31/4 +
√

2)
)
.

Now consider the inverse of this diffeomorphism, namely δ2δ1
−1δ0

−1. Using iterate.m we

see convergence to an approximate fixed point x̃−∞ = (22; 1, 0.267949, 0.20665, 1.08998).

Using findmatrix.m we find that near x̃−∞ the diffeomorphism φ−1 is given by the matrix



1 0 1 1
0 −1 −1 1
0 1 1 0
1 0 2 1


 .

This has one non-negative eigenvector with eigenvalue

1

2
+

√
3

2
+

√√
3

2
.

Finding an eigenvector for this eigenvalue gives the true fixed point

y−∞ =
(
22;

√
2 + 31/4(

√
3 + 1),

√
2(2 −

√
3) + 31/4(

√
3 − 1),

√
2(
√

3 − 1), 2(31/4 +
√

2)
)
.

We remark that the maximal cells ∆21 and ∆22 are disjoint. This guarantees that the

diffeomorphism φ is pseudo-Anosov.

15



Pseudo-Anosov Diffeomorphisms of the Twice Punctured Torus

References.

[1] M. Bestvina & M. Handel, Train-tracks for surface automorphisms, Topology

34 (1995), 109–140.

[2] J. S. Birman & C. Series, Algebraic linearity for an automorphism of a surface

group, Journal of Pure and Applied Algebra 52 (1988), 227–275.

[3] M. Dehn, Die Gruppe der Abbildungklassen, Acta Math. 69 (1938), 135–206.

[4] H. Hamidi-Tehrani & Z.-H. Chen, Surface diffeomorphisms via train-tracks,

Topology and its Applications 20 (1996), 1–27.

[5] L. Keen, J. R. Parker & C. Series, Combinatorics of simple closed curves on

the twice punctured torus, Israel J. Maths. 112 (1999), 29–60.
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