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Introduction.

Let Σ be a (possibly punctured) surface of negative Euler characteristic, and let C(Σ) be

the set of isotopy classes of families of disjoint simple closed curves on Σ. When Σ is a

once punctured torus Σ1, there is a well known recursive structure on C(Σ1) which arises

from the relationships between C(Σ1) (identified with the extended rational numbers),

continued fractions, and PSL(2,Z) (the mapping class group of Σ1) [11], [21]. The results

in this paper arose out of a search for an analogous structure on C(Σ2), where Σ2 is a torus

with two punctures. Masur and Minsky [15], [16] have recently described an alternative

approach.

Our method is motivated by the Bowen-Series construction [4], [22] of Markov maps

for Fuchsian groups. This generalised the relationship between PSL(2,Z) (now thought of

as a Fuchsian group acting in the hyperbolic plane) and continued fractions (now thought

of as points in the limit set of PSL(2,Z)), to a large class of Fuchsian groups Γ.

The Markov map was a map on the boundary at infinity, in other words the limit

set Λ(Γ), which generated continued fraction expansions for points in Λ(Γ), and whose

admissible sequences simultaneously gave an elegant solution to the word problem in Γ

[22] (see section 1.1 below).

The idea behind this paper rests on the analogy between Γ acting on the hyperbolic

plane and the mapping class group MCG(Σ) acting on Teichmüller space T (Σ). In this

analogy, the boundary S1 of the hyperbolic plane (or the limit set of Γ) is replaced by a

suitable boundary of T (Σ). We use the Thurston boundary, namely the space PML(Σ)

of projective measured laminations on Σ (see section 1.4 below). The mapping class group

MCG(Σ) (see section 1.5 below) acts on both T (Σ) and PML(Σ). By analogy with the

Bowen-Series construction, we define a Markov map f on PML(Σ) which has the same
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relation to the action of MCG(Σ) on PML(Σ) as the Bowen-Series map has to the action

of Γ on Λ(Γ) = S1.

Thurston’s well known theory of train tracks [18], [23] gives ML(Σ) a piecewise linear

cone structure. Here we use the variant of π1-train tracks introduced by Birman and Series

[2]. This special class of train tracks is defined relative to a fixed choice of fundamental

domain and associated geometric generators for π1(Σ), in such a way that an integer

weighting yields not only a (multiple) simple loop but simultaneously allows one to read

off a shortest representative as a cyclic word in π1(Σ). Thus the space ML(Σ) is partitioned

into finitely many maximal cells corresponding to weightings on the (finitely many) possible

π1-train tracks associated to a given fundamental domain for Σ2.

In this paper we study the special case of the twice punctured torus Σ2. We use this

structure to construct a Markov map f on ML(Σ2). The Markov partition is essentially

the set of maximal cells and the restriction of f to each cell is a specific (rather simple)

element of MCG(Σ2) which acts linearly on the set of weights. Labelling the cells by the

corresponding elements of MCG(Σ2), we show that the f -expansions (that is the labelled

orbit paths of f , see section 1.1) give a unique normal form for the elements of MCG(Σ2).

In particular, the labels are a set of generators for MCG(Σ2), and comparison of normal

forms for nearby elements allows us to find a presentation for MCG(Σ2). Since the map f

is Markov, the f -expansions lie in a subshift of finite type which is in fact close to geodesic

with respect to the set of generators in question.

In the language of automatic groups (see section 1.2 below), these normal forms for

elements of MCG(Σ2) allow us to construct a word acceptor. If we can show that these

normal forms satisfy the fellow traveller property then this gives an explicit automatic

structure on MCG(Σ2). We conclude the paper by showing that this is indeed the case.

Our method is rather similar to that given by Mosher [17] who shows that any mapping

class group has an automatic structure.

The dimension of PML(Σ) is necessarily odd. We choose to study the case of the

twice punctured torus because it is one of the few three dimensional examples. The details

of the construction are rather special; we conjecture that the underlying principles are not.

One of the main obstacles to finding a complete generalisation of these techniques is the

difficulty of finding a map f and a Markov partition of PML(Σ) suitably related to the

piecewise linear structure on PML(Σ).

An illuminating discussion can be made for the once punctured torus Σ1, where the

dimension of PML(Σ1) is 1. Here the Teichmüller space is the upper half plane and the

mapping class group is PSL(2,Z). Although the final results are familiar, the methods

may be of interest, and we begin by presenting this example in some detail to explain our

ideas.

Presumably similar methods would prove the automaticity result for Bowen-Series
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expansions in the Fuchsian group case.

The outline of the paper is as follows. Section 1 draws together the necessary back-

ground material from a variety of sources. Section 2 gives the construction for the once

punctured torus. Sections 3, 4 and 5 extend this construction to the twice punctured

torus. Section 3 contains an explicit development of the Birman-Series construction for

Σ2. Section 4 gives the action of the mapping class group and the construction of the

Markov map f . In section 5 we construct a word difference machine which shows that the

f -expansions satisfy the fellow traveller property.

The results in this paper arose out of discussions between the authors and Linda Keen

as part of our ongoing work to understand the Maskit embedding of the twice punctured

torus, [12], [13]. We would also like to thank David Epstein and Sarah Rees for helpful

discussions about automatic groups. Part of this research was carried out while the first

author was supported by a S.E.R.C./E.P.S.R.C. Research Fellowship held at the University

of Warwick in the period 1992–1994.

Index of symbols used.

δj a Dehn twist on the once or twice punctured torus: sections 1.5, 2.2, 3.2.

ιj a symmetry of the once or twice punctured torus: sections 2.2, 3.2.

ρj the composition of Dehn twists δjδ0δj for j = 1, 2: sections 4.6, 5.3, 5.4.

φ an element of the mapping class group MCG(Σj).

ψ a word difference: sections 1.2, 2.5, 5.

e the identity element of a group.

ej, eij irreducible loops on the once or twice punctured torus: sections 2.1, 3.1.

fj a Markov map on ML(Σj).

Ij maximal cells for ML(Σ1): section 2.1.

∆j maximal cells for ML(Σ2): section 3.1.

Σj the j times punctured torus, for j = 1, 2.

Aj , Bj, . . . regions in ML(Σ2) or F : sections 4.1, 4.5.

Qj , Rj, . . . the union of several regions in F : sections 2.4, 5.2.

X◦ the interior of a set X .

A the alphabet for a word acceptor: sections 1.2, 2.4, 4.7.

D the collection of word differences: sections 1.2, 2.5, 5.1, 5.5.

F the set of Farey blocks (pairs) for Σ2 (or Σ1): sections 2.3, 4.3.
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1. Background

In this section we gather together all of the background material we need. This is taken

from a variety of different areas. Much of the material is expository in nature.

1.1. Markov Maps and the Bowen-Series construction

A Markov map on a space X is a map f :X → X , together with a finite (or in certain

cases infinite) partition of X into sets Xi, such that f(Xi) is an exact union of sets Xj . We

say that f satisfies the Markov property: if f(X◦
i )∩X

◦
j is non empty then Xj ⊂ f(Xi).

For ξ ∈ X , let p(ξ) = j if ξ ∈ Ij . The sequence p(ξ), p(f(ξ)), p(f2(ξ)), p(f3(ξ)), . . . is called

the f-expansion of ξ. Associated to f is a transition matrix of zeros and ones recording

which transitions between states can occur. Since f is Markov, all infinite sequences

with allowable transitions occur. The finite blocks which occur in these expansions are

called admissible. Often a Markov map is required to be expanding or to have other

differentiability properties. Such questions will not concern us here.

The Bowen-Series construction was modelled on the relationship between PSL(2,Z)

acting in the upper half plane model of the hyperbolic plane H2 and the continued fraction

transformation acting on the extended real line R ∪ {∞}. The continued fraction map

f(x) =







x− 1 if x ≥ 1
x+ 1 if x ≤ −1
−1
x

if |x| ≤ 1

can be regarded as an example of a Markov map with the partition Π into intervals

[∞,−1], [−1, 0], [0, 1], [1,∞]. (For simplicity here and in what follows we omit details

about endpoints. As defined above, the map f is 2-valued at the endpoints.) The

f -expansion of a point ξ ∈ R is essentially the same as its continued fraction expan-

sion. We note that the restriction of f to each element of Π belongs to the finite subset

Γ0 = {x 7−→ x − 1, x 7−→ x + 1, x 7−→ −1/x} ⊂ PSL(2,Z). (The well known fact that

Γ0 is a generating set for PSL(2,Z) may be proved using these expansions [22].) Via f -

expansions, R∪{∞} may be mapped in an obvious way into Π∞
n=0Γ0, giving an alternative

viewpoint in which points in R are regarded as infinite words in Γ0 [20]. Furthermore, the

finite admissible blocks which occur in these f -expansions give an elegant and well known

solution to the word problem in PSL(2,Z) [20]: each finite admissible block is a shortest

word relative to the generators Γ0 and every element in PSL(2,Z) occurs as an admissible

block in precisely one way.

This construction was generalised in [4] to the case of an arbitrary Fuchsian group Γ

acting in the disc model of the hyperbolic plane with a given geometric set of generators

Γ0. (See [22] for the best exposition.) This involves the construction of a Markov map

f on the boundary at infinity, the unit circle S1. The elements of the partition were
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intervals Ij, and, for each j, the restriction f |Ij
was in Γ0. The f -expansions carried full

information about the Γ action on S1, in the sense that two points were in the same Γ

orbit if and only if the “tails” of their f -expansions agreed. Furthermore, and this is the

point of interest here, these f -expansions simultaneously generate a most elegant solution

to the word problem in Γ [22]. If to each partition interval is associated f |Ij
∈ Γ0, the

f -expansions map to a set of infinite sequences in Γ0. The finite admissible blocks in the

f -expansion, give unique shortest representatives for words in Γ relative to the generators

Γ0. Clearly, this comes very close to saying they generate an automatic structure for Γ.

1.2 Automatic Groups

In this section we give the properties of automatic groups that will be used later. More

general references to this and related material are the books of Epstein et al [7] and Holt

[9], to which the reader is referred for more details. See also [10], [19].

An alphabet A is a finite set. A language L over an alphabet A is a collection

of finite sequences of elements of A (called words or strings). The length of a string

w = (a1, . . . , an) is |w| = n.

For the purpose of this paper a finite state automaton over an alphabet A is a

finite, directed, edge labelled graph whose vertices are called states and whose directed

edges are called arrows. There is a specified state called the start state and a partition

of the states into two disjoint sets, the accept states and the non-accept states. Every

arrow from a state is labelled with a symbol from A and no two arrows from the same

state have the same label. Given any string w = (a1, . . . , an) over A and any state s there

is at most one path of arrows starting at s so that the jth arrow is labelled with aj . This

path terminates at some state s′. We say that w goes from s to s′.

The language accepted by this automaton is the collection of strings w over A which

go from the start state to some accept state. A language L over A is called regular if it is

accepted by some finite state automaton over A and this automaton is said to recognise

the language L.

Let G be a group with identity element e. Consider an alphabet A and a map A −→ G

denoted by a 7−→ a. This extends to a map from the collection of strings over A to G

by w = (a1, . . . , an) −→ w = a1 . . . an, the product of the image of the letters in w. If

every element of G can be described in this way we call A a finite generating set for G.

A language L = L(G) over A is called an automatic structure for G if two conditions

are satisfied. First, L(G) is a regular language which maps onto G. That is, there is a

finite state automaton so that every element of G may be described by (at least) one path

through this automaton. This automaton is called the word acceptor W(G). The second

property is known as the fellow traveller property which we explain below. If a group G

has an automatic structure then G is called an automatic group.
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For a group G with finite generating set A, the word length of g ∈ G denoted |g|

with respect to A is the shortest length of any word in A representing g. The word

metric on G is d(g, h) = |g−1h|. Given a word w = (a1, . . . , an) over A, for each integer

0 ≤ t ≤ n, denote by w(t) = (a1, . . . , at) the prefix of w of length t, and for integers t ≥ n

denote w(t) = w. Given a constant k, two words w, v over A are k-fellow travellers if

d
(

w(t), v(t)
)

≤ k for all t ≥ 0. Also k is called the fellow traveller constant for w and v.

The group G satisfies the fellow traveller property if there is a constant k such that

for any words w, v ∈ L with d(w, v) ≤ 1 then w and v are k-fellow travellers.

Let w and v be a pair of words as above and a ∈ A ∪ {e} so that wa = v. If w and

v are k-fellow travellers then ψ(t) = w(t)−1v(t) has length at most k for all t ≥ 0. Thus

for all choices of w and v with d(w, v) ≤ 1 the ψ(t) lie in a finite set D, the collection of

word differences and A ∪ {e} ⊂ D ⊂ L. Knowledge of the word differences allows us to

reconstruct the multiplicative structure of G in an automated way.

More precisely, the fellow traveller property is equivalent to the existence of multi-

plier automata Ma for each a ∈ A ∪ {$} for G [7], [10]. Each Ma is a 2-stringed

automaton whose alphabet is A′ × A′, where A′ is the padded alphabet A ∪ {$}. It

accepts the padded pair (w+, v+) for strings (w, v) over A whenever w, v are accept states

of W(G) and wa = v. Here the symbols w+, v+ indicate that the padding symbol $, which

maps to the identity in G, may be added to the shorter of w, v to make them have equal

length. The automaton M$ recognises identity in G, replacing the condition wa = v by

w = v.

The multiplier automata Ma for a ∈ A ∪ {$} may be constructed by means of a

word-difference machine, clearly explained in [10] and summarised here. This is really

a collection of new automata, all of which have the same state space, namely the set of

triples (s1, s2, ψ) such that s1, s2 are states of L(G) and ψ ∈ D. The start state is (s0, s0, e)

where s0 is the start state of L(G) and e is the identity of G. For a, b ∈ A there is an

arrow from (s1, s2, ψ) to (s′1, s
′
2, ψ

′) if and only if there are arrows s1
a

−→ s′1 and s2
b

−→ s′2
in the word acceptor and if ψ′ = x−1ψy. In the automaton Ma, the state (s1, s2, d) is a

success state if s1, s2 are in L and if ψ̄ = ā.

There is an extra technicality needed to deal with the padding symbol. Namely, we

have to add an extra state to the word acceptor W(G) which is reached when W(G) is in

an accept state and the padding symbol is read. If either of s1 or s2 is this extra state, then

one or other of x, y as above will be replaced by the padding symbols $ and the condition

ψ′ = x−1ψy will be replaced by ψ′ = ψy or ψ′ = x−1ψ. Frequently we shall think of these

conditions as commutative squares or triangles of relations between elements in the group.

If we can construct a word difference machine using a finite set of word differences D′,

then we have clearly verified the fellow traveller property and can use the above process

to simultaneously construct all the multiplicative automata Ma. The process can be seen
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as concatenating squares or triangles to yield a collection of cross paths in D between all

the prefixes w(t) and wa(t) occurring in the normal forms of any two words w and wa for

a ∈ A. The collection of all those squares and triangles which arise is easily seen to give a

presentation for the group.

We can often use a Markov map to construct a word acceptor. This is analogous to

Mosher’s construction of a word acceptor by reversing the combing process [17]. Suppose

that we have a (fixed point) free action of a group G on a space X and a Markov map f

defined with respect to a partition {Xi} of X so that on Xi the map f is some element

of G. Suppose that there exists a particular x ∈ X so that for each g ∈ G there is a

non-negative integer n so that fn(gx) = x, and so that n = 0 if and only if g is the identity

e 1. Then we can use f to define a word acceptor for G as follows. There is a special start

state corresponding to x and there is one state for each Xi in the Markov partition. For

each Xi suppose that f |Xi
= αi and f |Xi

= αi:Xi −→ Xj ∪ · · · ∪Xk. We draw an arrow

from the each of the states Xj, . . . , Xk to Xi with the label αi
−1. This means that all the

arrows arriving in each state have the same label and all arrows leaving each state have

different labels. (Strictly speaking, there should be arrows leaving each state with every

label in the alphabet. If there are letters in the alphabet that do not occur as labels leaving

a particular state Xi then we draw arrows from Xi with these labels to a new state called

the fail state. All arrows leaving the fail state return there. In practice we do not use

the fail state and will omit all arrows leading there.) In order to read a normal form for

g ∈ G we consider the word in G obtained by inverting the composition of the particular

values of f arising from fn(gx) = x. This is the same as path through the word acceptor

corresponding to g.

We shall find a suitable set of word differences D by starting from the generating

set A and successively adding more words ψ′ as dictated by the conditions ψ′ = x−1ψy

until the collection we arrive at becomes closed under further moves of this kind. The

method is similar to Mosher’s construction of “raising bems” [17]. Since the states of the

word acceptor are elements of the partition of X , the states of the difference machine are

elements (Xi, Xj, ψ) for Xi, Xj in the Markov partition and ψ ∈ D. The new relations

will be of the form ψ′ = αi−1ψαj where αi = f |Xi
. We shall also allow degenerate squares

or triangles corresponding to pairs of states (Xi, Xj, ψ), (X ′
i, Xj, e) with ψ = f |Xi

, giving

the trivial relation e = ψ−1ψ. During this process of adding new word differences, it will

unfortunately sometimes be necessary to subdivide some of the states Xi. This is because

the various word differences ψ ∈ D may map the state Xi to a number of different states on

which the definition of f varies, thus possibly introducing several different variants of the

1
This is very close to the property of orbit equivalence: f is said to be orbit equivalent to G on X

if for any x,y∈X then x=gy for some g∈G if and only if fnx=fmy for some m,n≥0.
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relation ψ′ = α−1
i ψαj. Technically, this means that we have to add new states (Yik , Yjl , ψ)

to the word difference automaton, where the new sets Yik , Yjl are certain subsets of Xi

and Xj . However, these difficulties are also resolved after a finite number of steps, and it

should be clear that from the resulting collection of squares and triangles we can construct

automata as required.

1.3 Multiple simple loops and π1-train tracks.

In what follows we do not use the conventional Thurston theory of train tracks (for which

see [18], [23]) but a variant due to Birman and Series [2]. We will only be concerned with

punctured surfaces and there the theory is much easier. Thus we restrict our attention to

this case. For details see also [12].

A loop on a surface Σ is a closed curve. A loop is called simple if it has no self

intersections. A loop is boundary parallel or peripheral if it is homotopic to a loop

around a puncture. A multiple simple loop is a collection of pairwise disjoint simple

loops none of which is either homotopically trivial or boundary parallel. For the p times

punctured torus Σp the maximal number of non-trivial homotopy classes of disjoint, non

boundary parallel curves is p. Thus a multiple simple loop γ on Σp can be written as

m1γ1 + · · · +mpγp where mj is a non-negative integer and the γj are distinct homotopy

classes of simple closed curves on Σp.

For definiteness, fix a choice of hyperbolic structure on Σ and let R ⊂ H2 be a

fundamental region for our surface whose vertices are all at punctures of the surface 1.

Suppose R has sides σk and side pairing maps µk: σk 7−→ σk′ where µk′ = µk
−1 for each

k. Let R be the closure of R in H2. A π1-train track τ is a collection of pairwise disjoint

arcs αj: [0, 1] −→ R so that

(i) αj(0) ∈ σk and αj(1) ∈ σl,

(ii) αj(λ) ∈ R◦ for λ ∈ (0, 1),

(iii) at most one arc joins each pair of sides.

(iv) no arc goes from one side to itself. That is, if k and l are as in (i) then k 6= l.

An arc of τ is called a corner arc if it joins adjacent sides of R. Each corner arc faces

a particular vertex of R and for each vertex cycle in the side pairing of R we have the

corresponding corner cycle consisting of all corner branches corresponding to the same

puncture.

A weighting w on a π1-train track τ is an assignment of a non-negative number w(αj)

to each arc αj of τ . A weighting is integral if each weight is a (non-negative) integer. We

1 Our results are combinatorial in nature and hence independent of the particular hyperbolic structure

chosen. Nevertheless, since the theory of π1-train tracks involves hyperbolic geometry, some choice needs

to be made.
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define the length of w, denoted |w|, as |w| =
∑

w(αj) where the sum is over all arcs αj
of τ .

We now explain how to collapse a multiple simple loop to obtain a π1-train track with

an integral weighting. We begin by lifting the multiple simple loop γ to the fundamental

region R. The multiple simple loop becomes a collection of arcs, called strands, joining

sides of R. We say that a multiple simple loop γ is supported on a π1-train track τ if,

for every strand of γ there is an arc of τ joining the same pair of sides. If γ is supported

on τ we may give τ an integral weighting wγ by assigning to each arc of τ the number of

strands of γ joining that pair of sides. This weighting has the following properties (see [2],

[12]):

(i) For each side pairing µk: σk −→ σk′ , the sum of the weights of arcs with endpoints on

σk is the same as the sum of the weights of arcs with endpoints on σk′ .

(ii) At least one arc in each corner cycle must have weight zero.

The first condition holds because when we perform the gluing coming from µk each end-

point of a strand of γ on σk is identified with the endpoint of a strand on σk′ . Thus the

total numbers of endpoints on this pair of sides are the same. The second condition holds

because, if not, the strands in corner cycle would join up to give a peripheral loop in γ.

If a (non-negative but not necessarily integral) weighting satisfies (i) and (ii) we call

it a proper weighting. Conversely, every proper integral weighting w on a π1-train

track τ gives rise to a multiple simple loop γ. This means that in order to study multiple

simple loops it is sufficient to study proper integral weightings on π1-train tracks. Let

W (τ) denote the collection of all proper weightings on the π1-train track τ and WO(τ) the

collection of proper integral weightings on τ (see [12]).
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1.4 Irreducible loops and PML.

A π1-train track τ is said to be recurrent (see [23]) if there exists a proper integral

weighting w ∈ WO(τ) so that w(αj) is non-zero for all branches αj of τ . Such a π1-train

track τ is said to be maximal if there does not exist a recurrent π1-train track τ ′ so that

τ is properly contained in τ ′ in the obvious sense. It follows from Thurston’s theory, or

as one can directly verify in the special cases of concern to us here, that if τ is a maximal

recurrent train track then the dimension of W (τ) is 6g − 6 + 2p where Σ is a surface of

genus g with p points removed. We call the collection of all proper weightings W (τ) on a

maximal recurrent π1-train track τ a maximal cell.

Any simple loop γ defines a recurrent π1-train track τ(γ) with weights w(γ) as above.

A simple loop γ is said to be irreducible if w(γ) 6= w1 + w2 for any w1, w2 ∈ WO

(

τ(γ)
)

and wj 6= 0 for j = 1, 2. Clearly there are only finitely many maximal recurrent π1-train

tracks. We shall see below that if Σp is the p-times punctured torus, for p = 1, 2, each

maximal cell is the linear span of 2p irreducible loops.

We denote the collection of all homotopy classes of multiple simple, non-boundary

parallel loops on Σ by MLO(Σ) and the collection of all measured geodesic laminations

on Σ by ML(Σ). It is a theorem of Birman and Series [2] that MLO(Σ) and ML(Σ)

can be identified with the collections of proper integral weightings and proper weightings

respectively on π1-train tracks on Σ. For MLO(Σ) the proof of this follows the outline

given above. If w ∈ ML(Σ) then clearly w is contained in some maximal cell W (τ). Thus

ML(Σ) is the union of maximal cells W (τi) where τi runs over all maximal recurrent π1-

train tracks on Σ. This gives ML(Σ) a natural cell structure. In the cases we are interested

in, namely Σ1 and Σ2, we shall prove (Propositions 2.1.1 and 3.1.2) the following result.

Proposition 1.4.1. For p = 1, 2 let Σp denote the p times punctured torus. There are

finitely many irreducible loops e1, . . . , ek on Σp so that for each maximal π1-train track

τ the corresponding maximal cell W (τ) is the positive linear span of 2p irreducible loops:

W (τ) = sp+{ei1 , . . . , ei2p
} where ij ∈ {1, . . . , k}. Also the intersection of two cells is

W (τ) ∩W (τ ′) = sp+
(

{ei1 , . . . , ei2p
} ∩ {ei′

1
, . . . , ei′

2p
}
)

where

W (τ) = sp+{ei1 , . . . , ei2p
} and W (τ ′) = sp+{ei′

1
, . . . , ei′

2p
}.

The space W (τ) may be projectivised in a natural way to obtain PW (τ) and similarly

WO(τ) can be projectivised to obtain the set of rational weightings PWO(τ). The space

PML = PML(Σ) is the union over all τ of the corresponding cones PW (τ), which we

call π1-cones, glued along their lower dimensional common simplices as in the proposition.

We denote the union of all rational weightings PWO(τ) by PMLO(Σ). Using the Birman-

Series identification, the space PML(Σ) can be naturally identified with the space of
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projective measured laminations on Σ, shown by Thurston to be a sphere of dimension

6g− 7+ 2p [18]. Thus in our two examples, we expect PML(Σ1) and PML(Σ2) to be S1

and S3 respectively. In each example we shall first determine the maximal cones. Gluing

up using Proposition 1.4.1 will allow us to see explicitly how the spheres S1 and S3 are

formed.

1.5 Dehn twists and the mapping class group

The (orientation preserving) mapping class group MCG = MCG(Σ) of Σ is the group of

isotopy classes of (orientation preserving) automorphisms of Σ, see [1] or [17] for example.

That is, an element of MCG is an (orientation preserving) homeomorphism of Σ to itself

and two such homeomorphisms give the same element of MCG if one can be deformed to

the other isotopically along a continuous path of homeomorphisms of Σ to itself. There is

a natural action of the mapping class group on Teichmüller space of Σ as the Teichmüller

modular group. This action can be extended to PML(Σ), [24], and it is this action we

will consider here.

Let w be a simple closed curve on a surface Σ parametrised by ξ ∈ [0, lw] where lw
is the length of w. Consider a small tubular neighbourhood around w in Σ and denote

this by Nw = [0, 1] × w. We define a homeomorphism of Σ called (left) Dehn twist

about w (see [1] for example) denoted δw as the identity on Σ−Nw and by requiring that

(η, ξ) ∈ [0, 1] × w is mapped by δw to (η, ξ − ηlw) where η ∈ [0, 1] and ξ − ηlw is defined

mod lw. Observe that if η = 0 or 1 then δw is the identity. By a well known result of Dehn

[6], the (orientation preserving) mapping class group is generated by Dehn twists.

We will produce a set of Dehn twists which we shall show are generators for the

mapping class groups of Σ1 and Σ2. We will then investigate the action of these Dehn

twists on the piecewise linear structure on PML(Σp) given by π1-train tracks. In particular

we show that the Dehn twists act piecewise linearly on PML(Σp) with respect to this

piecewise linear structure. Moreover, the action also restricts to an action on PMLO(Σp).

This gives a piecewise linear action of MCG on PML and PMLO respectively.

This action is not free in the sense that there are elements of PMLO which have non-

trivial stabilisers in MCG. For example, performing a Dehn twist about w fixes w and any

curve disjoint from w. In order to construct a Markov map whose orbits describe MCG we

need to find a (fixed point) free action of MCG on a suitable space Y . For the case of the

once punctured torus, Y will be the space of (ordered) Farey neighbours, that is, pairs of

curves which intersect exactly once. For the twice punctured torus we will generalise this

idea by defining quadruples of curves in a special topological configuration which we call

Farey blocks. The space Y of Farey blocks will admit a free action of MCG(Σ2).

11
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2. The mapping class group of the once punctured torus.

In this section we carry out the construction of π1-train tracks, a Markov map and an

automatic structure for the once punctured torus. Much of the material in this section

is, to some extent, well known. However, we shall adopt a non-standard view point. The

reasons for including this section are two-fold. First, the main structure of the argument is

the same as for the twice punctured torus. Thus it will serve as motivation and a guide for

what follows, explaining the main ideas with computations of a much more manageable

scale. Secondly, when we are dealing with the twice punctured torus there are several

steps in the construction of the Markov map and automatic structure. One of these steps

is essentially the construction we present in this section. This will save us considerable

effort later on.

In sections 2.1 and 2.2 we show that certain elementary Dehn twists act on ML(Σ1)

exactly like the continued fraction map on R ∪ {∞}. In section 2.3 we construct the

Markov map and in sections 2.4 and 2.5 we explain how it gives the automatic structure

for MCG(Σ1) = PSL(2,Z).

2.1. π1-train tracks and the cell structure of ML(Σ1).

As remarked in section 1.3, we start by fixing a definite hyperbolic structure for Σ1 and a

fundamental domain R1 ⊂ H2 for the action of π1(Σ) on the hyperbolic plane.

v v

vv

1 4

32

R

T

T

S S1

Fig. 2.1.1. A hyperbolic fundamental domain R1 for Σ1, where S, T denote S−1, T−1.

The fundamental domain R1 we choose is the standard rectangular one with opposite

sides identified by side pairings which match the midpoints of the sides. The region R1

has four vertices all of which project to the puncture of Σ1 (see Fig. 2.1.1). We label these

v1, . . . , v4 in clockwise order. Writing vivj for the side joining vi to vj , the side pairings

12
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will be S carrying v1v2 to v4v3 and T carrying v1v4 to v2v3. The maps S and T correspond

to homotopy classes of simple closed curves which freely generate the fundamental group.

We now introduce the irreducible loops that will form the basis for ML(Σ1) as ex-

plained in Proposition 1.4.1. They are defined as follows (see Fig. 2.1.2. 1):

e0 consists of a single arc joining v1v2 and v3v4;

e1 consists of an arc joining v1v2 and v2v3 and an arc joining v3v4 and v4v1;

e∞ consists of a single arc joining v2v3 and v4v1;

e−1 consists of an arc joining v2v3 and v3v4 and an arc joining v4v1 and v1v2.

We mention in passing that one may also define these loops in terms of the cutting se-

quences as discussed in [3] or [22]: e0 = S, e1 = ST , e∞ = T and e−1 = S−1T . (Since the

loops are unoriented, strictly speaking e0 = S or S−1 and so on.)

e e e e0 1 -18

Fig. 2.1.2. The elementary π1-train tracks.

Next, we define cells in ML(Σ1). We show below that these are maximal. The cells

are:

I0 = sp+{e0, e1}, I1 = sp+{e0, e−1}, I2 = sp+{e∞, e−1}, I3 = sp+{e∞, e1}.

Proposition 2.1.1. The cells I0, I1, I2, I3 are maximal and their union is ML(Σ1).

Proof. It is sufficient to show that no extra arcs can be added to any of these four π1-

train tracks, and that any loop is supported on one of them. This is carried out in the

appendix to [2]. For convenience we reproduce it here.

Clearly, any maximal π1-train track on Σ1 must have one of the two forms illustrated

in Fig. 2.1.3. Summing the weights over the two pairs of identified sides and cancelling a

we obtain two equations

b+ e = c+ d, b+ c = e+ d.

We may solve these to obtain b = d and c = e. Now we know that on the corner cycle

we cannot have all the weights non-zero. Thus b = 0 or c = 0. Since all the weights are

1 For simplicity we draw R1 as a Euclidean rectangle in what follows.
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non-negative, this means that there are four configurations of π1-train track corresponding

to non-boundary parallel, simple loops on Σ1. �

Notation 2.1.2. By Proposition 2.1.1 any simple closed curve γ may be represented as

aei + bej where w(γ) ∈ Ik = sp+{ei, ej} for some k = 0, 1, 2, 3. We always write the

ordered pair (a, b) to represent ae0 + be1 if w(γ) ∈ I0, ae0 + be−1 if w(γ) ∈ I1, ae∞ + be−1

if w(γ) ∈ I2 or ae∞ + be1 if w(γ) ∈ I3.

a

b c

de

a

b c

de

(i) (ii)
Fig. 2.1.3. The two possible configurations for a maximal weighted π1-train track on R1.

The notation for the ej has the following rationale. Regard R1 as a square with v1
in the bottom left hand corner, and side pairings which are Euclidean translations. By

Proposition 2.1.1 above, any simple closed curve γ on Σ1 is supported on one of the four

maximal cells Ik. Thus, up to homotopy, γ is equivalent to a family of parallel Euclidean

straight lines across R1. Lifting to the Euclidean universal cover of R1, that is R2, such a

family of lines links to form a line of rational slope on the plane. With this identification,

it is clear that the curve we have labelled ej has slope j.

2

3

3

Fig. 2.1.4. The line of slope 3/5 drawn on R1 and as a weighted π1-train track.
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More generally, we obtain an identification of PML(Σ1) with the extended real

line R ∪ {∞} by mapping (a, b) ∈ I0 to the point b/(a + b), (a, b) ∈ I1 to −b/(a + b),

(a, b) ∈ I2 to −(a + b)/b and (a, b) ∈ I3 to (a + b)/b. An example, the curve represented

by (2, 3) = 2e0 + 3e1 ∈ I0 is shown in Fig. 2.1.4. This corresponds to the line of slope 3/5

in R2.

The maximal cells I0, I1, I2, I3 have their boundaries identified as in Proposition 1.4.1.

In this case it is easy to see that I0∩I1 = sp+{e0}, I1∩I2 = sp+{e−1}, I2∩I3 = sp+{e∞}

and I3 ∩ I0 = sp+{e0}. The other two intersections are empty. This is illustrated in

Fig. 2.1.5, from which one clearly sees that PML(Σ1) ∼ S1. We remark that in the

appendix to [2], Birman and Series considered oriented curves and so found a different cell

structure for ML(Σ1).

e

e

e

I I

II1 0

32

1

0

8

a
b

b

b
a

bb

a
b

b

b
a

(a,b)

(a,b)(a,b)

(a,b)

=

=

-1e=

=

Fig. 2.1.5. The partition of ML(Σ1) into maximal cells.
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2.2 Dehn twists and the mapping class group

Let the Dehn twists about e∞ and e0 be denoted by δ0 and δ1 respectively. We now want

to investigate the effects of these twists on the projective structure on the space of train

tracks constructed in the previous section.

In order to simplify things we will make use of some natural symmetries of R1 and

the π1 train tracks we constructed above. These symmetries are defined as follows:

ι1 interchanges the pairs (v1, v4), (v2, v3);

ι2 cyclically permutes the vertices sending v1 to v2, v2 to v3 and so on;

ι3 fixes v1 and v3 and interchanges (v2, v4).

In addition, we will sometimes write ι0 for the identity map.

Observe that applying ι2 twice we get a rotation of R1 by 180◦ which interchanges

v1, v3 and v2, v4. Even though this is not the identity on R1 it does act as the identity on

each of the Ij . (This map is just the map which sends any curve to itself with the opposite

orientation.) The ιj act on PML(Σ1) as the Klein 4-group. On these irreducible loops

this action is given by:

ι1: e0 7−→ e0, e1 7−→ e−1, e∞ 7−→ e∞, e−1 7−→ e1,
ι2: e0 7−→ e∞, e1 7−→ e−1, e∞ 7−→ e0, e−1 7−→ e1,
ι3: e0 7−→ e∞, e1 7−→ e1, e∞ 7−→ e0, e−1 7−→ e−1.

Note that the action of the symmetries extends naturally to the cells Ij . Moreover, the

action is given by ιj(I0) = Ij.

The benefit of applying these symmetries is that we only need consider the action of

δ0 on ML(Σ1). The action of δ0
−1 and δ1

±1 will follow by symmetry as follows. We claim

that
ι1δ0ι1 = δ0

−1 ι2δ0ι2 = δ1 ι3δ0ι3 = δ1
−1

ι1δ1ι1 = δ1
−1 ι2δ1ι2 = δ0 ι3δ1ι3 = δ0

−1.

This is because ι1 and ι3 reverse orientation and so conjugate right Dehn twists to left

Dehn twists, while ι2 preserves orientation but interchanges e0 and e∞.

Applying a Dehn twist to a weighted π1-train track sometimes results in an unre-

duced π1-train track, that is a π1-train track which may have arcs with both ends on the

same edge of the fundamental domain. An unreduced π1-train track satisfies conditions

(i)–(iii) given in section 1.3 but fails to satisfy (iv). The process of converting an unreduced

(weighted) π1-train track into a (reduced) π1-train track is called pulling tight. Suppose

that the unreduced π1-train track τ has an arc α from the side σk to itself and that this

arc has weight w(α). Suppose also that τ has a proper integral weighting. We begin by

converting it into a multiple simple loop γ on R1. This means that we replace each arc αj

with weight w(αj) by w(αj) strands joining the same pair of sides as αj . In particular we

have w(α) strands from σk to itself. We now perform a homotopy of Σ which will remove
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the intersections of all these strands with σk. This is done as follows. We can always choose

an innermost strand β, which together with an arc of σk bounds a disc in R1 containing

no other strands. Suppose that the endpoints of β on σk are x+ and x−. Now consider

the images of x+ and x− under the side pairing map µk. These are points of σk′ that are

ends of strands β+ and β− respectively. (To find out which strands, put an orientation

on σk and σk′ consistent with µk and then count endpoints from the corresponding ends

of σk and σk′ .) The other endpoints of β+ and β− are points y+ and y− on sides σ+ and

σ−. We replace β, β+ and β− by a single strand β′ from y+ to y−. It is clear that this

strand can be drawn disjoint from the other strands of γ. We have reduced the number

of strands by two. This process clearly terminates after a finite number of applications,

giving a multiple simple loop which has no strands with both endpoints on σk. Repeating

for all k gives a reduced π1-train track on R1 with a proper integral weighting.

Proposition 2.2.1. Let (a, b) ∈ I0. The Dehn twists act on I0 as follows

δ0(a, b) = (b, a+ b) ∈ I3

δ0
−1(a, b) = (b, a) ∈ I1

δ1(a, b) =

{

(a− b, b) ∈ I0 if a ≥ b
(b− a, a) ∈ I3 if a ≤ b

δ1
−1(a, b) = (a+ b, b) ∈ I0.

Proof. This follows directly from the linearity theorems in [2]. We include an alternative

proof as an illustration of how we manipulate π1-train tracks. It is illustrated in Fig. 2.2.1.

We begin with the train track for a general integral point (a, b) ∈ I0. We want to perform

the Dehn twist δ±1
j , for j = 0, 1, about the curve γj which is either e∞ or e0 respectively.

We draw a tubular neighbourhood about γj as a strip going from one side to the opposite

side. This strip is bounded by dotted lines in the figure. The Dehn twist is the identity

outside this strip and inside the strip fixes one boundary component of the cylinder about

γj while rotating the other component one whole turn. In between we interpolate linearly

so that an arc of a train track which went straight across is now wrapped once around the

cylinder before emerging on the other side. It still carries the same weight which represents

the number of strands in the corresponding multiple simple loop. In the cases illustrated

in the top or bottom diagrams in Fig. 2.2.1, all that remains is to gather together arcs

whose endpoints lie on the same sides and add their weights.

In the middle two cases in Fig. 2.2.1 we need an intermediate step. Namely the image

train track is unreduced so that we need to pull tight. In the first case, that is δ0
−1(a, b),

the unreduced arc joins the bottom side to itself and has weight b. Convert the train track

into a multiple simple loop by drawing w(α) strands joining the same pair of sides as α

for each arc α with weight w(α). This gives b strands joining the bottom side to itself.
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=
b

b

a a

b

b
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b

a+b
b

a+b

=

=

=

=

a>b

a<b
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b

a

b

b
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b
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b
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a
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b
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b

b a+b

b

δ

δ

δ

δ

0

0

1

1

-1

-1

Fig. 2.2.1. The action of Dehn twists on points of I0.

Reading from the left, the first b endpoints of strands along the bottom edge are joined to

the next b strands in the reverse order. Likewise reading from the left, the first b strands

on the top side are ends of strands all joining the left hand side and the next b strands all

join the right hand side. Thus we may pull all b simple loops tight at once by replacing all

3b of these strands by b strands joining the left and right sides. The result after converting

back to a π1-train track is shown in the right hand column.

For δ1(a, b) we perform the same process but the result is slightly more complicated.

Now we have an arc of weight b joining the right hand side to itself. When we convert to

a multiple simple loop this arc becomes b strands which, reading from the bottom, are the

first b strands on the right hand side. These are joined to the next b strands on the same

side. On the left hand side the first b strands from the bottom have their other endpoint on

the bottom side. However we need to take care when finding the next b strands. If a ≥ b

these next b strands join the right hand side and we may pull these loops tight to obtain

b strands joining the bottom side to the right hand side. There were a− b strands joining

the left and right sides which we have not used and these remain after pulling tight. In
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the case where a ≤ b we can pull a strands tight in this way. There remain b − a strands

joining the right hand side to itself. Their other ends join the left and top sides. Thus

after pulling tight we obtain b− a strands joining the top and bottom sides and a remain

joining the left and top sides. After reconverting to π1-train tracks one obtains the result,

again shown in the right hand column.

To complete the proof for general weightings (a, b), note that we can clearly obtain the

result for proper rational weightings by clearing denominators in MLO(Σ1). The result

for general w(α) follows by continuity. �

It is well known that the Dehn twists δ0 and δ1 generate the mapping class group

MCG(Σ1). In fact we have ι2 = δ1δ0δ1. Together with ι2δ1ι2 = δ0 and the fact that ι2 has

order 2 this immediately gives

δ1δ0δ1 = δ0δ1δ0, (δ0δ1)
3 = e.

It turns out that this gives a presentation of MCG(Σ1):

MCG(Σ1) =
〈

δ0, δ1|δ1δ0δ1 = δ0δ1δ0, (δ0δ1)
3 = e

〉

.

This may be seen either using standard facts about the modular group or can be deduced

from the automatic structure given below, see section 2.5.

In order to obtain the identification of MCG(Σ1) with PSL(2,Z), consider the identi-

fication of PML(Σ1) with R∪{∞} given in section 2.1. It is easy to see that after making

this identification, the action of δ0 and δ1 on R ∪ {∞} is given by

δ0: x 7−→ x/(−x+ 1), δ1: x 7−→ x+ 1.

Notice that this is essentially the same as the continued fraction map explained in section

1.1. We see that ι2: x 7−→ −1/x. If we had been considering oriented curves as in the

appendix of [2] it is clear that ι2
2 would fix each non-trivial, non-peripheral curve but

reverse its orientation. This corresponds to the matrix −I and we would have obtained an

action of SL(2,Z) rather than PSL(2,Z).
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2.3 The Markov map and Farey pairs.

We will now define a Markov map f1 on ML(Σ1) from which we shall construct the desired

automatic structure for MCG(Σ1). The Markov partition of ML(Σ1) will consist of the

four maximal cells I0, I1, I2 and I3. These cells are closed and therefore intersect along

their boundaries. This gives rise to ambiguities, but this will not present a problem. The

map f1|Ij
will be chosen from {δ0

±1, δ1
±1} in such a way that f1 has the required Markov

property.

Lemma 2.3.1. δ1(I0) = I0 ∪ I3.

Proof. By Proposition 2.2.1 we see that δ1(I0) ⊂ I0 ∪ I3. Also δ1
−1(I0) ⊂ I0 and

δ1
−1(I3) = ι3δ0ι3(ι3I0) = ι3δ0(I0) ⊂ ι3(I3) = I0. This gives the result. �

We now define f1|I0 = δ1 and f1|Ij
by symmetry. In summary f1 is defined as

f1|I0 = δ1 : I0 7−→ I0 ∪ I3

f1|I1 = δ1
−1: I1 7−→ I1 ∪ I2

f1|I2 = δ0 : I2 7−→ I1 ∪ I2

f1|I3 = δ0
−1: I3 7−→ I0 ∪ I3.

On a boundary Ii ∩ Ij the map is considered to be two valued. By Lemma 2.3.1 the map

f satisfies the Markov property of section 1.1.

The following lemma will be crucial for constructing the automaton. Recall the def-

inition of length given in section 1.3. In this case we can see by direct inspection that if

w = (a, b) ∈ Ij then |w| = a+ 2b for j = 0, 1, 2, 3.

Lemma 2.3.2. Let w ∈ MLO(Σ1) be a proper integral weighting on a π1-train track τ .

Then |f1(w)| ≤ |w| with equality if and only if w = ae0 or ae∞ for a ∈ N.

Proof. This is easy to check from Proposition 2.2.1. �

The rough idea of the construction of the word acceptor for MCG(Σ1) is to use the

four cells I0, I1, I2, I3 as states and to define arrows using the transition matrix associated

to the Markov map f1. However there is a problem with this idea, namely MCG(Σ1) does

not act freely on ML(Σ1). In other words, φγ = γ for φ ∈ MCG(Σ1) and γ a simple loop

on Σ1 does not imply that φ is the identity. We therefore need to consider the action of

MCG(Σ1) on a space of slightly more elaborate objects on which the action is fixed point

free. To this end, we introduce the notation of a Farey pair.

Two (homotopy classes of) simple closed curves on Σ1 are called Farey neighbours

if they (have representatives that) intersect exactly once. Notice that this condition auto-

matically implies that these curves do not divide the punctured torus so neither of them can
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be boundary parallel or homotopically trivial. We consider ordered pairs of Farey neigh-

bours (γ1, γ2) which we refer to as Farey pairs. It is clear that (e0, e∞) and (e∞, e0) are

both Farey pairs. We denote the set of all Farey pairs by F .

It is easy to see the Farey pair (e0, e∞) has trivial stabiliser in MCG(Σ1) and that,

for any other Farey pair (γ1, γ2), there is an element φ of MCG(Σ1) sending it to (e0, e∞).

As (e0, e∞) has trivial stabiliser this element is unique. In particular, ι2 sends (e∞, e0) to

(e0, e∞). Fortunately, the notion of Farey neighbours is compatible with the cell structure

of ML(Σ1) in the following sense.

Proposition 2.3.3. Let (γ1, γ2) be a pair of Farey neighbours. If {γ1, γ2} 6= {e0, e∞}

then γ1 and γ2 are both contained in Ij for some j = 0, 1, 2, 3.

Proof. The easiest way to see this is to use the well known fact that, using the identifica-

tion of PML(Σ1) with R∪{∞} given in section 2.1, a pair of Farey neighbours corresponds

to a pair of rational numbers p/q and r/s with ps − qr = ±1, see [20]. Provided we have

{±p/q,±r/s} 6= {0 = 0/1,∞ = 1/0}, it is clear that p/q and r/s are both contained in one

of the intervals [−∞,−1], [−1, 0], [0, 1] or [1,∞]. The result follows from the discussion in

section 2.1. �

On a cell Ij , the map f1 is constantly equal to a fixed element αj of MCG(Σ1)

with possible ambiguity at the endpoints. Proposition 2.3.3 allows us to extend the ac-

tion of f1 to F −
{

(e0, e∞), (e∞, e0)
}

by defining f1(γ1, γ2) =
(

αj(γ1), αj(γ2)
)

when-

ever γ1 and γ2 are both in Ij . (Notice that this automatically takes care of the am-

biguities at the endpoints.) Since the mapping class group preserves Farey neighbours,

it follows that
(

αj(γ1), αj(γ2)
)

∈ F and we can continue to iterate f1 until possibly

f1
n(γ1, γ2) ∈

{

(e0, e∞), (e∞, e0)
}

. The following shows that the iteration process will

always terminate in this way. It is an immediate consequence of Lemma 2.3.2.

Lemma 2.3.4. Suppose (γ1, γ2) ∈ F and {γ1, γ2} 6= {e0, e∞}. Then

|f1(γ1)| + |f1(γ2)| < |γ1| + |γ2|.

�

Suppose now that φ ∈ MCG(Σ1). Since the condition of being Farey neighbours is

topological, the pair
(

φ(e0), φ(e∞)
)

is always a Farey pair. Our normal form results from

the following proposition.

Proposition 2.3.5. Let φ ∈ MCG(Σ1). Then there exists a non-negative integer n so

that ι2
εf1

n
(

φ(e0), φ(e∞)
)

= (e0, e∞) where ε = 0 or 1.

Proof. This follows immediately from the above discussion and Lemma 2.3.4. �
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Remark. This proposition shows that the actions of f1 and MCG(Σ1) on the space of

Farey neighbours are orbit equivalent. In other words, for any pairs of Farey neighbours

{γ1, γ2} and {γ′1, γ
′
2} we have

{γ′1, γ
′
2} =

{

φ(γ1), φ(γ2)
}

for φ ∈ MCG(Σ1) if and only if there exist non-negative integers m, n so that

f1
n{γ1, γ2} = f1

m{γ′1, γ
′
2}.

The concept of orbit equivalence is of considerable importance in ergodic theory since any

properties depending on only on the orbit structure, for example invariant measures, can

now be studied relative to f1 rather than the group MCG(Σ1). In particular, we have

shown that the action on the space of Farey neighbours is hyperfinite, see [5]. This

should be compared with the analogous results for Fuchsian groups in [4], [22].

2.4 The normal form and the word acceptor.

Let us denote the exceptional Farey pairs (e0, e∞) and (e∞, e0) by K0 and K2. We extend

the definition of f1 by setting f1|K0
= ι0 = e and f1|K2

= ι2 = δ1δ0δ1. Thus we can write

F = I0 ∪ I1 ∪ I2 ∪ I3 ∪K0 ∪K2.

The point of Proposition 2.3.5 is that it allows us to define normal forms for elements

of MCG(Σ1) in the following way. For any φ ∈ MCG(Σ1), the pair
(

φ(e0), φ(e∞)
)

lies in

some cell, Un say, where Un is one of I0, . . . , I3, K0, K2. As we apply the map f1 we move

through a sequence of cells

Un // Un−1
// · · · // U1

// U0 = K0.

Here each cell Uj for j ≥ 2 is one of the four cells I0, . . . , I3 and U1 is one of the five

cells I0, . . . , I3, K2. At each stage, f1|Uj
= αj, a fixed element in the set {δ0

±1, δ1
±1} (or

possibly ι2 if U1 = K2). Thus we have

f1
n
(

φ(e0), φ(e∞)
)

=
(

α1α2 · · ·αnφ(e0), α1α2 · · ·αnφ(e∞)
)

= (e0, e∞).

Since MCG(Σ1) acts freely on the space F this shows that α1α2 · · ·αnφ = e giving the

normal form φ = αn
−1 · · ·α1

−1. In particular, we have shown that {δ0
±1, δ1

±1} generate

MCG(Σ1).

For example, suppose that φ = δ0
2δ1. We claim that the normal form for φ is δ0δ1

−1ι2.

From Proposition 2.2.1 we see that φ(e0) = (1, 1) ∈ I3 and φ(e∞) = (0, 1) ∈ I3. Thus we

need to find the f1-expansion for the Farey pair
(

φ(e0), φ(e∞)
)

∈ I3. Applying f1|I3 = δ0
−1
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we obtain f1φ(e0) = (0, 1) ∈ I0 and f1φ(e∞) = (1, 0) ∈ I0. Applying f1|I0 = δ1 we obtain

K2. Applying f1|K2
= ι2 brings us back to K0. Thus

f1
3
(

φ(e0), φ(e∞)
)

=
(

ι2δ1δ0
−1φ(e0), ι2δ1δ0

−1φ(e∞)
)

= (e0, e∞).

From Proposition 2.3.5 we see that ι2δ1δ0
−1φ = e and hence φ = δ0δ1

−1ι2 as claimed.

Now we follow the procedure outlined in section 1.2 and construct a finite state au-

tomaton that recognises our normal form. We have just extended the definition of f1 to

the F , the set of Farey pairs:

f1|I0 = δ1 : I0 7−→ I0 ∪ I3 ∪K0 ∪K2

f1|I1 = δ1
−1: I1 7−→ I1 ∪ I2 ∪K0 ∪K2

f1|I2 = δ0 : I2 7−→ I1 ∪ I2 ∪K0 ∪K2

f1|I3 = δ0
−1: I3 7−→ I0 ∪ I3 ∪K0 ∪K2

f1|K0
= e :K0 7−→ K0

f1|K2
= ι2 :K2 7−→ K0.

In order to define the word acceptor, we define six states labelled I0, I1, I2, I3, K0, K2

and we draw an arrow from state U to state V labelled by α if U ⊂ f1(V ) and f1|V = α−1.

The start state is K0. It is clear that there is at most one arrow with a given label from

each state and that all arrows ending at a particular state have the same label. Any path

in this graph beginning at K0 and following arrows in the given direction gives the normal

form for an element of MCG(Σ1) by reading the labels on the arrows in the order given

by the path. Moreover any φ has a unique normal form given in this way. The word

acceptor is shown in Fig. 2.4.1. We remark that because we are dealing with composition

of functions we read all strings from right to left. Perhaps it is worth pointing out that

the normal forms that this word acceptor produces all have the form W (δ0, δ1
−1)ιε2 or

W (δ0
−1, δ1)ι

ε
2 where W (α, β) is any string in the letters α and β and ε is either 0 or 1.

For example the element φ = δ0
2δ1 considered in the example above corresponds to

the following path in the word acceptor

K0
ι2 // K2

δ1
−1

// I0
δ0 // I3.
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Fig. 2.4.1. The word acceptor.

2.5 The word difference machine.

In order to produce an automatic structure for MCG(Σ1) we now explain how to construct

the word difference machine as explained in section 1.2. We must find a finite set of words D

in MCG(Σ1) called the word differences. This set should have the following properties:

First D should contain the identity e and all the letters of the alphabet A. The second

property is slightly more complicated. Suppose that ψ ∈ D and U , V are two subsets of the

Ij for j = 0, 1, 2, 3 or Kj for j = 0, 2 with the property that ψ(U) = V . Let f1|U = α and

f1|V = β denote the restriction of f1 to U and V . Here α and β are particular elements of

the alphabet A. Then ψ′ = βψα−1 sends α(U) to β(V ) 1. Our second requirement on D

is that for all ψ ∈ D we should have ψ′ ∈ D for all choices of U and V . This means that

we get a commutative diagram which we call a square:

U
ψ //

α

��

V

β

��
α(U)

ψ′

// β(V )

(∗)

This square corresponds to the relation ψ′ = βψα−1 in G.

We want to be able to concatenate squares vertically. In general α(U) and β(V ) will

contain points in several elements of the partition of F into Ij and Kj . This means that

1 This differs from the expression in section 1.2 as we are now reading strings from right to left.
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f1 may not be a fixed element of MCG(Σ1) on α(U) and β(V ). Let U ′ and V ′ be subsets

of α(U) and β(V ) which each lie in a single set in the partition and satisfy ψ′(U ′) = V ′.

We are always able to subdivide α(U) and β(V ) into finitely many pieces for which this

property holds. Since U ′ and V ′ are each contained in a single set of the partition, the

restriction of f1 to each of these two sets is a fixed element of MCG(Σ1). In this way we

can now construct several squares

U ′
ψ′

//

α′

��

V ′

β′

��
α′(U ′)

ψ′′

// β′(V ′)

(∗)

each of which may each be placed below (∗). In other words, we may concatenate squares

vertically.

A special case is where the word difference is the identity e

U
e //

α

��

U

α

��
α(U)

e // α(U)

For example, if U = I0, V = I1 and ψ = δ0
−1 we can construct the following square.

This may be verified using Proposition 2.2.1 and the discussion in section 2.4.

I0
δ0

−1

//

f1|I0=δ1

��

I1

f1|I1=δ1
−1

��
I0 ∪ I3 ∪K0 ∪K2 ι2

// I1 ∪ I2 ∪K0 ∪K2

In order to concatenate vertically, we need to subdivide the sets in the bottom line of this

square. It could be followed by squares whose top lines are one of

I0
ι2 // I2, I3

ι2 // I1, K0
ι2 // K2, K2

ι2 // K0.

For example, it could be followed by the following square with U ′ = I0 and V ′ = I2:

I0
ι2 //

f1|I0=δ1

��

I2

f1|I2=δ0

��
I0 ∪ I3 ∪K0 ∪K2 ι2

// I1 ∪ I2 ∪K0 ∪K2
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In order to simplify such diagrams, we make the following definitions

Q0 = I0 ∪ I3 ∪K0 ∪K2, Q2 = I1 ∪ I2 ∪K0 ∪K2.

If ψ = α or ψ = β−1 we define degenerate squares, or triangles as follows. In the

case where ψ = α, we do not apply f1 to V . This means that V may contain points from

several sets in the partition, indeed we can take V = α(U). Likewise if ψ = β−1 we define

a triangle by not applying f1 to U . Again U may contain points from several sets in the

partition and we may take U = β(V ). In both cases ψ′ is the identity map e:

U
ψ=α //

α

��

α(U)

α(U)

ψ′=e

77ooooooooooooo

β(V )
ψ=β−1

//

ψ′=e ''OOOOOOOOOOOOO V

β

��
β(V )

(∗∗)

We now show that we can take the set of word differences to be

D = {e, δ0, δ0
−1, δ1, δ1

−1, ι2}.

We first display all squares and triangles for which U is (a subset of) I0. In the cases

of triangles where ψ = β−1 then we replace U by β(V ) and include the cases for which

I0 ⊂ β(V ) in our list.

Q0
δ0 //

e
  B

BB
BB

BB
B

I3

δ0
−1

��
Q0

I0
δ0

−1

//

δ1

��

I1

δ1
−1

��
Q0 ι2

// Q2

I0
δ1 //

δ1

��

Q0

Q0

e

>>||||||||

Q0
δ1

−1

//

e
  B

BB
BB

BB
B

I0

δ1

��
Q0

I0
ι2 //

δ1

��

I2

δ0

��
Q0 ι2

// Q2

The squares and triangles where U is (a subset of) I1, I2 or I3 or where β(V ) = Q2 may

be obtained from these by symmetry.

Finally, suppose that U is either K0 or K2. If the word difference ψ is δj
±1 for j = 0, 1

the relevant squares and triangles have already been included in the above list. Moreover,

for such word differences the new word difference ψ′ is e. On the other hand, if the word

difference is ι2 we obtain triangles

K0
ι2 //

e
!!B

BB
BB

BB
B

K2

ι2

��
K0

K2
ι2 //

ι2

��

K0

K0

e

==||||||||
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Fig. 2.5.1. The (asynchronous) word difference machine. In addition there are edges

from e to itself labelled (δ0, δ0), (δ0
−1, δ0

−1), (δ1, δ1), (δ1
−1, δ1

−1) and (ι2, ι2).

We now explain how to construct the word difference machine from these squares and

triangles. Following the outline in section 1.2, the states of the machine should be any

triple (U, V, ψ) which appears as the top line of one of our squares or triangles. However,

since the only function of the choice of U , V is to determine the value of the map f , we

may as well take the states of the word difference machine to be the elements of D. The

arrows will be ordered pairs (x, y) ∈ A ∪ {−} where x and y are essentially the inverses

of α and β. In other words, given a square of the form (∗) we draw an arrow from ψ′ to

ψ and label it (α−1, β−1). Similarly the triangles (∗∗) correspond to arrows from e to ψ

labelled (α−1,−) and (−, β−1) respectively. We illustrate this in Fig. 2.5.1. In addition

there should be arrows labelled (α, α) from e to itself for all α ∈ A.

It is automatic from our construction that for any path in the word difference machine

with strings of labels (αj
−1, βj

−1) the strings of labels αj
−1 and βj

−1 are both paths

through the word acceptor.

A result of this construction is that we have verified the presentation for MCG(Σ1)

given in section 2.2 (compare the proof of Theorem 2.3.12 of [7], page 51). In order to see

this, observe that any closed path through the Cayley graph can be decomposed into a
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union of triangles each of which has one side of length at most one and of which the other

two sides are paths in normal form leading back to the identity. This forms a van Kampen

diagram for the closed path by covering it with squares and triangles of the form we

have constructed above. One can easily verify that each of these squares and triangles

corresponds to a relation which may be derived from δ1δ0δ1 = δ0δ1δ0 or (δ0δ1)
3 = e.

This has essentially constructed a 2 stringed automaton for the word difference ma-

chine. There is still a technical problem to be overcome. Namely, the word difference

machine is asynchronous. This is because some of the labels have the form (α−1,−) or

(−, β−1). In fact, this will occur exactly once when we are dealing with pairs of elements

of the group which differ by a word of length exactly one. Specifically, the first time the

normal forms of the prefixes from the word acceptor differ we see the symbol “−” in one of

the strings in the word difference machine. This is because all arrows from e to any other

state have this form and no other arrow does.

In order to rectify this difficulty we need to synchronise the word difference machine.

This is done as follows. In the definition of a two stringed automaton, we need to put a

padding symbol $ at the end of one of the words to ensure that they have the same length.

Thus we need to move “−” in the middle of the word to a $ at the end of the word. This

is achieved by adding to our set of word differences the diagonals in each square. That

is, for squares of the type (∗) we add the diagonal word differences β−1ψ′ = ψα−1 and

βψ = ψ′α. (We remark that it is easy to see by inspection that this new word difference

can be rearranged to the form ι2δj
±1 for j = 0, 1.) This has the following effect. Suppose

the normal forms from the word acceptor for words differing by ψ are α1
−1α2

−1α3
−1α4

−1

and β1
−1β2

−1α4
−1. Below we give the path in the word difference machine above (read

from bottom to top), the corresponding squares, the amended squares and finally the path

in the synchronised difference machine.

ψ1 U1

ψ1

  @
@@

@@
@@

@

α1

��

U1
ψ1 //

α1

��

V1

e

��

ψ1

ψ2

(α1
−1,β1

−1)

OO

U2

ψ2

  @
@@

@@
@@

@

α2

��

V1

β1

��

U2

ψ′

2 //

α2

��

V1

β1

��

ψ′
2

(α1
−1,$)

OO

ψ3

(α2
−1,β2

−1)

OO

U3

ψ3

  A
AA

AA
AA

A

α3

��

V2

β2

��

U3

ψ′

3 //

α3

��

V2

β2

��

ψ′
3

(α2
−1,β1

−1)

OO

e

(α3
−1,−)

OO

U4
e //

α4

��

U4

α4

��

U4
e //

α4

��

U4

α4

��

e

(α3
−1,β2

−1)

OO

e

(α4
−1,α4

−1)

OO

U5
e // U5 U5

e // U5 e

(α4
−1,α4

−1)

OO
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Here ψ2, ψ3, ψ
′
2 and ψ′

3 are chosen so that the middle two diagrams commute. It is clear

how to change the word difference machine in the light of this example. Of course there are

now rather more states and arrows in the synchronised difference machine. In particular,

the new states are

D′ = {e, δ0, δ0
−1, δ1, δ1

−1, ι2, ι2δ0, ι2δ0
−1, ι2δ1, ι2δ1

−1}.
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3. Train tracks for the twice punctured torus.

We now turn our attention to the twice punctured torus Σ2. We want to mimic the

constructions of the previous section. As we shall see, at every stage the basic ideas are

the same but the implementation is considerably more complex.

3.1. The cell structure of ML(Σ2).

The construction of π1-train tracks for the twice punctured torus was given in [12]. For

convenience we go through this briefly.

T

S

S

S S
T

S

S S
S

T

v

v v

v

vv

R
2

1

1 1

2 2

1

2

T

1

2 3

4

56

2

Fig. 3.1.1. A hyperbolic fundamental domain R2 for Σ2.

Once again, we fix a hyperbolic structure on Σ2 by specifying a fundamental polygon

for the action of π1(Σ2) on H2. The fundamental domain R2 that we choose to work

with has six vertices, all of which project to punctures of Σ2. We label these v1, . . . , v6
in clockwise order. The side pairings will be S1 identifying v1v2 to v4v3, S2 identifying

v6v1 with v5v4 and T identifying v5v6 with v3v2. We assume that S1, S2 and T match the

endpoints of the respective sides. It is clear that v1 and v4 project to one puncture and the

other four vertices project to the other. The maps S1, S2 and T correspond to homotopy

classes of simple closed curves that generate the fundamental group π1(Σ2).

We now introduce the irreducible loops that will form the basis of ML(Σ2). Fig. 3.1.2

is a schematic picture of the eleven loops as they appear on the fundamental domain R2.

The end of a strand on one side of R2 is glued by a side-pairing transformation to the

corresponding end of the paired side. Thus shortest words representing these loops can be
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Fig. 3.1.2. The irreducible loops on Σ2.

either computed directly or read off using the method of cutting sequences, see [2], [3] or

[12]. For example, in the loop e1
1 there are three strands. The end of the strand on v4v3 is

glued to the end on v1v2; the end on v2v3 is glued to the end on v5v6, and the end on v5v4
is glued to the end on v1v6. Thus the cutting sequence is S1TS2, which as one may easily

verify represents this loop in π1(Σ2). Since we are only interested in the unoriented loop

up to free homotopy, any cyclic permutation of this sequence or its inverse would work

just as well. The full list of cutting sequences for loops is

e0 = S1, e1
∞ = S1T, e−1

∞ = S1
−1T, e1

−1 = S1TS2
−1,

e0 = S2, e∞1 = TS2, e∞−1 = TS2
−1, e−1

1 = S1
−1TS2,

e∞∞ = T, e1
1 = S1TS2, e−1

−1 = S1
−1TS2

−1.

The reason for our notation is the following. If we split R2 into two boxes, the upper

one with vertices v1, v2, v3, v4 and the lower with vertices v1, v4, v5, v6 (see [12]) then

eij has gradient i in the upper box and j in the lower box. Where there is no superscript

(subscript) then the relevant loop has no arcs in the upper (respectively lower) box. This

idea is developed further in [12].
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Fig. 3.1.3. Generic points in the maximal cells ∆1, . . . , ∆7.

We now define 28 cells ∆j in ML(Σ2). As we shall show, these cells are maximal,

meeting only on lower dimensional faces, and their union is ML(Σ2).

∆1 = sp+{e0, e0, e
1
1, e

1
−1}, ∆2 = sp+{e0, e1

∞, e
1
1, e

1
−1},

∆3 = sp+{e∞1 , e0, e
1
1, e

1
−1}, ∆4 = sp+{e∞1 , e

1
∞, e

1
1, e

1
−1},

∆5 = sp+{e∞1 , e0, e
∞
−1, e

1
−1}, ∆6 = sp+{e∞1 , e

∞
∞, e

∞
−1, e

1
−1},

∆7 = sp+{e∞∞, e
∞
1 , e

1
∞, e

1
−1}.

∆8 = sp+{e0, e0, e
−1
−1, e

−1
1 }, ∆9 = sp+{e0, e−1

∞ , e−1
−1, e

−1
1 },

∆10 = sp+{e∞−1, e0, e
−1
−1, e

−1
1 }, ∆11 = sp+{e∞−1, e

−1
∞ , e−1

−1, e
−1
1 },

∆12 = sp+{e∞−1, e0, e
∞
1 , e

−1
1 }, ∆13 = sp+{e∞−1, e

∞
∞, e

∞
1 , e

−1
1 },

∆14 = sp+{e∞∞, e
∞
−1, e

−1
∞ , e−1

1 }.

∆15 = sp+{e0, e
0, e1

1, e
−1
1 }, ∆16 = sp+{e0, e

∞
1 , e

1
1, e

−1
1 },

∆17 = sp+{e1
∞, e

0, e1
1, e

−1
1 }, ∆18 = sp+{e1

∞, e
∞
1 , e

1
1, e

−1
1 },

∆19 = sp+{e1
∞, e

0, e−1
∞ , e−1

1 }, ∆20 = sp+{e1
∞, e

∞
∞, e

−1
∞ , e−1

1 },

∆21 = sp+{e∞∞, e
1
∞, e

∞
1 , e

−1
1 }.
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∆22 = sp+{e0, e
0, e−1

−1, e
1
−1}, ∆23 = sp+{e0, e

∞
−1, e

−1
−1, e

1
−1},

∆24 = sp+{e−1
∞ , e0, e−1

−1, e
1
−1}, ∆25 = sp+{e−1

∞ , e∞−1, e
−1
−1, e

1
−1},

∆26 = sp+{e−1
∞ , e0, e1

∞, e
1
−1}, ∆27 = sp+{e−1

∞ , e∞∞, e
1
∞, e

1
−1},

∆28 = sp+{e∞∞, e
−1
∞ , e∞−1, e

1
−1}.

The statement that ∆j is a cell should be interpreted in the following way. One needs to

check that the four irreducible loops defining ∆j are all supported on a common π1-train

track τj . This is immediate since one checks that, in each case, all four loops can be

drawn in R2 in such a way that they intersect only on the boundary ∂R2. The arcs may

be homotoped so that their endpoints are at the midpoints of the sides of R2. Since the

midpoints are identified by the side pairings, this exactly gives a π1-train track in the sense

of [2]. The cell ∆j consists of all proper weightings on the π1-train track τj . Fig. 3.1.4

shows the π1-train track τ1 which supports for the cell ∆1. We normally draw this as

in the top left hand corner of Fig. 3.1.3 where it is clearer that the weighting shown is

ae0 + be0 + ce1
1 + de1

−1. It is easy to check that this is a proper weighting as defined in

section 3.1.

a

b

c d

c+d

d c

Fig. 3.1.4. The π1-train track τ1 corresponding to ∆1.

Notation 3.1.1. When we want to speak of a point of one of these cells we write it as an

ordered quadruple (a, b, c, d) to represent aei + bej + cek + dek ∈ sp+{ei, ej, ek, el} where

the irreducible loops are taken in the order given above.

Thus, for example (a, b, c, d) ∈ ∆1 means ae0 + be0 + ce1
1 + de1

−1.

Proposition 3.1.2. The cells ∆1, . . . ,∆28 are maximal and their union is ML(Σ2).
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Proof. (Outline) The idea is similar to the proof of Proposition 2.1.1. We will sketch

the idea and then illustrate it by performing the computation in one case. All other cases

are similar, straightforward, and left to the reader. The idea is the following. It is clear

that any multiple simple loop may be homotoped so that it runs along a collection of arcs

in R2 joining midpoints of distinct sides, and which meet only on ∂R2. Collapsing all arcs

joining the same pair of sides yields a properly weighted π1-train track on R2. We now

reverse this process and investigate what the possibilities for maximal weightings of this

kind are.

Take a copy of R2 and draw strands joining the midpoints of pairs of distinct sides in

such a way that no two strands intersect, that no two strands join the same pair of sides

and that no more strands can be added without violating the previous two conditions.

Now put a weight on each strand. In order to be proper, the weights must satisfy the

following conditions as outlined in section 1.3:

(i) all weights should be non-negative and not all zero,

(ii) either the weight on the corner strand separating v1 from the rest of R should be zero

or else the weight on the corner strand separating v4 should be zero,

(iii) the weight on at least one of the four corner strands separating v2, v3, v5, v6 from the

rest of R2 should be zero,

(iv) the sum of the weights of all strands ending on a given side should be equal to the

sum of weights on the side it is identified with.

a b

c

d e f

g

h i

Fig. 3.1.5. Possible weightings on a maximal configuration.

Condition (iv) puts three linear relations between the weights. Solving these relations and

inserting conditions (i), (ii) and (iii), we see that we must be in one of the 28 maximal cells
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defined above depending on our initial configuration of strands. Detailed computations for

the configuration of Fig. 3.1.5 are carried out below. �

e

e

e e

e

e
e

e

0

0

1
1

1
1

-1

-1
-1

e -1

8

8
8

8

8
8

Fig. 3.1.6. Dividing the 2−sphere into 14 three-cells.

An Example. We now perform the computations in the configuration given Fig. 3.1.5

which is a maximal diagram of the type described. By equating the weights on each side

we see that

a+ b = h+ i, a+ c+ d = b+ c+ e+ f, d+ e+ g + h = f + g + i.

At least one of d and f must vanish by condition (ii). (Otherwise there would be a loop

homotopic to one of the punctures.) Without loss of generality we suppose d = 0. This

means

a+ b = h+ i, a = b+ e+ f, e+ g + h = f + g + i.

Substituting for a in the first equation we obtain

2b+ e+ f = h+ i, e+ h = f + i.
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∆ ∆
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16

1 15

19 26

∆ 20

∆

∆

∆27

7 21

6

13

14 28

5 12

9

24 11 25 10

23

8 22

Fig. 3.1.7. Fig. 3.1.6 repeated but indicating the maximal cells.

Adding these and cancelling f + h from each side we get i = b + e. Substituting and

cancelling once again we find that h = b+ f . To summarise:

a = b+ e+ f, d = 0, h = b+ f, i = b+ e.

Now by (iii), at least one of a, b, h, i must vanish. By inspection, if any of a, h, i vanish

then so must b. (Remember all weights are non-negative.) This means that b must be zero

and the train track is:

ce0 + ge0 + ee1
1 + fe1

−1 = (c, g, e, f) ∈ ∆1,

corresponding, after changing labels, to the picture shown in Fig. 3.1.4.

We now indicate how the lower dimensional facets in the boundaries of the maxi-

mal cells ∆j for j = 1, . . . , 28 fit together in such a way that the resulting manifold is a

3−sphere. To do this, observe that there are fourteen maximal cells containing the irre-

ducible loop e1
−1 and fourteen containing e−1

1 . Moreover, these two irreducible loops never

occur together in one of the cells (or else there would be loops around both punctures).

Thus each maximal cell is a cone with apex e1
−1 or e−1

1 over the cell spanned by the other
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three irreducible loops. One can verify that there are fourteen possibilities for these cells

spanned by three loops and that each one arises. Moreover, these fourteen cells may be

glued together to form a 2−sphere as indicated in Fig. 3.1.6. Thus the fourteen maximal

cells involving e1
−1 form a cone over the 2−sphere, that is a 3−ball. Similarly the other

fourteen maximal cells also give a 3−ball. When the boundaries of these two balls are

glued together in the obvious manner they form a 3−sphere. We show which maximal

cells intersect to give the three-cells on the 2-sphere in Fig. 3.1.7.

3.2. Dehn twists and a presentation for MCG(Σ2)

Let the Dehn twists about e∞∞, e0 and e0 be denoted by δ0, δ1 and δ2 respectively. We

now want to investigate the action of these Dehn twists on the cell structure of ML(Σ2)

given in the previous section.

Again we begin by introducing some symmetries that will simplify matters. We are

only interested in symmetries which fix the punctures. The symmetry group will be iso-

morphic to Klein’s four group and we describe its non-trivial elements by their action on

the vertices of R2:

ι1 interchanges the pairs (v1, v4), (v2, v3), (v5, v6);

ι2 interchanges the pairs (v1, v4), (v2, v5), (v3, v6);

ι3 fixes v1, v4 and interchanges the pairs (v2, v6), (v3, v5).

When necessary we shall denote the identity by ι0. It is clear that ι1 and ι3 are orientation

reversing homeomorphisms of Σ2 and that ι2 is orientation preserving. We easily see that

ιj has the following effect on the eleven irreducible loops:

ι1: e
i
j 7−→ e−i−j, e0 7−→ e0, e0 7−→ e0,

ι2: e
i
j 7−→ e

j
i , e0 7−→ e0, e0 7−→ e0,

ι3: e
i
j 7−→ e

−j
−i , e0 7−→ e0, e0 7−→ e0

where i, j ∈ {∞,±1} and −∞ = ∞.

Thus these actions clearly respect the cell structure of ML(Σ2). In particular, the

maximal cells ∆8, . . . , ∆28 can be expressed as ∆j+7k = ιk(∆j) for j = 1, . . . , 7 and

k = 1, 2, 3.

The symmetries ιk conjugate the Dehn twists δj to one another. It is easy to check

that
ι1δ0ι1 = δ0

−1, ι1δ1ι1 = δ1
−1, ι1δ2ι1 = δ2

−1,
ι2δ0ι2 = δ0, ι2δ1ι2 = δ2, ι2δ2ι2 = δ1,
ι3δ0ι3 = δ0

−1, ι3δ1ι3 = δ2
−1, ι3δ2ι3 = δ1

−1.

We can also express ι2 in terms of the δj as

ι2 = δ2δ0δ2δ1δ0δ2 = (δ0δ1δ2)
2.
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The proof of this identity will be an easy exercise once the effect of the Dehn twists on

ML(Σ2) has been investigated in the next section. This proof will be left to the reader.

Before we go on to investigate the effect of Dehn twists on π1-train tracks we will

discuss the presentation of MCG in terms of Dehn twist generators. The first claim is

that δ0, δ1 and δ2 generate the (orientation preserving) mapping class group of Σ2. As in

section 2, this will be a consequence of our construction of the Markov map, which will

once again produce a unique normal form for every element of MCG(Σ2) in terms of δ0,

δ1 and δ2 (and their inverses).

There are certain relations in G which arise by inspection on Σ2. For example, since

e0 and e0 are disjoint, the Dehn twists δ1 and δ2 commute. Also, since e0 and e0 each

intersect e∞∞ exactly once, for j = 1, 2 the Dehn twists δ0 and δj satisfy the braid relation

δ0δjδ0 = δjδ0δj . Finally, ι2 is an involution so its square is the identity. Using the form

for ι2 constructed above, we can write ι2 = (δ0δ1δ2)
2. This gives the relation (δ0δ1δ2)

4 = e

(compare [1]).

It turns out that these are all the relations we need to give a presentation of G. This

will follow from our construction of the word difference machine (section 5) along the same

lines as explained in section 2.5. Hence we obtain the following presentation for MCG(Σ2).

This resembles the presentations for other mapping class groups given by Birman in [1]

and could have been derived using methods similar to hers.

Theorem 3.2.1. The mapping class group of the twice punctured torus admits a presen-

tation:

MCG(Σ2) =
〈

δ0, δ1δ2
∣

∣δ1δ2 = δ2δ1, δ1δ0δ1 = δ0δ1δ0, δ2δ0δ2 = δ0δ2δ0, (δ0δ1δ2)
4 = e

〉

.

�

In section 5 of [14] Magnus gives the following presentation of MCG(Σ2). The gener-

ators are r, s, ρ, σ, τ subject to the following relations:

s2 = (r−1s)3, sτs−1 = ρ, sρs−1 = ρτ−1ρ−1,

rτr−1 = τ, rρr−1 = ρτ−1, s−4ρτ−1ρ−1τ = 1,

σ2 = s−4, σrσ−1 = r, σsσ−1 = s, στσ−1 = τ−1s4.

One may pass from our presentation to Magnus’ presentation via the substitution

r = δ1, s = δ1δ0δ1, ρ = δ1δ0δ1δ2
−1δ0

−1δ1
−1,

σ = δ1
−1δ0

−1δ1
−1δ1

−1δ0
−1δ1

−1, τ = δ1δ2
−1.

The proof of this is straightforward and is left to the reader.
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3.3. The effect of Dehn twists on PML.

We now investigate the effect of the Dehn twists on the maximal cells. Using general

results of Birman-Series [2] and Hamidi-Tehrani-Chen [8] we know that these maps are

piecewise linear. In fact using reductions similar to those in section 2 we will show this

directly. We begin by summarising the results.

a

c+d

dc

b

c+d

a

c d

c
d

b

c+d

a-c-d

c d

b

d c

d c d c

a c+d-a

a-d d
b

d c

c+d<a d<a<c+d a<d

a c d-a

a

d c

b

δ1

Fig. 3.3.1. The effect of δ1 on ∆1.

Proposition 3.3.1. The Dehn twist δ1 has the following effect on ∆1, . . . ,∆7

(i) δ1 maps ∆1 piecewise linearly to ∆1 ∪ ∆3 ∪ ∆5 as follows:

δ1(a, b, c, d) =







(a− c− d, b, c, d) ∈ ∆1 if c+ d ≤ a
(c+ d− a, b, a− d, d) ∈ ∆3 if d ≤ a ≤ c+ d
(c, b, d− a, a) ∈ ∆5 if a ≤ d.

(ii) δ1 maps ∆2 piecewise linearly to ∆2 ∪ ∆4 ∪ ∆7 ∪ ∆6 as follows:

δ1(a, b, c, d) =











(a− b− c− d, b, c, d) ∈ ∆2 if b+ c+ d ≤ a
(b+ c+ d− a, b, a− b− d, d) ∈ ∆4 if b+ d ≤ a ≤ b+ c+ d
(b+ d− a, c, a− d, d) ∈ ∆7 if d ≤ a ≤ b+ d
(c, b, d− a, a) ∈ ∆6 if a ≤ d.
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Fig. 3.3.2. The effect of δ1 on ∆2.

(iii) δ1 maps ∆3 to ∆12, ∆4 to ∆13, ∆5 to ∆10 and ∆6 to ∆11 as follows:

δ1(a, b, c, d) = (d, b, c, a).

(iv) δ1 maps ∆7 to ∆14 as follows:

δ1(a, b, c, d) = (c, d, a, b).

We remark that inverting the maps in Propositions 3.3.1(i) and (ii) shows that δ1
−1

maps
⋃7
j=1 ∆j to ∆1 ∪ ∆2. We now investigate the action of δ2.

Proposition 3.3.2. The Dehn twist δ2 has the following effect on ∆1, . . . ,∆7

(i) δ2 maps ∆1 to ∆1 ∪ ∆2 as follows:

δ2(a, b, c, d) =

{

(a, b+ d− c, c, d) ∈ ∆1 if c ≤ b+ d
(a, c− b− d, b+ d, d) ∈ ∆2 if b+ d ≤ c.

(ii) δ2 maps ∆2 to ∆1 ∪ ∆2 as follows:

δ2(a, b, c, d) =

{

(a, d− c, c, b+ d) ∈ ∆1 if c ≤ d
(a, c− d, d, b+ d) ∈ ∆2 if d ≤ c.
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(iii) δ2 maps ∆3 to ∆4 ∪ ∆3 ∪ ∆7 as follows:

δ2(a, b, c, d) =







(a, b+ d− a− c, c, d) ∈ ∆3 if a+ c ≤ b+ d
(a, a+ c− b− d, b+ d− a, d) ∈ ∆4 if a ≤ b+ d ≤ a+ c
(a− b− d, b+ d, c, d) ∈ ∆7 if b+ d ≤ a.

(iv) δ2 maps ∆4 to ∆4 ∪ ∆3 ∪ ∆7 as follows:

δ2(a, b, c, d) =







(a, d− a− c, c, b+ d) ∈ ∆3 if a+ c ≤ d
(a, a+ c− d, d− a, b+ d) ∈ ∆4 if a ≤ d ≤ a+ c
(a− d, d, c, b+ d) ∈ ∆7 if d ≤ a.

(v) δ2 maps ∆5 to ∆5 ∪ ∆6 as follows:

δ2(a, b, c, d) =

{

(a, b+ c+ d− a, c, d) ∈ ∆5 if a ≤ b+ c+ d
(b+ c+ d, a− b− c− d, c, d) ∈ ∆6 if b+ c+ d ≤ a.

(vi) δ2 maps ∆6 to ∆5 ∪ ∆6 as follows:

δ2(a, b, c, d) =

{

(a, c+ d− a, b+ c, d) ∈ ∆5 if a ≤ c+ d
(c+ d, a− c− d, b+ c, d) ∈ ∆6 if c+ d ≤ a.

(vii) δ2 maps ∆7 to ∆5 ∪ ∆6 as follows:

δ2(a, b, c, d) =

{

(b, d− b, a, c+ d) ∈ ∆5 if b ≤ d
(d, b− d, a, c+ d) ∈ ∆6 if d ≤ b.

We remark that inverting these maps shows that δ2
−1 maps ∆1 ∪ ∆2 to ∆1 ∪ ∆2;

∆3 ∪ ∆4 ∪ ∆7 to ∆3 ∪ ∆4 and ∆5 ∪ ∆6 to ∆5 ∪ ∆6 ∪ ∆7. We now turn our attention to

δ0
−1.

Proposition 3.3.3. The Dehn twist δ0
−1 has the following effect on ∆1, . . . ,∆7

(i) δ0
−1 maps ∆1 to ∆25, ∆2 to ∆24, ∆3 to ∆23 and ∆4 to ∆22 as follows:

δ0
−1(a, b, c, d) = (a, b, c, d).

(ii) δ0
−1 maps ∆5 to ∆5 ∪ ∆6 as follows:

δ0
−1(a, b, c, d) =

{

(c, a− c, b+ c, d) ∈ ∆5 if c ≤ a
(a, c− a, b+ c, d) ∈ ∆6 if a ≤ c.

(iii) δ0
−1 maps ∆6 to ∆5 ∪ ∆6 as follows:

δ0
−1(a, b, c, d) =

{

(b+ c, a− b− c, c) ∈ ∆5 if b+ c ≤ a
(a, b+ c− a, c) ∈ ∆6 if a ≤ b+ c.
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Fig. 3.3.3. The effect of δ0
−1 on ∆7.

(iv) δ0
−1 maps ∆7 onto ∆7 ∪ ∆4 ∪ ∆3 ∪ ∆2 ∪ ∆1 as follows:

δ0
−1(a, b, c, d) =



















(a− b− c, b, c, d) ∈ ∆7 if b+ c ≤ a
(a− c, a− b, b+ c− a, d) ∈ ∆4 if b, c ≤ a ≤ b+ c
(a− c, b− a, c, d) ∈ ∆3 if c ≤ a ≤ b
(c− a, a− b, b, d) ∈ ∆2 if b ≤ a ≤ c
(c− a, b− a, a, d) ∈ ∆1 if a ≤ b, c.

We remark that inverting these maps we see that δ0 maps ∆1 ∪∆2 ∪∆4 ∪∆3 ∪∆7 to

∆7 and ∆5 ∪ ∆6 to ∆5 ∪ ∆6.

Remark. We remark that points in the images of the Dehn twists are well defined. In

other words if equality holds in one of the conditions above we are on the common boundary

of two maximal cells. For example if (a, b, c, d) ∈ ∆1 with a = c+ d then

δ1(c+ d, b, c, d) = be0 + ce1
1 + de1

−1 ∈ ∆1 ∩ ∆3.

Proof of Propositions 3.3.1, 3.3.2 and 3.3.3. The method will be the same for each

of the propositions and is completely analogous to the proof of Proposition 2.2.1. The
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proof of Proposition 3.3.1(i) follows from an analysis of Fig. 3.3.1, Proposition 3.3.1(ii)

from Fig. 3.3.2 and Proposition 3.3.3(iv) from Fig. 3.3.3. The proofs of the other parts

follow along similar lines but are easier. To avoid repetition we will discuss the proof of

Proposition 3.3.1(i) and leave the rest to the reader. These proofs should be compared to

the very similar discussion in section 3.2 of [8].

In Fig. 3.3.1, we start off with the π1-train track for a general point (a, b, c, d) ∈ ∆1.

We want to perform a Dehn twist δ1 about e0. A tubular neighbourhood about e0 is

represented by the pair of dotted lines in the figure. The Dehn twist is the identity

everywhere outside these dotted lines and so everything we see here remains the same. In

the cylinder between the dotted lines, we do a whole turn to the left. This means that a

line crossing this cylinder is wrapped once around the cylinder before exiting in the same

place. In the diagram this is represented by the diagonal lines inside the strip (in the train

track on the top right). The new train track is a representation of the original train track

after the Dehn twist has taken place. Unfortunately, this train track is unreduced. That

is, it has strands from one side to itself (the upper right hand side v4v3). We need to

remove these loops by pulling them tight as explained in section 2.2.

The details of how to pull tight are as follows. The results are shown in the lower part

of Fig. 3.3.1. As usual, it is enough to assume that all the weights are integers. Recall that

an integral weight m on a strand means that m strands join the same pair of sides of R2.

The ends of these strands are identified, preserving order, with the strands on the paired

side. In the top right hand diagram of Fig. 3.3.1, there are c+ d strands joining the side

v4v3 to itself. The side pairing S1
−1 takes the 2(c + d) ends of these loops to the lowest

2(c+d) ends of strands emanating from v1v2. We begin with the innermost of these loops,

that is the strand that, together with an arc of v4v3, bounds a disc containing no strands.

The endpoints of this loop are the (c + d)th and (c + d + 1)th ends from the bottom of

v4v3. These are identified by the side pairing S1
−1 with the (c + d)th and (c + d + 1)th

ends from the bottom of v1v2. Providing a and d are non-zero these are ends of strands

joining v1v2 with v5v4 and v4v3 respectively. When we pull this loop tight these three

strands become a single strand from v5v4 to v4v3. Doing this min{a, d} times we get this

number of strands joining v5v4 and v4v3.

In the case where a ≤ d we have exhausted all a strands joining the sides v1v2 and

v4v3. We therefore continue using the c + d strands joining v3v2 and v1v2. After pulling

each of the next d− a loops tight we obtain strands from v3v2 to v5v4. Finally the each of

the remaining c loops gives a strand from to v3v2 to v6v1. There are a strands from v1v2

to v3v2 remaining that have not been changed. Putting all this information together we

obtain the π1-train track in the bottom right of Fig. 3.3.1. It is then clear that this train

track is the point (c, b, d− a, a) ∈ ∆5.

The case a ≥ d is similar but with further sub-cases c+d ≤ a and d ≤ a ≤ c+d. These

43



The Mapping Class Group of the Twice Punctured Torus

give the other train tracks on the lower line of Fig. 3.3.1 and the points of ∆1 and ∆3 listed

in the statement of Proposition 3.3.1. The rest of the propositions follow similarly. �

The following corollary is an immediate consequence of these results. It may be verified

by considering the image of each of the eij and extending linearly to the whole of ML(Σ2).

Corollary 3.3.4. We have ι2 = (δ0δ1δ2)
2. �
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4. The Markov map

In this section we construct the Markov map which will be the key to constructing our

normal form for elements of MCG(Σ2).

4.1. Canonical Dehn twists for maximal cells.

For each maximal cell ∆j we now define a canonical Dehn twist ηj which is one of δ0
±1,

δ1
±1, δ2

±1. For simplicity we work with ∆1, . . . ,∆7 and then define canonical Dehn twists

for the other cells by symmetry. These twists will map maximal cells onto the union of

other cells and are the essential step for defining our Markov map.

Definition. The canonical Dehn twist on ∆1, ∆2, ∆5 and ∆6 is δ1. The canonical Dehn

twist on ∆3, ∆4 and ∆7 is δ0
−1.

From Propositions 3.3.1, 3.3.2 and 3.3.3 we see that the images of the canonical Dehn

twists are as follows

δ1: ∆1 −→ ∆1 ∪ ∆3 ∪ ∆5

δ1: ∆2 −→ ∆2 ∪ ∆4 ∪ ∆6 ∪ ∆7

δ0
−1: ∆3 −→ ∆23 = ι3(∆2)

δ0
−1: ∆4 −→ ∆22 = ι3(∆1)

δ1: ∆5 −→ ∆10 = ι1(∆3)

δ1: ∆6 −→ ∆11 = ι1(∆4)

δ0
−1: ∆7 −→ ∆1 ∪ ∆2 ∪ ∆3 ∪ ∆4 ∪ ∆7.

We now show that the canonical Dehn twists map maximal cells onto the union of other

maximal cells listed above. The interior of a maximal cell is defined to be ∆◦
j , the

collection of points (a, b, c, d) ∈ ∆j with a, b, c, d all positive.

Proposition 4.1.1. Denote the canonical Dehn twist on the cell ∆k by ηk. For each

j, k ∈ {1, . . . , 28}, if ∆◦
j ∩ ηk(∆

◦
k) is non-empty then ∆j ⊂ ηk(∆k).

Proof. Since the maximal cells only overlap on their boundaries and we are assuming that

∆◦
j ∩ηk(∆

◦
k) is non-empty it is sufficient to consider only the maximal cells which appear in

the images of canonical Dehn twists listed above. In order to check that ∆j ⊂ ηk(∆k) we

need only show ηk
−1(∆j) ⊂ ∆k. This may be checked using the propositions of section 3.3

by inspection on a case by case basis. �
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4.2. The Markov map on ML(Σ2).

We are going to define the Markov map on the partition of ML(Σ2) into maximal cells

by taking the shortest word in canonical Dehn twists that maps the maximal cell ∆j onto

a union of at least two maximal cells. This will ensure that the resulting mapping has

enough “expansion” to strictly reduce length. We will see that composition of at most

three canonical Dehn twists has this property. As usual there will be an ambiguity as

to how the Markov map is defined on the intersections of maximal cells (that is on their

common boundary faces).

It turns out that certain pairs of maximal cells, for example ∆1 ∪ ∆2, have the same

canonical Dehn twist and always occur together in the image of a canonical twist. Others,

for example ∆7, occur on their own in the image. This means that we can make our

partition of ML(Σ2) coarser. That is, we group the maximal cells ∆j in pairs or on their

own according to how they behave under these canonical Dehn twists. These groupings

will be called regions. The regions are defined as follows:

A0 = ∆1 ∪ ∆2, B0 = ∆3 ∪ ∆4, C0 = ∆5 ∪ ∆6, D0 = ∆7,
A1 = ∆8 ∪ ∆9, B1 = ∆10 ∪ ∆11, C1 = ∆12 ∪ ∆13, D1 = ∆14,
A2 = ∆15 ∪ ∆16, B2 = ∆17 ∪ ∆18, C2 = ∆19 ∪ ∆20, D2 = ∆21,
A3 = ∆22 ∪ ∆23, B3 = ∆24 ∪ ∆25, C3 = ∆26 ∪ ∆27, D3 = ∆28.

There are four different types of region which we call Aj , Bj, Cj , Dj where j = 0, 1, 2, 3 is

determined by Aj = ιj(A0) and so on.
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d c
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Fig. 4.2.1. Generic points in the regions A0, B0, C0 and D0.
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Lemma 4.2.1. The canonical Dehn twists map regions onto unions of other regions. For

A0, B0, C0 and D0 these regions are given below.

δ1:A0 7−→ A0 ∪B0 ∪ C0 ∪D0

δ0
−1:B0 7−→ A3 = ι3(A0)

δ1:C0 7−→ B1 = ι1(B0)

δ0
−1:D0 7−→ A0 ∪B0 ∪D0.

The results for the other regions may be obtained by symmetry. �

We are now ready to define the Markov map f2 on ML(Σ2). This is defined to be the

shortest word in the canonical Dehn twists that maps each region onto at least two other

regions. It is given as follows:

f2|A0
= δ1:A0 7−→ A0 ∪B0 ∪ C0 ∪D0

f2|B0
= δ2

−1δ0
−1:B0 7−→ A3 ∪B3 ∪ C3 ∪D3

f2|C0
= δ2δ0δ1:C0 7−→ A2 ∪B2 ∪ C2 ∪D2

f2|D0
= δ0

−1:D0 7−→ A0 ∪B0 ∪D0

f2|A1
= δ1

−1:A1 7−→ A1 ∪B1 ∪ C1 ∪D1

f2|B1
= δ2δ0:B1 7−→ A2 ∪B2 ∪ C2 ∪D2

f2|C1
= δ2

−1δ0
−1δ1

−1:C1 7−→ A3 ∪B3 ∪ C3 ∪D3

f2|D1
= δ0:D1 7−→ A1 ∪B1 ∪D1

f2|A2
= δ2:A2 7−→ A2 ∪B2 ∪ C2 ∪D2

f2|B2
= δ1

−1δ0
−1:B2 7−→ A1 ∪B1 ∪ C1 ∪D1

f2|C2
= δ1δ0δ2:C2 7−→ A0 ∪B0 ∪ C0 ∪D0

f2|D2
= δ0

−1:D2 7−→ A2 ∪B2 ∪D2

f2|A3
= δ2

−1:A3 7−→ A3 ∪B3 ∪ C3 ∪D3

f2|B3
= δ1δ0:B3 7−→ A0 ∪B0 ∪ C0 ∪D0

f2|C3
= δ1

−1δ0
−1δ2

−1:C3 7−→ A1 ∪B1 ∪ C1 ∪D1

f2|D3
= δ0:D3 7−→ A3 ∪B3 ∪D3.

It is clear from Proposition 4.1.1 and Lemma 4.2.1 that f2 satisfies the Markov property

with respect to the partition of ML(Σ) into the sixteen regions A0, . . . , D3.

Recall that the length |γ| of a multiple simple loop γ supported on a weighted π1-

train track τ is the sum of the weights on all its strands. For a proper integral weighting
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Fig. 4.2.2. The nine exceptional configurations of Proposition 4.2.2.

this is a positive integer. Let (a, b, c, d) ∈ ∆j with the standard bases. We now compare

the length of the π1-train track represented by this point with the length of its image under

the Markov map f2 as defined above. We have

Proposition 4.2.2. The Markov map f2 does not increase length. Moreover f2 strictly

decreases length for every train track except those of the form:

ae0 + be0, ae1
∞ + be∞1 , ae−1

∞ + be∞−1, ae∞∞ + be1
−1, ae∞∞ + be−1

1 , (∗)

ae0 + be1
∞ + ce−1

∞ , ae∞∞ + be1
∞ + ce−1

∞ , ae0 + be∞1 + ce∞−1, ae∞∞ + be∞1 + ce∞−1. (†)

Proof. This follows from an analysis of lengths for the action of f2 on each maximal cell

∆j :

cell |(a, b, c, d)| f2 |f2(a, b, c, d)| |(a, b, c, d)| − |f2(a, b, c, d)|
∆1 a+ b+ 3c+ 3d δ1 a+ b+ 2c+ 2d c+ d
∆2 a+ 2b+ 3c+ 3d δ1 a+ b+ 2c+ 2d b+ c+ d
∆3 2a+ b+ 3c+ 3d δ2

−1δ0
−1 a+ b+ 2c+ 2d a+ c+ d

∆4 2a+ 2b+ 3c+ 3d δ2
−1δ0

−1 a+ b+ 2c+ 3d a+ b+ c
∆5 2a+ b+ 2c+ 3d δ2δ0δ1 2a+ b+ 2c+ d 2d
∆6 2a+ b+ 2c+ 3d δ2δ0δ1 2a+ b+ 2c+ d 2d
∆7 a+ 2b+ 2c+ 3d δ0

−1 a+ b+ c+ 3d b+ c.

�

In what follows we will be particularly interested in the four train tracks (†) (as

illustrated in the lower line of Fig. 4.2.2) which are ∆19 ∩∆26, ∆20 ∩∆27 (which together

form C2 ∩ C3) and ∆5 ∩ ∆12, ∆6 ∩ ∆13 (which together form C0 ∩ C1).
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4.3. The space of Farey blocks

As for the once punctured torus, in order to construct a normal form and word acceptor

from the Markov map we constructed in the previous section, we need to find a space on

which MCG(Σ2) acts without fixed points. For the once punctured torus we could take

the space of Farey pairs. For the twice punctured torus we will generalise this to the space

of Farey blocks. A Farey block is an ordered quadruple of (homotopy classes of) simple

loops which lie in a certain topological configuration on Σ2.

Let γi and γj be (homotopy classes of) simple closed curves on Σ2. Define the inter-

section number i(γi, γj) to be the minimal number of points in γi∩γj as γi, γj vary through

all elements of their free homotopy class. The idea behind the construction of Farey blocks

is the following. Consider a pair of Farey neighbours on the twice punctured torus, that is

an ordered pair of curves (γ1, γ2) that intersect exactly once, so that i(γ1, γ2) = 1. Both of

these curves are necessarily non-dividing and there exists a curve β that separates γ1 ∪ γ2

from the punctures and which is unique up to isotopy. The curve β is the commutator

[γ1, γ2]. On an unpunctured or once punctured torus β would be homotopically trivial or

peripheral respectively. Moreover, in that case (γ1, γ2) would have trivial stabiliser in the

mapping class group. However, for the twice punctured torus this is not the case. There

is a non-trivial homeomorphism which preserves γ1, γ2 and β and which interchanges the

punctures. The square of this map is the Dehn twist about β. We get around this difficulty

by considering an extra curve γ3 that is disjoint from γ1 and intersects γ2 and β once and

twice respectively. Here is the precise definition.

Definition. A Farey block is an ordered quadruple of (homotopy classes of) curves

(γ1, γ2, β; γ3) with the properties that:

(i) γj is non-dividing for j = 1, 2, 3 and β is dividing

(ii) i(γj , β) = 0 for j = 1, 2 and i(γ3, β) = 2

(iii) i(γ2, γj) = 1 for j = 1, 3 and i(γ1, γ3) = 0.

The collection of all Farey blocks will be denoted F .

Since Farey blocks are only defined using topological data, namely the intersection

number and the separation properties of (homotopy class of) simple closed curves, the

image of a Farey block under an element of MCG(Σ2) is also a Farey block. This defines

an action of MCG(Σ2) on F . We claim that this action is free. In order to see this,

consider the Farey block
(

e0, e
∞
∞, e

∞
1 + e∞−1; e

0
)

.

It is clear that this has trivial stabiliser. (It is easy to see that this block is mapped to

itself by ι1 but we are only considering orientation preserving automorphisms of Σ2.)

The idea behind the normal form for the twice punctured torus is similar to that for

the once punctured torus. Namely we apply a general element φ ∈ MCG(Σ2) to the Farey
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block
(

e0, e
∞
∞, e

∞
1 + e∞−1; e

0
)

to obtain a new Farey block

φ
(

e0, e
∞
∞, e

∞
1 + e∞−1; e

0
)

=
(

φ(e0), φ(e∞∞), φ(e∞1 + e∞−1);φ(e0)
)

.

The idea is to apply the Markov map f2 repeatedly to φ
(

e0, e
∞
∞, e

∞
1 + e∞−1; e

0
)

until we

get back our original Farey block. The resulting f2-expansion should be the normal form

for φ. In practice it is slightly more complicated than this.

Crucial to the construction for the once punctured torus, in section 2, was the following

fact. If (γ1, γ2) was a Farey pair, then γ1 and γ2 both lay in the same cell Ij in ML(Σ1) so

that we could take f1(γ1) = αj(γ1), f1(γ2) = αj(γ2) for the same element αj ∈ MCG(Σ2).

In consequence,
(

f1(γ1), f1(γ2)
)

was again a Farey pair and applying f1 to a sequence of

such pairs gave a well-defined sequence of elements in MCG(Σ1), which defined our normal

forms.

The analogous statement about Farey blocks is almost, but unfortunately not quite,

correct. In fact we can observe that if (γ1, γ2, β; γ3) is a Farey block and if β is in the

interior of a region R then γ1 and γ2 are also in R. This is because γ1 and γ2 are disjoint

from β and so the π1-train tracks representing these γi and β are both contained in the

same maximal cell (compare this with Proposition 2.3.3). In addition, if γ1 is in the R◦

then γ3 is also in R. If, however, γ1 is on the boundary of R then γ3 may be in an adjacent

region. In the next section we characterise those weighted π1-train tracks which represent

dividing curves. This will enable us to determine those exceptional cases which cause

difficulty in extending the map f2.
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4.4. Dividing curves.

The following lemma will allow us to determine which dividing curves do not lie in the

interior of any region.

Lemma 4.4.1. If a proper integral weighting w on a π1-train track τ on R2 represents a

connected dividing loop β on Σ2 then

(i) for each side σ of R2, the sum of the weights on arcs with endpoints on σ is even, and

(ii) the weights of w have no common factor.

Proof. Let τ be a π1-train track carrying weight w(α) on strand α. As usual, the

weighting can be expanded to the loop β by replacing each strand α with w(α) disjoint

strands joining the same pair of sides and gluing their ends together with side pairings.

Since β is connected, condition (ii) is clear.

Any dividing curve β separates Σ2 into a torus with a hole and a sphere with 2

punctures and a hole. Colouring the components of Σ2 − β with distinct colours, we see

that both punctures lie in a region of the same colour. The colouring lifts to a colouring of

R2 − β in such a way that colours alternate along the sides of R2, changing each time an

endpoint of a strand of β meets the side. Since β avoids the punctures, the two segments

of side which meet in a puncture have the same colour. The condition (i) is now clear. �

χ

χ

β β

β β

0 0 1

2 2 3

Fig. 4.4.1. The six curves of Proposition 4.4.2.

Proposition 4.4.2. Every dividing curve is in the interior of a region with the following
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six exceptions, see Fig. 4.4.1:

χ0 = e∞1 + e∞−1 ∈ C0 ∩ C1, β0 = e1
1 + e1

−1 ∈ A0 ∩B0, β1 = e−1
1 + e−1

−1 ∈ A1 ∩B1,

χ2 = e1
∞ + e−1

∞ ∈ C2 ∩ C3, β2 = e1
1 + e−1

1 ∈ A2 ∩B2, β3 = e1
−1 + e−1

−1 ∈ A3 ∩B3.

Proof. Any weighting w representing a dividing curve must satisfy conditions (i) and

(ii) of Lemma 4.4.1.

Recall that in section 3.1 we mentioned the idea of splitting R2 into two boxes by

drawing a horizontal line from v1 to v4. We claim that if w represents a dividing curve

then, in at least one of these boxes, there are arcs with non-zero weights across each of the

four corners. We say that such a box contains a cross. (This condition plays a crucial

role in [12]. As can be seen in Fig. 4.4.1, the curves χ0, β0, β1 contain a cross in the

lower box and χ2, β2, β3 have one in the upper box.) Let w be a weighting representing a

connected dividing curve where neither box contains a cross. If a box does not contain a

cross, then one can see by inspection of the irreducible loops in Fig. 3.1.2 (or the generic

π1-train tracks in Fig. 3.1.3), that it contains a certain number a of corner strands across

one pair of opposite corners and a number b strands going across a pair of opposite sides.

Thus the number of strands ending at each pair of opposite sides is a and a+b respectively.

By (i) both a and a + b are even. Thus so is b. Doing this for both boxes we obtain a

contradiction to (ii).

Now we refer to Fig. 4.2.1 which shows the generic configurations for weights in any of

the four regions A0, B0, C0, D0. Let us take the region A0 = ∆1 ∪∆2; the other cases are

similar. The observation that w contains a cross translates into the statement that c > 0

and d > 0, where, as shown in the top left two diagrams, c and d are the weights on e1
1

and e1
−1 respectively. Since ∆1 and ∆2 are glued across the face b = 0 to form the region

A0, any such weighting is in the interior of A0 unless a (the coefficient of e0) vanishes. It

is however easy to see that any weight be0 + ce1
1 + de1

−1 or be1
∞ + ce1

1 + de1
−1 represents a

multiple loop, one of whose components is e1
1 + e1

−1. This contradicts the hypothesis that

w represents a connected curve unless b = 0 and c = 1 = d, in which case w = β0.

For B0 = ∆3 ∪ ∆4, the weighting w contains a cross provided a + c > 0 and d > 0.

Again b = 0 gives ∆3 ∩ ∆4 in the interior of B0. Thus we have to check two cases, c = 0

and a = 0. When a = 0 we obtain a contradiction as above unless w = β0. When c = 0,

Lemma 4.4.1(i) shows that all the weights are even, in contradiction to Lemma 4.4.1(ii).

The cases of C0 and D0 are similar and can be left to the reader. �

The following lemma will be needed in the next section

Lemma 4.4.3. Let β be a simple closed dividing curve on Σ2.

(i) If β is in the interior of A0 then f2|A0
(β) = δ1(β) is either in the interior of one of A0,

B0, C0, D0 or else δ1(β) = β0.
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(ii) If β is in the interior of D0 then f2|D0
(β) = δ0

−1(β) is either in the interior of one of

A0, B0, D0 or else δ0
−1(β) = β0.

Proof. Both parts are similar. We only consider (i). Consider δ1 acting on ML(Σ2).

We know that β is in the interior of A0 and δ1(A0) = A0 ∪B0 ∪C0 ∪D0. Therefore δ1(β)

is in the interior of A0 ∪ B0 ∪ C0 ∪D0. In other words, δ1(β) is in the interior of one of

A0, B0, C0, D0 or else it is in the common boundary of at least 2 of these regions. By

Proposition 4.4.2 we see that the only possibility is that δ1(β) = β0. �

We will need to characterise the curve γ3 in the Farey block (γ1, γ2, β; γ3) when

(γ1, γ2, β) is either (e0, e
∞
∞, χ0) or (e∞∞, e0, χ0).

2b a

bb

b b

a

b

a+b

a+ba+b

a+b a

b

b

a+b a+b

b

b

a a+b

a+ba+b a+b a+b

a+b

b a
a 2b

b

b b

b

a
+2b

a
+2b

Fig. 4.4.2. The curves disjoint from e0.

Proposition 4.4.4. If (γ1, γ2, β; γ3) is a Farey block with (γ1, γ2, β) = (e0, e
∞
∞, χ0) then,

for some non-negative integer a, γ3 has one of the following forms:

e0,(i)

e∞1 + e1
−1 + aχ0 = (a+ 1, 0, a, 1) ∈ ∆5 ∩ ∆6,(ii)

e∞−1 + e−1
1 + aχ0 = (a+ 1, 0, a, 1) ∈ ∆12 ∩ ∆13.(iii)
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If (γ1, γ2, β) = (e∞∞, e0, χ0) then, for some non-negative integer a, γ3 has one of the follow-

ing forms:

e1
−1 + aχ0 = (a, 0, a, 1) ∈ ∆5 ∩ ∆6,(iv)

e−1
1 + aχ0 = (a, 0, a, 1) ∈ ∆12 ∩ ∆13.(v)

Remark. Observe that, apart from the case (γ1, γ2, β; γ3) = (e0, e
∞
∞, χ0; e

0), in this

situation all four curves γ1, γ2, γ3, β are in either ∆5 ∪ ∆6 = C0 or ∆12 ∪ ∆13 = C1.

Proof. We begin with the case (γ1, γ2, β) = (e0, e
∞
∞, χ0). We know γ3 must be disjoint

from γ1 = e0. There is a one parameter family of simple closed curves on Σ2 disjoint from

e0. (To see this, observe that Σ2 − {e0} is topologically a four times punctured sphere.

It is well known that simple closed curves on the four punctured sphere are parametrised

by Q ∪ {∞}.) It is not hard to show that all curves disjoint from e0 must have one of the

following six types, see Fig. 4.4.2.

(a, 0, b, b) ∈ ∆1, (a, 0, b, a+ b) ∈ ∆3, (a+ b, 0, a, b) ∈ ∆5,
(a+ b, 0, a, b) ∈ ∆12, (a, 0, b, a+ b) ∈ ∆10, (a, 0, b, b) ∈ ∆8.

It is easy to see that the intersection numbers of these curves with γ2 = e∞∞ are: a + 2b,

a+ 2b, b, b, a+ 2b, a+ 2b respectively. Since γ3 should intersect γ2 = e∞∞ exactly once we

obtain the result.

Now we turn our attention to the case (γ1, γ2, β) = (e∞∞, e0, χ0). All curves disjoint

from γ1 = e∞∞ must have one of the following four forms, see Fig. 4.4.3

(a, 0, a, b) ∈ ∆6, (a, 0, a, b) ∈ ∆13, (a, 0, a, b) ∈ ∆20, (a, 0, a, b) ∈ ∆27.

b

a a
b

a+b a

b
a a

b

a a+b b

a a
b

a a+b a+b a

b
a a

b

Fig. 4.4.3. The curves disjoint from e∞∞.

The intersection numbers of these curves with γ2 = e0 are b, b, 2a+ b, 2a+ b respec-

tively. The result follows as above. �

The next proposition is a similar characterisation of γ3 when (γ1, γ2, β) is (e0, e∞∞, χ2)

or (e∞∞, e
0, χ2).
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Proposition 4.4.5. If (γ1, γ2, β; γ3) is a Farey block with (γ1, γ2, β) = (e0, e∞∞, χ2) then,

for some non-negative integer a, γ3 has one of the following forms:

e0,(i)

e1
∞ + e−1

1 + aχ2 = (a+ 1, 0, a, 1) ∈ ∆19 ∩ ∆20,(ii)

e−1
∞ + e1

−1 + aχ2 = (a+ 1, 0, a, 1) ∈ ∆26 ∩ ∆27.(iii)

If (γ1, γ2, β) = (e∞∞, e
0, χ2) then, for some non-negative integer a, γ3 has one of the follow-

ing forms:

e−1
1 + aχ2 = (a, 0, a, 1) ∈ ∆19 ∩ ∆20,(iv)

e1
−1 + aχ2 = (a, 0, a, 1) ∈ ∆26 ∩ ∆27.(v)

Proof. This follows by applying ι2 to the results in Proposition 4.4.4. �

Observe that in this case we have (γ1, γ2, β; γ3) = (e0, e∞∞, χ2; e0) or else all four curves

are in ∆19 ∪ ∆20 = C2 or ∆26 ∪ ∆27 = C3.

4.5. Subdividing F : the states of the word acceptor.

In the next section we shall extend the Markov map f2 to a map on the space of Farey

blocks F . Inverting this map will give the word acceptor. This construction will resemble

that given in section 2.3 but will involve some extra steps. The first part of this process is

to divide F into subsets which will form the states of the word acceptor.

We begin by stratifying F into three subsets. Define

F0 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ0, {γ1, γ2} = {e0, e
∞
∞} or β = χ2, {γ1, γ2} = {e0, e∞∞}

}

,

F1 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ0, {γ1, γ2} 6= {e0, e
∞
∞} or β = χ2, {γ1, γ2} 6= {e0, e∞∞}

}

,

F2 = {(γ1, γ2, β; γ3) ∈ F : β 6∈ {χ0, χ2}} .

Our goal is to define a map f on F so that for each Farey block (γ1, γ2, β; γ3) there is

a non-negative integer n so that

fn(γ1, γ2, β; γ3) = (e0, e
∞
∞, χ0; e

0).

At each stage, we want f to equal a specific one of the sixteen possible values of f2, so

that for any Farey block we have

f(γ1, γ2, β; γ3) =
(

f2(γ1), f2(γ2), f2(β); f2(γ3)
)

=
(

φ(γ1), φ(γ2), φ(β);φ(γ3)
)

for some φ ∈ MCG(Σ2). The difficulty is that, if the members of the block (γ1, γ2, β; γ3)

lie in different regions, it is not clear which value for φ to pick. This happens, for example,

in the case of the Farey block (e1
−1, e0, β0; e

∞
∞).
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We resolve this difficulty by using the results of the previous section and the strat-

ification above. Roughly speaking, f will be defined as follows. On F2, the map f will

take the value of f2 on the region which contains the dividing curve β. Applying f will

decrease the length |β| of β. We continue applying f until β = χ0 or χ2. Thus, there will

be a non-negative integer n2 so that fn2(γ1, γ2, β; γ3) ∈ F1 ∪F0. On F1 the map f will be

the Markov map f1 on ML(Σ1) constructed in section 2.3. This map will fix β and reduce

|γ1|+ |γ2|. Thus, there will be a non-negative integer n1 so that fn1+n2(γ1, γ2, β; γ3) ∈ F0.

Finally, on F0 the map f will fix |γ1| + |γ2| + |β| and decrease |γ3|. There will be a

non-negative integer n0 so that fn0+n1+n2(γ1, γ2, β; γ3) = (e0, e
∞
∞, χ0; e

0).

In order to carry out the details we shall introduce a number of extra regions which

will become the states of the word acceptor. These regions will all be subsets of the space

F of Farey blocks.

We begin by considering F2. By definition, if the Farey block (γ1, γ2, β; γ3) is in F2

then the dividing curve β is neither χ0 nor χ2. Using Proposition 4.4.2, we see that either

β is in the interior of one of the sixteen regions A0, . . . , D3 or else β is one of the four

dividing curves β0, β1, β2, β3. (Recall that for these four curves βj ∈ Aj ∩Bj). We divide

F2 into twenty regions as follows. We call these Aj, Bj , Cj , Dj, Ej for j = 0, 1, 2, 3. The

sixteen subsets A0, . . . ,D3 of F2 are defined to consist of all Farey blocks for which β is

in the interior of the region A0, . . . , D3 in ML(Σ2), respectively. The four subsets Ej of

F2 are defined to consist of all Farey blocks for which β = βj where j = 0, 1, 2, 3. That is

when j = 0:

A0 = {(γ1, γ2, β; γ3) ∈ F : β ∈ (∆1 ∪ ∆2)
◦} ,

B0 = {(γ1, γ2, β; γ3) ∈ F : β ∈ (∆3 ∪ ∆4)
◦} ,

C0 = {(γ1, γ2, β; γ3) ∈ F : β ∈ (∆5 ∪ ∆6)
◦} ,

D0 = {(γ1, γ2, β; γ3) ∈ F : β ∈ ∆◦
7} ,

E0 = {(γ1, γ2, β; γ3) ∈ F : β = β0} .

For k = 1, 2, 3 apply the symmetry ιk to the above five regions in order to obtain Ak, Bk,

Ck, Dk and Ek.

By abuse of notation we will frequently drop the bold face notation Aj and simply

write Aj when the meaning is clear from the context. Thus the reader should keep clearly

in mind that Aj may either denote a region of ML(Σ2) as defined in section 4.2 or the

subset Aj ⊂ F2 of Farey blocks.

The subsets Aj, Bj , . . . , Ej will be states in the word acceptor we are aiming to

construct. Before defining the map f on each of these twenty regions (whose inverse will

give the arrows in the word acceptor), we will proceed to define the states for the strata

F1 and F0.
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We consider first the Farey blocks in F1. Here we have β = χ0 or χ2. For the sake of

definiteness we will describe the situation for χ0 in detail. In order to perform the same

constructions for χ2 it is necessary to apply the symmetry ι2. The curve χ0 divides Σ2

into two components, one of which is a twice punctured disc and the other is a torus with

a hole. All homotopically non-trivial, non-peripheral simple closed curves on Σ2 that are

disjoint from χ0 are contained in the one holed torus component of Σ2 −χ0. In particular,

this is true for γ1 and γ2. The stabiliser of χ0 in MCG(Σ2) is the group generated by δ0

and δ2. The action of the group they generate on the one-holed-torus component of Σ2−χ0

exactly corresponds to the action of MCG(Σ1) on Σ1 considered in section 2. Therefore,

we divide F1 into states which correspond to the intervals I0, I1, I2 and I3 for the space

of Farey pairs on the once punctured torus. This is done as follows:

F0 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ0; γ1, γ2 ∈ sp+{e0, e
∞
1 }

}

,

G0 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ0; γ1, γ2 ∈ sp+{e∞∞, e
∞
1 }

}

,

F1 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ0; γ1, γ2 ∈ sp+{e0, e
∞
−1}

}

,

G1 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ0; γ1, γ2 ∈ sp+{e∞∞, e
∞
−1}

}

,

F2 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ2; γ1, γ2 ∈ sp+{e0, e1
∞}

}

,

G2 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ2; γ1, γ2 ∈ sp+{e∞∞, e
1
∞}

}

,

F3 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ2; γ1, γ2 ∈ sp+{e0, e−1
∞ }

}

,

G3 =
{

(γ1, γ2, β; γ3) ∈ F : β = χ2; γ1, γ2 ∈ sp+{e∞∞, e
−1
∞ }

}

.

Finally, we consider F0. Here either β = χ0 and {γ1, γ2} = {e0, e
∞
∞} or β = χ2 and

{γ1, γ2} = {e0, e∞∞}. In Propositions 4.4.4 and 4.4.5 we analysed the different possibilities

for γ3. We divide F3 into states according to these different possibilities:

H0 = {(e∞∞, e0, χ0; γ3) ∈ F : γ3 = (a, 0, a, 1) ∈ ∆5 ∩ ∆6 where a ∈ N ∪ {0} } ,

I0 = {(e0, e
∞
∞, χ0; γ3) ∈ F : γ3 = (a+ 1, 0, a, 1) ∈ ∆5 ∩ ∆6 where a ∈ N ∪ {0} } ,

H1 = {(e∞∞, e0, χ0; γ3) ∈ F : γ3 = (a, 0, a, 1) ∈ ∆12 ∩ ∆13 where a ∈ N ∪ {0} } ,

I1 = {(e0, e
∞
∞, χ0; γ3) ∈ F : γ3 = (a+ 1, 0, a, 1) ∈ ∆12 ∩ ∆13 where a ∈ N ∪ {0} } ,

H2 =
{

(e∞∞, e
0, χ2; γ3) ∈ F : γ3 = (a, 0, a, 1) ∈ ∆19 ∩ ∆20 where a ∈ N ∪ {0}

}

,

I2 =
{

(e0, e∞∞, χ2; γ3) ∈ F : γ3 = (a+ 1, 0, a, 1) ∈ ∆19 ∩ ∆20 where a ∈ N ∪ {0}
}

,

H3 =
{

(e∞∞, e
0, χ2; γ3) ∈ F : γ3 = (a, 0, a, 1) ∈ ∆26 ∩ ∆27 where a ∈ N ∪ {0}

}

,

I3 =
{

(e0, e∞∞, χ2; γ3) ∈ F : γ3 = (a+ 1, 0, a, 1) ∈ ∆26 ∩ ∆27 where a ∈ N ∪ {0}
}

,

J0 =
{

(e0, e
∞
∞, χ0; e

0) ∈ F
}

,

J2 =
{

(e0, e∞∞, χ2; e0) ∈ F
}

.

In each case, notice that (a, 0, a, 0) corresponds to the loop β, that is χ0 or χ2.
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4.6. The definition of the map f .

Having defined the states which partition the space F of Farey blocks, we now turn our

attention to the definition of the map f . First we consider states in F2.

For Farey blocks in Aj , . . . , Dj we define f to be the same as the Markov map f2 on

the corresponding regions Aj , . . . , Dj in ML(Σ2). We need to be slightly more careful in

computing the images of these blocks.

Lemma 4.6.1. On F2 the Dehn twist δ1 maps A0 onto A0 ∪B0 ∪C0 ∪D0 ∪E0 and δ0
−1

maps D0 onto A0 ∪B0 ∪D0 ∪E0.

Proof. This is an immediate consequence of Lemma 4.4.3. �

To define f in Ej we have a choice since, as in Proposition 4.4.2, βj ∈ Aj ∩ Bj.

We choose f |Ej
= f2|Aj

so that, for example, f |E0
= f2|A0

= δ1. It is easy to check

that δ1(β0) = χ0 so that, with this definition, f maps E0 into F1 ∪ F0. (We remark that

f2|B0
(β0) = δ2

−1δ0
−1(β0) = χ2 so this would also be true if we had made the other choice.)

Since δ1
−1(χ0) = β0 it is easy to see that f maps E0 onto that subset of F1∪F0 consisting

of all Farey blocks with β = χ0. Applying symmetries, corresponding results are true for

f(Ej) for j = 1, 2, 3. We can now summarise the effect of the map f on all states in F2.

In each case, the arrow indicates that f maps the gives state onto the union of the states

listed on the right. Note that for simplicity, we have now replaced the bold Aj , . . . , Ej

with Aj , . . . , Ej for j = 0, 1, 2, 3.

f |A0
= δ1:A0 7−→ A0 ∪B0 ∪ C0 ∪D0 ∪ E0,

f |B0
= δ2

−1δ0
−1:B0 7−→ A3 ∪B3 ∪ C3 ∪D3 ∪ E3,

f |C0
= δ2δ0δ1:C0 7−→ A2 ∪B2 ∪ C2 ∪D2 ∪ E2,

f |D0
= δ0

−1:D0 7−→ A0 ∪B0 ∪D0 ∪ E0,

f |E0
= δ1:E0 7−→ F0 ∪G0 ∪H0 ∪ I0 ∪ J0 ∪ F1 ∪G1 ∪H1 ∪ I1,

f |A1
= δ1

−1:A1 7−→ A1 ∪B1 ∪ C1 ∪D1 ∪ E1,

f |B1
= δ2δ0:B1 7−→ A2 ∪B2 ∪ C2 ∪D2 ∪ E2,

f |C1
= δ2

−1δ0
−1δ1

−1:C1 7−→ A3 ∪B3 ∪ C3 ∪D3 ∪ E3,

f |D1
= δ0:D1 7−→ A1 ∪B1 ∪D1 ∪ E1,

f |E1
= δ1

−1:E1 7−→ F0 ∪G0 ∪H0 ∪ I0 ∪ J0 ∪ F1 ∪G1 ∪H1 ∪ I1,

f |A2
= δ2:A2 7−→ A2 ∪B2 ∪ C2 ∪D2 ∪ E2,

f |B2
= δ1

−1δ0
−1:B2 7−→ A1 ∪B1 ∪ C1 ∪D1 ∪ E1,

f |C2
= δ1δ0δ2:C2 7−→ A0 ∪B0 ∪ C0 ∪D0 ∪ E0,
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f |D2
= δ0

−1:D2 7−→ A2 ∪B2 ∪D2 ∪ E2,

f |E2
= δ2:E2 7−→ F2 ∪G2 ∪H2 ∪ I2 ∪ J2 ∪ F3 ∪G3 ∪H3 ∪ I3,

f |A3
= δ2

−1:A3 7−→ A3 ∪B3 ∪ C3 ∪D3 ∪ E3,

f |B3
= δ1δ0:B3 7−→ A0 ∪B0 ∪ C0 ∪D0 ∪ E0,

f |C3
= δ1

−1δ0
−1δ2

−1:C3 7−→ A1 ∪B1 ∪ C1 ∪D1 ∪ E1,

f |D3
= δ0:D3 7−→ A3 ∪B3 ∪D3 ∪ E3,

f |E3
= δ2

−1:E3 7−→ F2 ∪G2 ∪H2 ∪ I2 ∪ J2 ∪ F3 ∪G3 ∪H3 ∪ I3.

Having defined f on all of F2, we now consider F1. As we described in the previous

section, we may regard (γ1, γ2) as lying on a one-holed torus (one of the components of

Σ2−β). Moreover, as γ1 and γ2 intersect exactly once they correspond to Farey neighbours.

Therefore, we define f to agree with the map f1 on the space of Farey pairs and described

in section 2.4. Results about the image of this map follow as in that section. Thus we

have:

f |F0
= δ2:F0 7−→ F0 ∪G0 ∪H0 ∪ I0 ∪ J0 ∪H1 ∪ I1,

f |G0
= δ0

−1:G0 7−→ F0 ∪G0 ∪H0 ∪ I0 ∪ J0 ∪H1 ∪ I1,

f |F1
= δ2

−1:F1 7−→ F1 ∪G1 ∪H0 ∪ I0 ∪ J0 ∪H1 ∪ I1,

f |G1
= δ0:G1 7−→ F1 ∪G1 ∪H0 ∪ I0 ∪ J0 ∪H1 ∪ I1,

f |F2
= δ1:F2 7−→ F2 ∪G2 ∪H2 ∪ I2 ∪ J2 ∪H3 ∪ I3,

f |G2
= δ0

−1:G2 7−→ F2 ∪G2 ∪H2 ∪ I2 ∪ J2 ∪H3 ∪ I3,

f |F3
= δ1

−1:F3 7−→ F3 ∪G3 ∪H2 ∪ I2 ∪ J2 ∪H3 ∪ I3,

f |G3
= δ0:G3 7−→ F3 ∪G3 ∪H2 ∪ I2 ∪ J2 ∪H3 ∪ I3.

Finally, we consider Farey blocks in F0. If we were in the case of the once punctured

torus we would need to apply a power of the involution δ1δ0δ1. For the twice punctured

torus, this element has infinite order (its fourth power is Dehn twist about χ2). Therefore

we need to investigate the effect of powers of δ1δ0δ1 and δ2δ0δ2. For simplicity we denote

δjδ0δj by ρj for j = 1, 2. We have the following lemma.

Lemma 4.6.2. If the Farey block (γ1, γ2, β; γ3) is in H0 then its image under ρ2
−1 is in

I0 if a ≥ 1 or is in J0 if a = 0. If (γ1, γ2, β; γ3) is in I0 then its image under ρ2
−2 is in I0

if a ≥ 1 or is in J0 if a = 0. Moreover any Farey block in I0 or J0 arises as the image of a

Farey block in H0 or I0 in this way.

Proof. The curve χ0 is fixed under application of δ0 or δ2 and so under any power of ρ2.

It follows by a similar argument to those given in section 2.1 that ρ2 interchanges e0 and

e∞∞. It remains to check the effect of ρ2 on the possible curves γ3.
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If the Farey block (γ1, γ2, β; γ3) is in I0 then γ3 = (a+1, 0, a, 1) ∈ ∆5 ∩∆6. We claim

that ρ2
−1 sends (a+1, 0, a, 1) ∈ ∆5∩∆6 to (a, 0, a, 1) ∈ ∆5∩∆6. Likewise, if (γ1, γ2, β; γ3)

is in H0 then γ3 = (a, 0, a, 1) ∈ ∆5∩∆6 and we claim that ρ2
−1 sends (a, 0, a, 1) ∈ ∆5∩∆6

to (a, 0, a− 1, 1) ∈ ∆5 ∩ ∆6 if a ≥ 1 or to e0 if a = 0.

This claim is proved using Propositions 3.3.2 and 3.3.3 as follows:

(a+ 1, 0, a, 1) ∈ ∆5 ∩ ∆6

δ2
−1

��

(a, 0, a, 1) ∈ ∆5 ∩ ∆6

δ2
−1

��
(a+ 1, 0, a, 1) ∈ ∆5 ∩ ∆6

δ0
−1

��

(a, 1, a− 1, 1) ∈ ∆6

δ0
−1

��
(a, 1, a, 1) ∈ ∆5

δ2
−1

��

(a, 0, a− 1, 1) ∈ ∆5 ∩ ∆6

δ2
−1

��
(a, 0, a, 1) ∈ ∆5 ∩ ∆6 (a, 0, a− 1, 1) ∈ ∆5 ∩ ∆6

where we assume a ≥ 1 in the right hand column. If a = 0 then

ρ2
−1(e1

−1) = δ2
−1δ0

−1δ2
−1(e1

−1) = δ2
−1δ0

−1(e1
∞) = δ2

−1(e0) = e0.

�

Corollary 4.6.3. Applying ρ2
−j to Farey blocks in H0, I0 decreases the length of γ3 by

2j. �

Therefore we define f on F0 as follows.

f |H0
= ρ2

−1:H0 −→ I0 ∪ J0, f |I0 = ρ2
−2: I0 −→ I0 ∪ J0,

f |H1
= ρ2:H1 −→ I1 ∪ J0, f |I1 = ρ2

2: I1 −→ I1 ∪ J0,

f |H2
= ρ1

−1:H2 −→ I2 ∪ J2, f |I2 = ρ1
−2: I2 −→ I2 ∪ J2,

f |H3
= ρ1:H3 −→ I3 ∪ J2, f |I3 = ρ1

2: I3 −→ I3 ∪ J2,

f |J0
= e : J0 −→ J0, f |J2

= ι2: J2 −→ J0.

This completes the definition of the map f .
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4.7. The word acceptor.

We have now subdivided the space F of Farey blocks into states and defined the map f

on each state, in such a way that

(i) for each state U , we have f |U ≡ φ for some φ ∈ MCG(Σ2), and

(ii) for any states U and V if f(U) ∩ V ◦ 6= ∅ then V ⊂ f(U).

In order for f to define a normal form leading to a suitable word acceptor, we now only

need to verify that successive applications of the map f always eventually terminate in

the end state J0. Of course, this requirement was central to our choice of definition of the

map f . In analogy with the case of the once punctured torus Σ1 we have:

Proposition 4.7.1. Let (γ1, γ2, β; γ3) be any Farey block in F . There exists a non-

negative integer n so that

fn(γ1, γ2, β; γ3) = (e0, e
∞
∞, χ0; e

0).

Proof. This is similar to Proposition 2.3.5. First, if (γ1, γ2, β; γ3) ∈ F2 it follows from

Proposition 4.2.2 and Proposition 4.4.2. that f strictly decreases |β|. Thus there is a non-

negative integer n2 so that fn2(γ1, γ2, β; γ3) is in F1 or F0. For any Farey block in F1 the

map f strictly decreases |γ1|+ |γ2|. This follows from Corollary 2.3.4. Thus there is a non-

negative integer n1 so that fn2+n1(γ1, γ2, β; γ3) is in F0. For any Farey block in F0 other

than (e0, e
∞
∞, χ0; e

0) or (e0, e∞∞, χ2; e0), using Corollary 4.6.3 we see that the map strictly

decreases |γ3|. Thus there is a non-negative integer n0 so that fn2+n1+n0(γ1, γ2, β; γ3) is

either (e0, e
∞
∞, χ0; e

0) or (e0, e∞∞, χ2; e0). Finally

f |J2
(e0, e∞∞, χ2; e0) = ι2(e

0, e∞∞, χ2; e0) = (e0, e
∞
∞, χ0; e

0).

�

Remark. Just as in section 2 this proposition proves that the actions of f and MCG(Σ2)

are orbit equivalent, in other words, for any (γ1, γ2, β; γ3) and (γ′1, γ
′
2, β

′; γ′3) in F we

have

(γ′1, γ
′
2, β

′; γ′3) =
(

φ(γ1), φ(γ2), φ(β);φ(γ3)
)

for φ ∈ MCG(Σ2) if and only if there exist non negative integers m, n so that

fn(γ1, γ2, β; γ3) = fm(γ′1, γ
′
2, β

′; γ′3).

See the remark following Proposition 2.3.5 for the significance of this observation.

Proposition 4.7.1 allows us to construct a normal form for elements of MCG(Σ2).

Namely, for any φ ∈ MCG(Σ2), we determine the map fn for which

fn
(

φ(e0), φ(e∞∞), φ(χ0);φ(e0)
)

= (e0, e
∞
∞, χ0; e

0).
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D A C

E E

F G

H I

0 0 0

0

1 1

1 1

1

B0

F0

H0 I0

G0

J2J0

B3 C2

Fig. 4.7.1. A diagram of the arrows from states A0, . . . , J0. An arrow from (or to)

a box means that there should be an arrow from (or to) each state in that box.

Each arrow should be labelled with the inverse of f on the state it points towards.

Since at each stage f is a fixed element of MCG(Σ2) this, together with the fact that

MCG(Σ2) acts freely on F , gives a unique expression for φ. The details of the normal

form are now rather complicated and are best described in terms of a word acceptor for

MCG(Σ2).

The states of the word acceptor are obviously Aj , . . . , Ij for j = 0, 1, 2, 3 and J0, J2.

To get the arrows we need to invert the map f on each separate state. The alphabet A
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which labels these arrows will consist of all possible values of f−1, namely:

A =

{

e, ι2, δ0
±1, δ1

±1, δ2
±1, δ1δ0, δ1

−1δ0
−1, δ2δ0, δ2

−1δ0
−1,

(δ1δ0δ2)
±1, (δ2δ0δ1)

±1, ρ1
±1, ρ2

±1, ρ1
±2, ρ2

±2,

}

.

We list the labelled arrows leading from each state. We begin with J0. It has the following

arrows which may be read off from the definition of f . The arrows from J0 are.

J0
δ1

−1

// E0, J0
δ2

−1

// F0, J0
δ0 // G0, J0

ρ2 // H0, J0
ρ2

2

// I0,

J0
δ1 // E1, J0

δ2 // F1, J0
δ0

−1

// G1, J0
ρ2

−1

// H1, J0
ρ2

−2

// I1,

J0
ι2 // J2.

The arrows from J2 may be found from those from J0 by applying the symmetry ι2, with

one exception: there is no arrow from J2 to J0.

The arrows from Ij may be found by applying ιj to the following arrows from I0:

I0
δ1

−1

// E0, I0
δ2

−1

// F0, I0
δ0 // G0, I0

ρ2 // H0, I0
ρ2

2

// I0,

I0
δ1 // E1, I0

δ2 // F1, I0
δ0

−1

// G1.

The arrows from Hj may be found by applying ιj to the following arrows from H0:

H0
δ1

−1

// E0, H0
δ2

−1

// F0, H0
δ0 // G0,

H0
δ1 // E1, H0

δ2 // F1, H0
δ0

−1

// G1.

The arrows from Fj and Gj are very similar. They may be found by applying ιj to the

following arrows from F0 and G0:

F0
δ1

−1

// E0, F0
δ1 // E1, F0

δ2
−1

// F0, F0
δ0 // G0,

G0
δ1

−1

// E0, G0
δ1 // E1, G0

δ2
−1

// F0, G0
δ0 // G0.

The arrows from A0, B0, D0 and E0 are all similar. They are

A0
δ0 // D0, A0

δ1
−1

// A0, A0
δ0

−1δ1
−1

// B3, A0
δ2

−1δ0
−1δ1

−1

// C2,

B0
δ0 // D0, B0

δ1
−1

// A0, B0
δ0

−1δ1
−1

// B3, B0
δ2

−1δ0
−1δ1

−1

// C2,

D0
δ0 // D0, D0

δ1
−1

// A0, D0
δ0

−1δ1
−1

// B3, D0
δ2

−1δ0
−1δ1

−1

// C2,

E0
δ0 // D0, E0

δ1
−1

// A0, E0
δ0

−1δ1
−1

// B3, E0
δ2

−1δ0
−1δ1

−1

// C2.
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Finally the arrows from C0 are

C0
δ1

−1

// A0, C0
δ0

−1δ1
−1

// B3, C0
δ2

−1δ0
−1δ1

−1

// C2.

The arrows from Aj , Bj, Cj , Dj and Ej for j = 1, 2, 3 may be found by applying the

symmetry ιj to A0, B0, C0, D0 or E0 respectively.

In Fig. 4.7.1 we have given a schematic representation of the arrows from A0, . . . , J0

listed above. In order to simplify the diagram we have drawn a single arrow to represent

several between different pairs of states. In order to reconstruct the word acceptor, the

diagram should be reproduced with all suffices j = 0, 1, 2, 3 by applying symmetries ιj .

The arrows to the right hand columns indicate how these four different diagrams are linked.

An arrow between two of the rectangular boxes should be replaced with arrows between

all the states in each of the two boxes. Finally, the arrows from state Uj to Vk should be

labelled with the inverse of f |Vk
. Observe that all arrows between boxes either go upwards

or across but never downwards. This gives the word acceptor the structure of a partially

ordered set.
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5. The word difference machine

In this final section, following the procedures of sections 1.2 and 2.5, we construct a word

difference machine for the word acceptor of MCG(Σ2).

5.1. Outline of the construction

The construction of the word difference machine is very similar to the construction for

the once punctured torus given earlier. Our notation will follow that established in the

introduction to section 2.5. As before, the word difference machine is a 2-stringed finite

state automaton. Its states are the elements of a set of word differences D. As before, the

basic building blocks are squares

U
ψ //

α

��

V

β

��
α(U)

ψ′

// β(V )

(∗)

where now U , V are subsets of the states Aj , . . . , Ij , J0, J2 ⊂ F . As usual, in such a

square ψ, ψ ∈ D, ψ(U) = V , α = f |U , β = f |V and ψ′ = βψα−1.

In addition to degenerate squares, or triangles, of type (∗∗)

U
ψ=α //

α

��

α(U)

α(U)

ψ′=e

77ooooooooooooo

β(V )
ψ=β−1

//

ψ′=e ''OOOOOOOOOOOOO V

β

��
β(V )

(∗∗)

used un section 2.5 we also introduce further degenerate squares where we only apply f to

either U or to V . If we do not apply f to U , then we may relax the requirement that U

be contained in a single state in the partition of F . In this case we write ψ−1(V ) in place

of U . Likewise when we do not apply f to V we write ψ(U) instead of V and allow it to

contain points in more than one state.

U
ψ //

α

��

ψ(U)

α(U)

ψ′

;;wwwwwwww

ψ−1(V )
ψ //

ψ′

$$I
III

IIII
I

V

β

��
β(V )

(∗ ∗ ∗)

We require that ψ′ = ψα−1 or ψ′ = βψ respectively is in D. We need to be careful that

only finitely many such triangles occur in each path through the word difference machine.

This is a key point which we will discuss later.
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The arrows in the word difference machine will consist of pairs (α−1, β−1) correspond-

ing to the diagram (∗) or (α−1,−), (−, β−1) corresponding to (∗∗) or (∗ ∗ ∗). For example,

a square of type (∗) will give an arrow (α−1, β−1) from ψ′ ∈ D to ψ ∈ D.

The set D should contain all elements of the alphabet A constructed in the previous

section. In fact we will begin by considering the set

D0 =
{

e, ι2, δ0
±1, δ1

±1, δ2
±1

}

.

As all the elements of A have length at most six in these letters we can break squares in-

volving word differences in A down into at most six squares (placed horizontally) involving

word differences in D0 (see section 5.5 below). During our construction we will add to the

list D0. Recall that in Section 3.3 we found various relations in MCG(Σ2). We will use

these when constructing the squares. The fact that we need to use no more relations is

the proof that the presentation for MCG(Σ2) given in Theorem 3.2.1 works.

Because of the stratification of states in F described in section 4.5, the normal form

given by the word acceptor for each element φ in MCG(Σ2) may be broken down as

φ = φ2φ1φ0 where φj(e0, e
∞
∞, χ0; e

0) is in Fj for j = 0, 1, 2. We will break the word

difference machine into subgraphs which correspond to these pieces. There will additionally

be a fourth subgraph which will correspond to certain special word differences, which we

call exceptional (see section 5.4 below).

5.2. Squares and triangles arising from states in F2.

We begin by constructing squares and triangles where U and V are contained in F2 and

where ψ ∈ D0 = {δj
±1|j = 0, 1, 3} ∪ {ι2}. By use of the symmetries ιj for j = 1, 2, 3 we

may restrict our attention to the case where U and V are subsets of A0, B0, C0, D0 and

E0. As usual, we drop the distinction between A0, . . . , E0 and A0, . . . , E0.

Since δ1 = f |A0
we already know its effect on A0. Thus we can write down the triangle:

A0
δ1 //

δ1

��

A0 ∪B0 ∪ C0 ∪D0 ∪ E0

A0 ∪B0 ∪ C0 ∪D0 ∪E0

e

44hhhhhhhhhhhhhhhhhh

In order to simplify things further, we define Qj = Aj ∪Bj ∪Cj ∪Dj ∪Ej for j = 0, 1, 2, 3.

Now suppose that U is one of B0 or C0. Using Proposition 3.3.1, we obtain two

squares:

B0
δ1 //

δ2
−1δ0

−1

��

C1

δ2
−1δ0

−1δ1
−1

��
Q3 e

// Q3

C0
δ1 //

δ2δ0δ1

��

B1

δ2δ0

��
Q2 e

// Q2
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When considering D0 and E0 we make the following definitions which again simplify

the notation.
Rj = Aj ∪Bj ∪Dj ∪Ej for j = 0, 1, 2, 3;

Sj = Fj ∪Gj for j = 0, 1, 2, 3;

Tj = Hj ∪ Ij ∪ Jj ∪Hj+1 ∪ Ij+1 for j = 0, 2.

We obtain

D0
δ1 //

δ0
−1

��

D1

δ0

��
R0

δ1δ0δ1 // R1

E0
δ1 //

δ1

��

S0 ∪ S1 ∪ T0

S0 ∪ S1 ∪ T0

e

66nnnnnnnnnnnn

Now we do the same for ψ = δ1
−1. We obtain one triangle:

Q0
δ1

−1

//

e
  B

BB
BB

BB
B

A0

δ1

��
Q0

Now we consider squares where ψ = δ2. From Proposition 3.3.2 we know the effect of

δ2 on ∆1, . . . ,∆7. We know that δ2:A0 −→ A0 and δ2:B0 −→ B0∪D0. We divide U = B0

into maximal subsets U1 = δ2
−1(B0) or U2 = δ2

−1(D0). This gives:

A0
δ2 //

δ1

��

A0

δ1

��
Q0

δ2 // Q0

δ2
−1(B0)

δ2 //

δ2
−1δ0

−1

��

B0

δ2
−1δ0

−1

��
C3 ∪D3

δ0 // Q3

δ2
−1(D0)

δ2 //

δ2
−1δ0

−1

��

D0

δ0
−1

��
A3 ∪B3 ∪ E3

δ2δ0 // Q0

Now δ2(C0 ∪ D0) = C0. Therefore we divide V = C0 into subsets V1 = δ2(C0) and

V2 = δ2(D0).

C0
δ2 //

δ2δ0δ1

��

δ2(C0)

δ2δ0δ1

��
Q2

δ0 // C2 ∪D2

D0
δ2 //

δ0
−1

��

δ2(D0)

δ2δ0δ1

��
R0

ι2δ2
−1

// A2 ∪B2 ∪E2

E0
δ2 //

δ1

��

E0

δ1

��
S0 ∪ S1 ∪ T0

δ2 // S0 ∪ S1 ∪ T0

We remark that it is not immediately obvious that the bottom lines of these squares are

as claimed. We now do an example which illustrates how the bottom line is found. The

rest are simple and are left to the reader.
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The example we choose is

δ2
−1(B0) ∩B0

δ2 //

δ2
−1δ0

−1

��

B0

δ2
−1δ0

−1

��
C3 ∪D3

δ0 // Q3

We do this using the following result

Proposition 5.2.1. If (a, b, c, d) ∈ ∆3 ∪ ∆4 = B0 and δ2(a, b, c, d) ∈ ∆3 ∪ ∆4 = B0 then

δ2
−1δ0

−1(a, b, c, d) ∈ ∆26 ∪ ∆27 ∪ ∆28 = C3 ∪D3

and

δ2
−1δ0

−1δ2(a, b, c, d) = δ0δ2
−1δ0

−1(a, b, c, d) ∈ Q3.

Moreover, any point of Q3 arises in this way.

Proof. The word difference can of course be found without reference to the states on the

bottom line of the diagram. It is clear that in the present case the new word difference ψ′

is
(

δ2
−1δ0

−1
)

δ2
(

δ2
−1δ0

−1
)−1

= δ2
−1δ0

−1δ2δ0δ2 = δ0

using the relation δ2δ0δ2 = δ0δ2δ0.

We now justify the claims about the regions involved in this diagram. We begin by

identifying U1 = B0 ∩ δ2
−1(B0). We know that B0 = ∆3 ∪ ∆4. By Proposition 3.3.2 (iii)

and (iv) we see that (a, b, c, d) ∈ ∆3 is sent to ∆3 ∪ ∆4 = B0 provided a ≤ b+ d and that

(a, b, c, d) ∈ ∆4 is sent to B0 provided a ≤ d. Thus,

U1 = {(a, b, c, d) ∈ ∆3: a ≤ b+ d} ∪ {(a, b, c, d) ∈ ∆4: a ≤ d}.

By definition δ2(U1) ⊂ B0, and it is not hard to check that δ2(U1) = B0.

We now investigate the effect of δ2
−1δ0

−1 on U . We know from Proposition 3.4.3 (i)

that δ0
−1 sends ∆3 and ∆4 to ∆23 and ∆22 respectively by δ0

−1(a, b, c, d) = (a, b, c, d).

Thus U is sent to the appropriate subset of A3. Applying ι3 to Proposition 3.3.1 (i)

we see that if (a, b, c, d) ∈ ∆22 with a ≤ d then δ2
−1(a, b, c, d) is in ∆26. Similarly, if

(a, b, c, d) ∈ ∆23 with a ≤ b+d then δ2
−1(a, b, c, d) is in ∆27 or ∆28. It is not hard to show

that this map is surjective and so δ2
−1δ0

−1(U) = C3 ∪D3.

Finally, we know that δ2
−1δ0

−1 maps B0 onto Q3. �

By similar reasoning we construct all the squares and triangles for which ψ = δ2
−1.

A0
δ2

−1

//

δ1

��

A0

δ1

��
Q0

δ2
−1

// Q0

B0
δ2

−1

//

δ2
−1δ0

−1

��

δ2
−1(B0) ∩B0

δ2
−1δ0

−1

��
Q3

δ0
−1

// C3 ∪D3
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δ2(C0) ∩ C0
δ2

−1

//

δ2δ0δ1

��

C0

δ2δ0δ1

��
C2 ∪D2

δ0
−1

// Q2

δ2(D0) ∩ C0
δ2

−1

//

δ2δ0δ1

��

D0

δ0
−1

��
A2 ∪B2 ∪E2

ι2δ1 // R0

D0
δ2

−1

//

δ0
−1

��

δ2
−1(D0) ∩B0

δ2
−1δ0

−1

��
R0

δ0
−1δ2

−1

// A3 ∪B3 ∪ E3

E0
δ2

−1

//

δ1

��

E0

δ1

��
S0 ∪ S1 ∪ T0

δ2
−1

// S0 ∪ S1 ∪ T0

Similarly, when ψ = δ0 or δ0
−1 we obtain:

R0
δ0 //

e
!!B

BB
BB

BB
B

D0

δ0
−1

��
R0

C0
δ0 //

δ2δ0δ1

��

C0

δ2δ0δ1

��
Q2

δ1 // Q2

A0
δ0

−1

//

δ1

��

B3

δ1δ0

��
Q0 e

// Q0

B0
δ0

−1

//

δ2
−1δ0

−1

��

A3

δ2
−1

��
Q3 e

// Q3

C0
δ0

−1

//

δ2δ0δ1

��

C0

δ2δ0δ1

��
Q2

δ1
−1

// Q2

D0
δ0

−1

//

δ0
−1

��

R0

R0

e

==||||||||

E0
δ0

−1

//

δ1

��

E3

δ2
−1

��
S0 ∪ S1 ∪ T0

ι2ρ2 // S3 ∪ S3 ∪ T2

Finally we consider the word difference ι2.

A0
ι2 //

δ1

��

A2

δ2

��
Q0

ι2 // Q2

B0
ι2 //

δ2
−1δ0

−1

��

B2

δ1
−1δ0

−1

��
Q3

ι2 // Q1

C0
ι2 //

δ2δ0δ1

��

C2

δ1δ0δ2

��
Q2

ι2 // Q0

D0
ι2 //

δ0
−1

��

D2

δ0
−1

��
R0

ι2 // R2

E0
ι2 //

δ1

��

E2

δ2

��
S0 ∪ S1 ∪ T0

ι2 // S2 ∪ S3 ∪ T2
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Now consider the diagrams we have constructed above. If the bottom line consists

of a word difference between regions we have already constructed then we have no more

work. However, there are some diagrams for which this is not the case. First, there are

those diagrams where the bottom line involves the regions making up Sj or Tj . We will

consider these in the next section. Secondly, there are word differences between regions in

Qj or Rj which we have not yet considered. We consider these individually.

The easiest case is where we have a word difference of ι2ψ where ψ is one of the word

differences that we can already deal with. These can be analysed as follows. For each of

the squares we have constructed with word difference ψ and written in the form (∗) we

add a new square with word difference ι2ψ:

U
ψ //

α

��

V
ι2 //

β

��

W

γ

��
U ′

ψ′

// V ′
ι2 // W ′

where W = ι2(V ), W ′ = ι2(V
′) and γ = ι2βι2 is f |W . If ψ′ has the form ι2ψ

′′ for some

ψ′′, then we use ι2
2 = e to get a word difference of ψ′′. This is illustrated in the example

given in section 5.5 below.

The remaining word differences we have to consider are

δ2δ0:A3 ∪B3 ∪ E3 −→ R0, (1)

δ0
−1δ2

−1:R0 −→ A3 ∪B3 ∪ E3, (2)

ρ1 = δ1δ0δ1:R0 −→ R1. (3)

The word difference (3) is slightly more complicated than the others. We will treat this

word difference and those arising from it separately in section 5.4. These will be called

exceptional word differences and will constitute a separate subgraph of the word dif-

ference machine.

We now consider the word difference (1). By examining which point goes to which,

we see that this may be broken into four new arrows. Namely

δ2δ0: δ0
−1δ2

−1(B0) ∩A3 −→ B0, δ2δ0: δ0
−1δ2

−1(D0) ∩A3 −→ D0,

δ2δ0:B3 −→ A0, δ2δ0:E3 −→ E0

Now δ0
−1δ2

−1(B0) ⊂ A3 and δ0
−1δ2

−1(D0) ⊂ A3. Thus we obtain the following squares

δ0
−1δ2

−1(B0)
δ2δ0 //

δ2
−1

��

B0

δ2
−1δ0

−1

��
C3 ∪D3

δ0 // Q3

δ0
−1δ2

−1(D0)
δ2δ0 //

δ2
−1

��

D0

δ0
−1

��
A3 ∪B3 ∪ E3

δ2δ0 // R0
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B3
δ2δ0 //

δ1δ0

��

A0

δ1

��
Q0

δ2 // Q0

E3
δ2δ0 //

δ2
−1

��

E0

δ1

��
S2 ∪ S3 ∪ T2

ι2δ0
−1δ1

−1

// S0 ∪ S1 ∪ T0

The word differences on the bottom lines of these diagrams either have been considered

above or else involve Sj and Tj . In the latter case we will consider them in the next section.

e

δ  δ δ ι  δ ι  δ  δ

δ δ ι  δ ι  δ

ι

δ δ ι  δ ι  δ

δ  δ δ ι  δ ι  δ  δ

2

0 2 2 2 2 2 2 0

0 1 2 0 2 1

1 0 2 1 2 0

2 0 2 2 2 2 0 2
−1−1−1

−1 −1

−1−1

−1 −1 −1

Fig. 5.2.1. Non-exceptional arrows in the word difference machine where U is one of

A0, B0, C0, D0. Each arrow is labelled by a pair (α−1, β−1) as described in section 5.1.

We now consider the word difference (2). It is rather similar to (1), and splits as

δ0
−1δ2

−1:B0 −→ δ0
−1δ2

−1(B0) ∩A3, δ0
−1δ2

−1:A0 −→ B3,

δ0
−1δ2

−1:D0 −→ δ0
−1δ2

−1(D0) ∩A3, δ0
−1δ2

−1:E0 −→ E3.
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B0
δ0

−1δ2
−1

//

δ2
−1δ0

−1

��

δ0
−1δ2

−1(B0)

δ2
−1

��
Q3

δ0
−1

// C3 ∪D3

D0
δ0

−1δ2
−1

//

δ0
−1

��

δ0
−1δ2

−1(D0)

δ2
−1

��
R0

δ0
−1δ2

−1

// A3 ∪B3 ∪ E3

A0
δ0

−1δ2
−1

//

δ1

��

B3

δ1δ0

��
Q0

δ2
−1

// Q0

E0
δ0

−1δ2
−1

//

δ1

��

E3

δ2
−1

��
S0 ∪ S1 ∪ T0

ι2δ2δ0 // S2 ∪ S3 ∪ T2

The word differences on the bottom lines of these diagrams either have been considered

above or else involve Sj and Tj , again to be treated in the next section.

Fig. 5.2.1 shows the non-exceptional arrows constructed above where U is one of

A0, B0, C0 or D0. The labels on the arrows may be obtained from the squares listed

above. For example, the three arrows from e to δ1 are labelled (δ1
−1,−), (δ0δ2, δ1δ0δ2)

and (δ1
−1δ0

−1δ2
−1, δ0

−1δ2
−1).

5.3. Squares and triangles arising from states in F0 and F1.

We proceed along the lines of the previous section. What we do now is essentially the same

as in section 2.5. Recall that Sj = Fj∪Gj for j = 0, 1, 2, 3 and Tj = Hj∪Ij∪Jj∪Hj+1∪Ij+1

for j = 0, 2. We begin with the word diffences δ1 and δ−1
1 . We have:

S0 ∪ T0
δ1 //

e
%%KKKKKKKKKK
E1

δ1
−1

��
S0 ∪ T0

T0
δ1

−1

//

e
  A

AA
AA

AA
A

E0

δ1

��
T0

We now consider δ2:

F0
δ2 //

δ2

��

S0 ∪ T0

S0 ∪ T0

e

99ssssssssss

G0
δ2 //

δ0
−1

��

G1

δ0

��
S0 ∪ T0

ρ2 // S1 ∪ T0

T0
δ2 //

e
  A

AA
AA

AA
F1

δ2
−1

��
T0

(Recall that ρ2 = δ2δ0δ2.) We now consider δ2
−1 and δ0:

S0 ∪ T0
δ2

−1

//

e
%%KKKKKKKKKK
F0

δ2

��
S0 ∪ T0

S0 ∪ T0
δ0 //

e
%%KKKKKKKKKK
G0

δ0
−1

��
S0 ∪ T0
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We now consider δ0
−1:

F0
δ0

−1

//

δ2

��

F1

δ2
−1

��
S0 ∪ T0

ρ2
−1

// S1 ∪ T0

G0
δ0

−1

//

δ0
−1

��

S0 ∪ T0

S0 ∪ T0

e

99ssssssssss

T0
δ0

−1

//

e
  A

AA
AA

AA
A

G1

δ0

��
T0

We now consider ι2:

F0
ι2 //

δ2

��

F2

δ1

��
S0 ∪ T0

ι2 // S2 ∪ T2

G0
ι2 //

δ0
−1

��

F2

δ0
−1

��
S0 ∪ T0

ι2 // S2 ∪ T2

As for word differences between states in F2, if we have a square for the word difference ψ

of the form (∗) then we add a new square with the word difference ι2ψ:

U
ψ //

α

��

V
ι2 //

β

��

W

γ

��
U ′

ψ′

// V ′
ι2 // W ′

where W = ι2(V ), W ′ = ι2(V
′) and γ = ι2βι2 is f |W . Now if ψ′ were ι2ψ

′′ then we have

ι2ψ
′ = ι2

2ψ′′ = ψ′′ since ι2
2 is the identity.

This has completed the construction of squares and triangles for the standard word

differences. There remain a few cases that we have not dealt with. These arise is the

bottom line in some of the diagrams we have found. The relevant word differences are

ρ2:S0 ∪ T0 −→ S1 ∪ T0, (1)

ρ2
−1:S0 ∪ T0 −→ S1 ∪ T0, (2)

δ0
−1δ1

−1:S2 ∪ S3 ∪ T2 −→ S2 ∪ S3 ∪ T2, (3)

δ2δ0:S0 ∪ S1 ∪ T0 −→ S0 ∪ S1 ∪ T0 (4)

where, as in section 4.6, ρj = δjδ0δj for j = 1, 2. We consider them separately.

The word difference (1) splits as

ρ2:F0 −→ G1, ρ2:G0 −→ F1, ρ2:H0 ∪ J0 −→ I0, ρ2: I0 −→ H0,

as well as ρ2 acting on H1 and I1. Applying the symmetry ι1 this is equivalent to ρ2
−1

acting on H0 and I0 which we consider under (2). Thus we get diagrams

F0
ρ2 //

δ2

��

G1

δ0

��
S0 ∪ T0

ρ2 // S1 ∪ T0

G0
ρ2 //

δ0
−1

��

F1

δ2
−1

��
S0 ∪ T0

ρ2 // S1 ∪ T0
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H0 ∪ J0
ρ2 //

e
%%LLLLLLLLLL
I0

ρ2
−1

��
H0 ∪ J0

I0
ρ2 //

ρ2
−1

��

H0

ρ2
−2

��
H0 ∪ J0 e

// H0 ∪ J0

Similarly for (2). We get

ρ2
−1:F0 −→ G1, ρ2

−1:G0 −→ F1, ρ2
−1:H0 −→ I0, ρ2

−1: I0 −→ H0 ∪ J0.

In addition, there is ρ2
−1 acting on H1 and I1. Applying the symmetry ι1, we can obtain

these word differences from ρ2 acting on H0 and I0. This was done above. The remaining

word differences give the following diagrams

F0
ρ2

−1

//

δ2

��

G1

δ0

��
S0 ∪ T0

ρ2
−1

// S1 ∪ T0

G0
ρ2

−1

//

δ0
−1

��

F1

δ2
−1

��
S0 ∪ T0

ρ2
−1

// S1 ∪ T0

H0
ρ2

−1

//

ρ2
−2

��

I0

ρ2
−1

��
H0 ∪ J0 e

// H0 ∪ J0

I0
ρ2

−1

//

ρ2
−1

��

H0 ∪ J0

H0 ∪ J0

e

99rrrrrrrrrr

We now consider the word differences (3) and (4). The only way that these word

differences can occur is from one of the following diagrams

E3
ι2δ2δ0 //

δ2
−1

��

E2

δ2

��
S2 ∪ S3 ∪ T2

δ0
−1δ1

−1

// S2 ∪ S3 ∪ T2

E0
ι2δ0

−1δ2
−1

//

δ1

��

E1

δ1
−1

��
S0 ∪ S1 ∪ T0

δ2δ0 // S0 ∪ S1 ∪ T0

Applying the symmetries we see that it is sufficient to consider the following word differ-

ences

δ0δ2:S0 ∪ T0 −→ S0 ∪ S1 ∪ T0, (5)

δ0
−1δ2

−1:S0 ∪ T0 −→ F1, (6)

δ2δ0:S0 ∪ T0 −→ G1, (7)

δ2
−1δ0

−1:S0 ∪ T0 −→ S0 ∪ S1 ∪ T0. (8)
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These break down into diagrams as follows

F0
δ0δ2 //

δ2

��

G0

δ0
−1

��
S0 ∪ T0 e

// S0 ∪ T0

G0
δ0δ2 //

δ0
−1

��

S1 ∪ T0

S0 ∪ T0

ρ2

99ssssssssss

T0
δ0δ2 //

ρ2   A
AA

AA
AA

F0

δ2

��
T0

S0 ∪ T0
δ0

−1δ2
−1

//

ρ2
−1

((RRRRRRRRRRRRR
F1

δ2
−1

��
S1 ∪ T0

S0 ∪ T0
δ2δ0 //

ρ2 %%KKKKKKKKKK
G1

δ0

��
S1 ∪ T0

F0
δ2

−1δ0
−1

//

δ2

��

S1 ∪ T0

S0 ∪ T0

ρ2
−1

66lllllllllllll

G0
δ2

−1δ0
−1

//

δ0
−1

��

F0

δ2

��
S0 ∪ T0 e

// S0 ∪ T0

T0
δ2

−1δ0
−1

//

ρ2
−1

&&NNNNNNNNNNNNN G0

δ0
−1

��
T0

ρ

ρ

e

δ δ δ

δ  δ δ  δ

ι δ  δ

ι δ  δ ι δ  δ

ι δ  δ

δ  δ δ δ δ

0

0

−1

2

−1

1

−1

2 1 0

−1 −1

2 0 2

−1 −1

2 0201

2 0 2

2 1 0

0 2

−1 −1

2

−1 −1

0 2

2

2

−1

δ  δ

Fig. 5.3.1. Arrows in the word difference machine where U is one of

F0, G0, H0, I0, J0. In addition there should be word differences ι2ψ.

The square boxes denote word differences where V is Ej .
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We remark that all these squares have introduced no new word differences in their

bottom lines.

5.4. The exceptional word differences.

We have now completed the word difference machine except that we have not dealt with

word differences arising from the following square (which was called (3) in section 5.2):

D0
δ1 //

δ0
−1

��

D1

δ0

��
R0

ρ1 // R1

and its symmetric images. Recall that Rj = Aj ∪Bj ∪Dj ∪ Ej .

Observe that δ1:D0 −→ D1 and its symmetric images do not arise in the bottom

row of any of the squares or triangles we have constructed so far. We call them excep-

tional initial states. There are some states which only arise in paths beginning with an

exceptional initial states. We call these exceptional states.

Because they never occur in a bottom row, once we have gone from an exceptional

state to a non-exceptional state (that is any of the states considered in sections 5.2 and

5.3) we can never return to an exceptional state. In order to get from an exceptional to

a non-exceptional state it is usually necessary to pass through a triangle. Thus a triangle

of this special type can only occur once in any path through the word difference machine.

The exceptional states constitute a separate subgraph of the word difference machine.

We now construct the exceptional states arising from the map: ρ1:R0 −→ R1.

Intersecting this with the states of F2 gives:

ρ1:ρ1
−1(D1) ∩A0 −→ D1, (1)

ρ1:ρ1
−1(B1) ∩A0 −→ B1, (2)

ρ1:D0 −→ ρ1(D0) ∩A1, (3)

ρ1:B0 −→ ρ1(B0) ∩A1, (4)

ρ1:E0 −→ E1. (5)

Each of these five maps is the top line in a square or triangle of the form (∗), (∗∗) or (∗∗∗).

We claim that ρ1
−1(D1) and ρ1

−1(B1) are subsets of A0 and that ρ1(D0) and ρ1(B0) are

subsets of A1. This may be checked using Propositions 3.3.1, and 3.3.3. The maps (1) and

(3) above give rise to squares of the form (∗) for which the new word difference ψ′ is again
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ρ1. They are

ρ1
−1(D1)

ρ1 //

δ1

��

D1

δ0

��
R0

ρ1 // R1

D0
ρ1 //

δ0
−1

��

ρ1(D0)

δ1
−1

��
R0

ρ1 // R1

The map (5) gives a square which leads directly to a non-exceptional state involving F1

and F0. It is

E0
ρ1 //

δ1

��

E1

δ1
−1

��
S0 ∪ S1 ∪ T0

δ0 // S0 ∪ S1 ∪ T0

The maps (2) and (4) are immediately followed by a triangle and a square.

ρ1
−1(B1)

ρ1 //

δ1

��

B1

δ2δ0

��
C0

δ1δ0

::vvvvvvvvvv

δ2δ0δ1

��

Q2

Q2

δ1

::uuuuuuuuuu

B0
ρ1 //

δ0δ1 ##F
FF

FF
FF

FF

δ2
−1δ0

−1

��

ρ1(B0)

δ1
−1

��
Q3

δ1 ##G
GG

GG
GG

GG
C1

δ2
−1δ0

−1δ1
−1

��
Q3

ρδ

δ  δ

δ  δ
δ

δ1

1 0

0 1

0

11

Fig. 5.4.1. Arrows between exceptional word differences ending at

the initial difference δ1. The square boxes denote non-exceptional word differences.

When we form arrows in the word difference machine, we reverse the arrows in each

of the squares and triangles listed above. Recall that exceptional initial states never occur
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as the bottom line in any of the squares we have constructed. This means that there are

no arrows leading out of exceptional initial states. In other words they are dead ends in

the word difference machine. Moreover, there are no arrows to non-exceptional states from

the subgraph of the word difference machine consisting of exceptional states.

5.5. Synchronising the word difference machine

Sections 5.2, 5.3 and 5.4 contain a full list of all word differences. There is one last technical

problem because, as in section 2.5, the word difference machine we have constructed using

this process is not synchronised. This is because of the presence of triangles rather than

squares. We need to check that only finitely many triangles can occur in any path through

the difference machine and to then compensate for this by adding padding symbols $.

In the previous sections we have constructed, up to symmetry, all the squares and

triangles that give rise to arrows in the difference machine. As before, we use the following

notation for triangles:

U
ψ //

α

��

V

α(U)

ψ′

==zzzzzzzz

U
ψ //

ψ′

!!D
DD

DD
DD

D V

β

��
β(V )

There are exactly three ways that triangles can arise. First, there are triangles where ψ′

is the identity. Clearly, this can occur at most once in any path through the difference

machine. This is equivalent to saying that the only arrows leading to the state e in the

difference machine also start at e.

Secondly, there are triangles between non-exceptional states where ψ is (δjδ0)
±1 or

(δ0δj)
±1 and ψ′ is ρj

±1 for j = 1, 2. For example

G0
δ0δ2 //

δ0
−1

��

S1 ∪ T0

S0 ∪ T0

ρ2

99ssssssssss

Any subsequent squares have the word difference e or ρj
±1. Therefore this type of triangle

can occur at most once. This is equivalent to saying that, in Fig. 5.3.1, the only arrows

leading to the state ρ2
±1 begin either at ρ2

±1 or at e.

Thirdly, there are triangles occurring during transition from exceptional states to non-

exceptional states. Once we leave exceptional states we never return and so this can occur

at most once. In other words, in Fig. 5.4.1 there are no arrows from exceptional states to

non-exceptional states and the triangles occur on the arrows from δ1δ0 and δ0δ1 to ρ1.
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We now give an example which contains all three types of triangles. This is the worst

possible case we must deal with. This is the word difference δ1 for the following Farey

block in D0:

γ1 = (0, 1, 2, 3) ∈ ∆7, γ2 = (1, 1, 5, 8) ∈ ∆7, β = (3, 3, 11, 15) ∈ ∆7; γ3 = (1, 1, 4, 6) ∈ ∆7.

The squares associated with reducing this Farey block back to J0 are:

D0

δ0
−1

��

δ1 // D1

δ0

��
A0

δ1

��

ρ1 // B1

δ2δ0

��

C0

δ2δ0δ1

��

δ1δ0

66mmmmmmmmmmmmmmm

B2

δ1
−1δ0

−1

��

δ1 // B2

δ1
−1δ0

−1

��
C1

δ2
−1δ0

−1δ1
−1

��

δ0 // C1

δ2
−1δ0

−1δ1
−1

��
C3

δ1
−1δ0

−1δ2
−1

��

δ1 // D3

δ0

��
B1

δ2δ0

��

δ2
−1

// D1

δ0

��

ι2 // D3

δ0

��
E2

δ2

��

δ2
−1δ0

−1

// E1 ι2
// E3

δ2
−1

��

G2

δ0
−1

��

δ0δ1

((QQQQQQQQQQQQQQQ

H3

ρ1

��

ρ1
// J2

ι2

��

J2

ι2

��

e

66mmmmmmmmmmmmmmmm

J0 e
// J0
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In order to synchronise the word difference machine, as we saw in section 2.5, it is necessary

to add to the set of word differences by adding in diagonals to squares. Because we can have

more than one triangle these diagonals may carry over several squares. In our example,

we need word differences δ2δ1δ0δ1 between H3 and E3; δ0
−1δ2δ0δ1 between G2 and D3

and so on. Adding all possible diagonals in groups of one, two and three squares adds

considerably to the possible word differences.

Finally, we need to make further changes in the collection of word differences. This

is because we need to consider initial word differences for all elements of the alphabet A.

So far we have only considered initial word differences in D0 as indicated in section 5.1.

Because all words in A have length at most six in the letters of D0 this means we need

to concatenate up to six word differences. For example, the word difference δ1δ0δ2 on the

state D0 gives rise to three squares concatenated horizontally:

D0
δ2 //

δ0
−1

��

δ2(D0) ∩ C0
δ0 //

δ2δ0δ1

��

δ0δ0(D0) ∩ C0
δ1 //

δ2δ0δ1

��

δ1δ0δ2(D0) ∩B0

δ2δ0

��
R0

ι2δ2
−1

// A2 ∪B2 ∪ E2
δ1

// R2 e
// R2

In fact, this may be simplified to give the square

D0
δ1δ0δ2 //

δ0
−1

��

δ1δ0δ2(D0) ∩B0

δ2δ0

��
R0

ι2 // R2

All these changes make the final collection of word differences D rather large but it

is still finite. Thus we have a word difference machine in the usual sense. This makes

MCG(Σ2) automatic.

It seems likely that the same structure shows that MCG(Σ2) is biautomatic (in other

words generators can be added at either end) but we have not explored this possibility.

80



The Mapping Class Group of the Twice Punctured Torus

References.

[1] J. S. Birman, Braids, Links and Mapping Class Groups, Annals of Maths. Studies

82, Princeton University Press, 1974.

[2] J. S. Birman & C. Series, Algebraic linearity for an automorphism of a surface

group, Journal of Pure and Applied Algebra 52 (1988), 227–275.

[3] J. S. Birman & C. Series, Dehn’s algorithm revisited, with applications to simple

curves on surfaces, in “Combinatorial Group Theory and Topology”, ed. S. Gersten

& J. Stallings, Annals of Maths. Studies 111, Princeton University Press (1987),

451–478.

[4] R. Bowen & C. Series, Markov maps associated to Fuchsian groups, Inst. Hautes
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