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Chapter 1

Introduction

Ma these a pour theme les formes quadratiques entieres. Méme si celles-ci ont été étudiées
pendant plusieurs décennies, elles sont toujours au coeur de divers sujets de recherche actuels.
Ma contribution consiste en deux nouveaux résultats. Le premier porte sur le probleme de
déterminer si deux formes quadratiques données sont équivalentes, et le deuxieme donne des
parties génératrices finies des groupes orthogonaux S-entiers. Une caractéristique importante
de ces théoremes est qu’ils sont effectifs, c’est-a-dire quantitatifs, et completement explicites.
Ces résultats, ainsi que les méthodes utilisées pour les prouver sont inspirés de I'article | ]
de Li et Margulis.

Cette introduction est divisée en quatre sections. Dans les deux premieres on parle de
I’histoire des deux problemes abordés, on présente les résultats originaux de Li et Margulis
ainsi que les généralisations que j’ai obtenues. Apres avoir beaucoup travaillé sur ce sujet, je
me suis retrouvé avec moins de réponses que de questions. Certaines de ses questions sont
rassemblées dans la troisieme partie. La structure de la these est esquissée dans la quatrieme
section.

1.1 Equivalence de formes quadratiques

1.1.1 Classification des formes quadratiques entieres

Pour motiver le premier probleme qu’on traite, on va discuter maintenant de quelques con-
cepts qui ont été développés pour tenter de classifier les formes quadratiques entieres. On dit
que les formes quadratiques ()1 et (2 en d variables a coefficients dans un anneau commutatif
R avec unité sont R-équivalentes sl existe g € GL(d, R) tel que Q109 = Qs. A ce jour, per-
sonne n’a réussi a classifier a Z-équivalence pres les formes quadratiques entieres. L’histoire
de ce probleme est longue, donc on se limitera a évoquer de quelques développements clés.
Le cas des formes quadratiques binaires a été résolu par C.F. Gauss dans les Disquisitiones
Arithmeticae | ], our il décrit un algorithme qui, en partant d’une telle forme @ donne
une suite de formes quadratiques binaires Z-équivalentes a ) qui devient périodique. Le cycle
de @ est la période de sa suite. Gauss montre que Q1 et (5 sont Z-équivalentes si et seulement
si elles ont le méme cycle — c.f. | , Theorem 1, p. 356]. De plus, il caractérise les formes
quadratiques qui peuvent apparaitre dans un cycle en termes d’inégalités simples entre leurs
coefficients, ce qui amene au concept de forme quadratique binaire réduite. Concretement,
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la forme quadratique entiere az} + 2bx 1z + cx3 est réduite -c.f. | , D. 358-359] - si elle
est définie positive ou négative et vérifie |2b| < |a| < |¢|, ou bien si elle est indéfinie et

0<b< Vb —ac < min{b+ |a|],b+ |c|}.

Inspirés par ces travaux de Gauss, C. Hermite puis H. Minkowski étendent la notion de forme
quadratique réduite a trois variables ou plus. Les propriétés souhaitées sont : toute forme
quadratique entiere doit étre Z-équivalente a une forme réduite et il doit y avoir une méthode
aussi simple que possible pour déterminer si deux formes réduites sont Z-équivalentes. C’est
ainsi que la Théorie de la réduction des formes quadratiques est née. Voici son principal
théoréme de finitude. Dans ’énoncé on note dr le déterminant de la matrice d’une forme
quadratique entiere R en d variables dans la base canonique de Z<.

Théoreme 1.1.1. Soient d et N des entiers positifs. Il n’y a qu’un nombre fini de formes
quadratiques entieres réduites R en d variables avec [0gr| = N.

La théorie de la réduction de formes quadratiques joue un role important dans cette these.
On utilise la définition moderne de forme réduite en termes des sous-ensembles de Siegel de
GL(d,R).

Malgré les développements de la théorie de la réduction, la classification a Z-équivalence
pres des formes quadratiques entieres restait - et reste encore - inaccessible, donc les gens
travaillant sur le sujet ont introduit d’autres notions d’équivalence, en espérant que celles-ci
nous approchent de la Z-classification. On va discuter brievement deux telles équivalences.

La premiere est le genre : deux formes quadratiques entieres sont du méme genre si elles
sont équivalentes sur R et sur Z, pour tout nombre premier p'. Evidemment deux formes
quadratiques Z-équivalentes sont du méme genre, mais la réciproque est fausse. Par exemple,

Qi(x) = 2] + 8225 et Qy(x) = 227 + 4123

ne sont pas Z-équivalentes car z? + 82z3 = 2 n’a pas de solution enti¢re, mais Q; et Qs
sont du méme genre — c.f. | , p- 129]. Tout de méme, le lien entre Z-équivalence et
genre est fort. Si ()1 et ()2 sont du méme genre, alors elles sont presque Z-équivalentes au
sens suivante : elles sont Z(5)-équivalentes pour toute partie finie S de nombres premiers.
Ici, Z9) est 'anneau des nombres rationnels dont le dénominateur n’est divisible par aucun
p € S. En fait, cette condition est une caractérisation alternative de étre du méme genre —
cf | , Theorem 1.4, p. 130].

Le genre spinoriel est une autre équivalence de formes quadratiques entieres introduite
par M. Eichler, plus fine que le genre et (parfois) plus grossiere que la Z-équivalence. Pour ne
pas couper le fil de la discussion on ne donne pas ici la définition - voir | , Lemma 1.4, p.
201]. Grace a elle on peut trouver le nombre de Z-classes de formes quadratiques entieres R-
isotropes en d > 3 variables. En effet, on sait que pour celles-ci, étre du méme genre spinoriel
et étre Z-équivalentes revient au méme - c.f. | , Theorem 1.3, p. 202]. De plus, J.H.
Conway et N.A. Sloane décrivent dans | , Chapter 15, Section 9, p. 388] une méthode

!Cette définition est sans doute motivée par le principe local-global pour des formes quadratiques ra-
tionnelles : deux telles formes sont Q-équivalentes si et seulement si elles sont équivalentes sur R et sur Q,
pour tout p.
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pratique pour calculer le nombre de genres spinoriels. Quant aux formes quadratiques R-
anisotropes, méme s’il y a de bonnes méthodes pour les classer quand d est petit, Conway
et Sloane - c.f. [ , D- 353] - pensent qu’on n’arrivera jamais a une classification générale
car il y en a trop des que d > 24.

1.1.2 Critere de Z-équivalence

Apres notre discussion de quelques outils pour classifier les formes quadratiques entieres,
on présente maintenant le probleme proche, mais bien moins ambitieux, qu’on va aborder
Décider si deux formes quadratiques entieres données ()1 et ()2 en d variables sont Z-
équivalentes. Voici une situation ou ce probléeme de Z-équivalence a une réponse facile, qui en
plus motive notre approche du cas général. Si ()1 et ()5 sont toutes les deux définies positives
ou négatives — c’est-a-dire R-anisotropes —, I’ensemble des matrices g dans GL(d,R) pour
passer de Q1 a Q2 est compact, et on peut montrer facilement que pour toute telle g,

d—1 1
gl < d-d|@ul].2 [|Q2l]2, (1.1)

ol ||Qi]]- est le maximum des valeurs absolues des coefficients de @;. Donc @ et Q2 sont
Z-équivalentes si et seulement si @)1 o v = ()2 a une solution v dans la partie finie de
GL(d,7Z) déterminée par (1.1). Cette stratégie ne marche pas quand les @; sont R-isotropes,
car I'ensemble de matrices dans GL(d,R) qui transforment @1 en Q2 est non-borné. Il est
étonnant que méme dans ce cas on peut déterminer quand méme si les (); sont Z-équivalentes
en cherchant « tel que ()1 o v = () dans une partie finie de GL(d,Z). 1l s’agit d’un résultat
de Siegel dans | ]

Théoreme 1.1.2. Pour tout entier d > 2 il y a une fonction explicite My avec la propriété
suivante : si les formes quadratiques entiéres Q1 et Qo en d variables sont Z-équivalentes,
alors il y a v € GL(d,Z) telle que

7]l < Ma(Q1, Q)

et Q107 = Qa.

Une fonction My comme dans le théoreme précédant s’appelle borne de Z-équivalence.
Siegel établit 'existence de bornes de Z-équivalence a ’aide de la théorie de la réduction de
Hermite et Minkowski. Outre 'article original | | (écrit en allemand), on peut trouver un
esquisse de la preuve du Théoréme 1.1.2 dans le livre de Cassels | , Chapter 13, Section
12, p. 324]. Siegel ne donne pas M, de facon explicite, mais S. Straumann montre dans son
mémoire de master | ] que la méthode de Siegel donne

d3+d? d3—d2
)

Ma(Q1, Q2) = exp(Adldg,| = ) - max{[|Q], [|Qafl}

oll §, est comme dans le Théoreme 1.1.1 et A, est une constante qui ne dépend que de d 2.
Si I'on veut utiliser en pratique des bornes de Z-équivalence, il faut trouver une M,
explicite qui ne croit pas trop vite. Le travail de Straumann montré qu’on peut prendre M,

’Dans la suite on note Ag, By, Cg, ... des constantes qui dépendent seulement de d.
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exponentielle en ||Q1]], ||@2]|. Dorénavant, on dira simplement que M, est exponentielle
ou polynomiale si elle a la propriété respective par rapport a ||Q1||w, ||@2]]w-

On va discuter maintenant des contributions majeures a ce sujet en ordre chronologique.
Pour les formes quadratiques binaires : on sait que M; ne peut pas étre polynomiale car
dans ce cas il y aurait une borne polynomiale de la norme de la plus petite solution d’une
équation type Pell

au® — bv* = +1, (1.2)

avec a,b € Z. En effet, si (ug,vg) € Z?* est solution de (1.2), alors

Ug b’UO
V= (Uo au(]) € GL(2,7Z)
transforme Q(x) = ax? — bx3 en Qo(x) = +x? Fabxi. Soit vy € GL(2,7Z) telle que Q 0y =
Q2 et ||70]|e < Ma(Q1,Q2). La premiere colonne de v, est une solution de 1.2 dont la taille
est bornée par un polynome en a et b. Le lecteur peut trouver dans I'article de J. Lagarias
[ , D- 486] une suite d’équations type Pell pour laquelle la plus petite solution croit plus
vite que n’importe quel polynoéme en a et b.

Pour les formes quadratiques en 3 variables il y a des bornes de Z-équivalence polynomi-

ales. R. Dietmann montre dans | | qu’on peut prendre
Ms(Q1,Q2) = Bs||Qu[12°(| Q1| +[1Q2l]-)*"
Etant donné ce résultat, D. Masser conjecture dans | | quil y a des bornes de Z-

équivalence polynomiales des que d > 3.

Conjecture 1.1.3. Pour tout entier d > 3 il y a des constantes Cy, Eq avec la propriété
suivante : si les formes quadratiques entieres non-dégénérées Q1 et Qo en d variables sont
Z-équivalentes, alors il y a o € GL(d,Z) telle que

[1oll < Call|@u]l +11Q2]])™

et Q107 = Q2.
La prochaine grande contribution a cette histoire est due aussi a Dietmann, qui démontre
dans | , Theorem 3] la conjecture de Masser quitte a ajouter des hypotheses suplémentaires

sur Q; et Q2® qui lui permettent de trouver M, en utilisant ses résultats pour les formes
quadratiques ternaires. Pour d > 6 il obtient

My(Q1, Q2) = Cqmax{]|Q1]], |’Q2||oo}Edv

ot By est un polynéme en d de terme principal 5%d%!. Cette borne de Z-équivalence est
améliorée par Li et Margulis dans | , Theorem 1], ou ils établissent la conjecture de
Masser en toute généralité. Voici une version simplifiée de son énoncé.

Théoreme 1.1.4. Soient Q1 et Q5 des formes quadratiques entiéres non-dégénérées en d > 3
variables. Si Q1 et Q2 sont Z-équivalentes, il y a vy € GL(d,Z) telle que

1

13 43
0]l < Ca(]|Q1]]-]|Q2]|) ¢
et Q107 = Q2.

3Les coefficients de la diagonale principale de bg, - la matrice de @; dans la base canonique de Q7 - ne
sont pas tous pairs et det bg, est sans facteurs cubiques et non divisible par 4.
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1.1.3 La méthode de Li et Margulis

Les stratégies de Dietmann et de Li-Margulis pour traiter le probleme de Z-équivalence
sont tres différentes. D’un coté, Dietmann a une approche plutot Théorie Analytique des
Nombres, basé notamment sur la méthode du cercle de Hardy et Littlewood. Ceci est tout
a fait naturel, vu qu’il s’est intéressé aux bornes de Z-équivalence en raison de leur lien avec
les bornes de résolubilité de I’équation diophantienne quadratique générale. En fait, ceci est
le sujet principal de I'article | | o Masser énonce sa conjecture | ].

Pour I'approche de Li et Margulis, il faut d’abord regarder le probleme autrement, en
profitant d’une dualité simple et tres utile. Pour fixer les idées on va supposer que Q1 et Qo
sont de signature 2,1. Soit P(z) = 2% + 22 — 23; on considére les groupes G = GL(3,R), H =
O(P,R) et I' = GL(3,Z). On écrit ; = P o g; avec g; € G. Toute forme quadratique de
signature 2,1 s’exprime comme Pog avec g € (G, donc I'espace de toutes ces formes s’identifie
a H\G. Voici 'observation clé : une Z-classe d’équivalence de formes quadratiques entieres
(de signature 2,1) est une I'-orbite dans H\G, qui correspond & une H-orbite dans 1'espace
X = G/T des réseaux de R3 4. Trouver vy, € I' qui transforme @; en Q, équivaut a trouver
ho € H qui envoie g,Z° sur ¢;Z3. 1l s’avere que la H-orbite Y de ¢oZ3 est fermée et qu’elle
admet une mesure H-invariante finie, ce qui permet a Li et Margulis de traiter le probleme
avec de puissants outils de dynamique homogene effective. L’action de H sur Y est presque
mélangeante, et mieux encore, il y a une vitesse de mélange effective et uniforme, qui ne
dépend pas de la H-orbite fermée, grace a laquelle ils bornent la norme d’une matrice hy € H
telle que hogoZ® = g7 en fonction de ||g1]|w, ||g2||- €t du volume de Y.

Pour finir la discussion du Théoreme 1.1.4 on va signaler les deux outils techniques prin-
cipales de la preuve. Premierement, la récurrence effective des flots unipotents — un résultat
de Kleinbock et Margulis | ] = qui donne une estimation du volume de la H-orbite Y’
évoqué ci-dessus. Deuxiémement, la borne de Kim et Sarnak | , Appendix 2] pour la
conjecture de Ramanujan-Petersson pour SL(2) sur QQ, un important résultat de la théorie
des représentations automorphes, qui prescrit la vitesse de mélange uniforme pour ’action
de H dans des H-orbites fermées dans X.

1.1.4 Critere de Zg-équivalence

Le premier objectif de ma these est d’obtenir un analogue du Théoreme 1.1.4 pour le probleme
de Zg-€équivalence. Pour I'énoncer on a besoin des nouvelles définitions. Si Sy = {p1,...,px}
est un ensemble fini de nombres premiers, on pose S = Sy U {oco}. L’anneau des S-entiers
Zs est formé des nombres rationnels dont le dénominateur est un produit de puissances
d’éléments de S;. On note pg le produit des nombres premiers dans Sy. Pour S = {oo}
on pose Zg = Z et ps = 1. Etant données des formes quadratiques entieres ()1 et (2 en
d variables, cette fois-ci on veut déterminer si elles sont Zg-équivalentes en cherchant une
solution v de (1 o v = @2 dans une partie finie de GL(d,Zg). D’apres le Théoréeme 1.1.4,
pour S = {oo} une telle partie est définie par une inégalité de la forme ||y||., < M. Elle
est finie car tout coefficient d’une solution v € GL(d,Z) est un entier dont la valeur absolue
est au plus M. Mais |z] < M a une infinité de solutions dans Zg des que Sy est non-vide,

4D’autres auteurs ont exploité la dualité entre I'-orbites de formes quadratiques et H-orbites de réseaux
de R%. Par exemple, Eichler 'utilise pour définir le genre spinoriel.
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donc l'inegalité ||v||.. < M ne suffit pas. On contourne cette petite difficulté comme suit :
rappelons que chaque t € Zg s’écrit

n
t =

avec n € Z et ay,...,a; € N. Si on impose des bornes supérieures pour [t| ainsi que pour
chaque a;, il n’y a qu'un nombre fini de solutions dans Zg du systéeme résultant. Pour
v € My(Q), soient ||v][, le maximum des valeurs absolues p-adiques des coefficients de ~ et

Ihlls = max [l

Alors ||y]|s < M définit une partie finie de GL(d,Zg). Voici la généralisation du Théoreme
1.1.4 que j’ai obtenue.

Théoreme 1.1.5. Soient Q1 et Q)5 des formes quadratiques entiéres non-dégénérées en d > 3
variables et soit Sy un ensemble fini de nombres premiers impairs. Si Q1 et Qo sont Zg-
équivalentes, alors il y a o € GL(d,Zg) telle que

[holls < Fapd™ (11Qu /| Q2ll)*"

et Q10 = Qs.

On peut se passer de I'hypothese 2 ¢ S. En fait, la méme preuve fonctionne, mais il y
a des endroits avec plus de cas & considérer®. Dans le Théoréme 1.1.4, ot S = {oo} le cas
facile est quand les @); sont R-anisotropes — c.f. (1.1). Pour S géneral, le cas facile est quand
les Q; sont Q,-anisotropes® pour chaque v € S, car tout g € GL(d, Q) pour passer de Q; &
(o vérifie

a1 1
lglls < d- d!|Qu]].2 [|Q=||2.

Le cas intéressant - quand Q1 et )o sont QQ,-isotropes pour au moins un v € S - est traité
par le Théoreme 5.1.1 et le Théoreme 5.1.2 quand les (); sont respectivement R-isotropes et
R-anisotropes.

Li et Margulis traitent le cas S = {oco} en étudiant 'action d'un groupe orthogonal réel
H sur I'espace X des réseaux de R?. On adapte leur stratégie comme suit : supposons que
Q1 et Qo sont Zg-équivalentes. On veut controler ||yol|,,v € S d'une 79 € GL(d,Zs) qui
transforme Q71 en ()5. Il est donc naturel de considérer les (); comme forme quadratique
sur chaque Q,,v € S. Soit P, le représentant standard de la Q,-classe d’équivalence des
Q;. Pour faire d’une pierre deux coups on considere Q1 et Q2 sur Qg = [], .4 Q, grace au
plongement diagonal Q — Qg, donc les Q; sont Qg-équivalentes & P = (P,),cs. On considere
les groupes

Gs=GL(d,Qs) = [[GL(d,Q,),  Hs=0(P,Qs) = [[O(P, Q.),

ves vesS

°La différence entre 2 et p > 2 vient du fait que Q5 /(Qj )? est d’ordre 8, tandis que Q) /(Q))? est d’ordre
4. Ceci entraine qu’il y a plus de classes d’équivalence de formes quadratiques sur Q2 que sur Q.
6Par convention Q. = R.
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et on prend g1, g2 € G telles que Q; = Pog;. Quel espace joue ici le role de X 7 On remarque
que la copie diagonale de Zg dans Qg est un réseau dans Qg, donc Z% est un réseau dans
Qg. L’action de Gg sur 'espace Xg des réseaux de @flg est transitive et le stabilisateur de st
est le plongement diagonal I's de GL(d,Zs) dans Gg, donc Xg s’identifie & Gg/I's. Trouver
une o € GL(d,Zg) qui transforme @Q; en @Qy équivaut a trouver hy € Hg qui envoie goZ%
sur g1Z%. Heureusement, le cadre dynamique est aussi bon que dans le cas S = {oo} :
Vorbite Y = H SgQZ‘é est fermée dans Xg, de volume Hg-invariant fini et 'action de Hg sur
Y est presque mélangeante. On peut donc traiter le probleme avec des outils de dynamique
homogene. On donnera la borne de ||hg||s en fonction des ||gi||s et du volume de YV - c.f
Proposition 5.2.2 et Proposition 5.2.3.

Les deux ingrédients techniques principaux de la preuve du Théoreme 1.1.5 ressemblent
a ceux utilisés par Li et Margulis pour S = {oco}. Pour estimer le volume de Y on applique
une version S-adique, due a Kleinbock et Tomanov | |, de la récurrence effective des
flots unipotents. Quant a la vitesse effective et uniforme de mélange pour 'action de Hg sur
des Hg-orbites fermées dans Xg, elle est aussi déduite de la borne de Kim-Sarnak | ,
Appendix 2| pour la conjecture de Ramanujan-Petersson pour SL(2) sur Q quand les Q;
sont R-isotropes, et quand elles sont R-anisotropes, d'une reformulation dans le langage

de la théorie de représentations | , Theorem 2.14, p. 158] d'un célebre théoréme de
Deligne | , Theorem 1.2, p. 148] sur les formes modulaires, et de la correspondance de
Jacquet-Langlands | , Theorem 3.4, p. 163].

1.2 Le groupe des unités d’une forme quadratique

1.2.1 Les résultats classiques de Siegel

Il est probable que la motivation de beaucoup de celles et ceux qui ont étudié les formes
quadratiques entieres vienne des liens de celles-ci avec la théorie des nombres. Par exemple,
pour comprendre les corps de nombres quadratiques K = Q[v/D] il faut étudier les formes
quadratiques Q(z) = z?-Dz2. Le groupe des unités O de anneau d’entiers de K est
fortement lié au groupe orthogonal entier O(Q,Z), c’est pour cela qu’on appelle parfois
O(Q,Z) le groupe des unités de (). Dans 'article clé | ] de 1939, Siegel étudie le groupe
des unités des formes quadratiques en d > 3 variables. Deux de ses résultats sont extrémement
importants pour cette these. Le premier est | , Satz 11, p. 230].

Théoreme 1.2.1. Pour toute forme quadratique entiere non-dégénérée () en d > 3 variables,
le groupe O(Q,7Z) est de type fini.

Li et Margulis ont démontré dans | ] une version effective du Théoréeme 1.2.1, qu’on
généralise au groupe des S-unités O(Q, Zg) de @, pour tout S. On va présenter ces résultats
dans la sous-section suivante. Le deuxiéme théoreme de Siegel qui nous concerne est | ,
Satz 12, p. 233].

Théoreme 1.2.2. Soit () une forme quadratique entiére non-dégénérée en d > 3 variables.
Le groupe O(Q,Z) des unités de Q est un réseau dans O(Q,R).

Le role du Théoreme 1.2.2 dans ma these est le suivant : Soit H ~ X le systeme
dynamique utilisé par Li et Margulis pour le probleme de Z-équivalence. Le fait crucial que
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les H-orbites fermées dans X sont de volume H-invariant fini vient” du Théoréme 1.2.2. Plus
généralement, la copie diagonale de O(Q, Zg) dans O(Q,Qg) est un réseau dans O(Q, Qg),
ce qui implique que les Hg-orbites fermées dans Xg sont de volume Hg-invariant fini.

Les preuves des théoremes 1.2.1 et 1.2.2 se basent sur la théorie de la réduction de Hermite
et Minkowski, qui a été affinée par Siegel lui méme. A. Borel et Harish-Chandra ont poussé
ces idées plus encore dans son papier | | de 1962 o, inspirés par les exemples classiques
SL(d,7Z) C SL(d,R) et O(Q,Z) C O(Q,R) de réseaux dans groupes de Lie réels semisimples,
ils introduisent la notion de sous-groupe arithmétique d’'un groupe algébrique linéaire G défini
sur Q. Par analogie avec les formes quadratiques, ils développent une théorie de la réduction
par rapport a un sous-groupe arithmétique, grace a laquelle ils généralisent le Théoreme 1.2.1
— tout sous-groupe arithmétique est de type fini — ainsi que le Théoreme 1.2.2 en explicitant la
condition sur G qui garantit que le volume de Gg /Gy est fini. Ils démontrent aussi — presque
au méme temps que G.D. Mostow et T. Tamagawa | | = la conjecture de Godement, qui
donne une condition nécessaire et suffisante sur G pour que Gg /Gy soit compact. Peu apres,
Borel étend ces résultats aux groupes S-arithmétiques dans | ).

1.2.2 Petits générateurs des groupes orthogonaux S-entiers

Dans le papier | |, Li et Margulis déduisent du Théoreme 1.1.4 plusieurs résultats
intéressants sur les formes quadratiques entieres. L’un d’entre eux, que je trouve partic-
ulierement joli est une version effective | , Theorem 2] du fait que O(Q,Z) est de type
fini.

Théoreme 1.2.3. Soit () une forme quadratique entiére non-dégénérée en d > 3 variables.
Le groupe O(Q,Z) est engendré par la famille de ses éléments v tels que

7 4
Il < JallQIE T

La preuve repose sur le Théoreme 1.1.4 ainsi que des améliorations effectives de résultats
classiques de la théorie de la réduction de formes quadratiques entieres.

J’obtiens par analogie une version effective du fait que O(Q,Zg) est de type fini, pour
tout partie finie Sy de nombres premiers. Pour ce faire j'utilise la théorie de la réduction
effective des formes quadratiques sur Qg et le Théoreme 1.1.5.

Théoreme 1.2.4. Soit () une forme quadratique entiére non-dégénérée en d > 3 variables.
Pour toute partie finie Sy de nombres premiers, le groupe O(Q,Zg) est engendré par ses
éléments v dont

7 6
Vlls < LapS QI

1.3 Quelques problemes ouverts

Comme on a vu, le probleme qui motive cette these est celui de déterminer si deux formes
quadratiques entieres en d variables données () et Qo sont Z-équivalentes. On peut le
reformuler de fagon plus géométrique comme suit : les espaces quadratiques (Z<, Q1) et

"Car les H-orbites fermées sont obtenues & partir de formes quadratiques entieres — c.f. Lemme 6.1.2
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(Z4,Q,) sont-ils isométriques ? Mais que fait-on si @, est en d; variables et Qy en doy < dy ?
Décider si @) représente @ - c’est-a-dire qu’il y a un plongement isométrique (Z%, Q,) —
(Z%, Q1) - est aussi intéressant. Li et Margulis donnent une borne | , Theorem 4] pour
ce probleme de Z-représentation de formes quadratiques, encore une autre application de
leur Théoreme 1.1.4. Par manque de temps je n’ai pas mis dans la these la généralisation
S-adique naturelle.

On sait que les groupes O(Q, Zg) sont de présentation finie - c.f. | , Théoreme 5.11,
p. 272] -, et maintenant qu’on a des parties génératrices finies %SQ de ces groupes grace aux
théoremes 1.2.3 et 1.2.4, il serait souhaitable de donner explicitement des relations sur %SQ
définissant O(Q, Zg).

Le programme de rendre effectifs des résultats classiques sur les groupes orthogonaux S-
entiers peut aussi s’étendre aux sous-groupes S-arithmétiques d’autres Q-groupes classiques,
tels que les groupes unitaires. Quelques auteurs ont déja exploré cette voie. Par exemple,
T. Chinburg et M. Stover trouvent dans le papier récent | | des petits générateurs du
groupe de S-unités de Q-algebres centrales simples. Voir aussi - méme si ses résultats ne sont
pas effectifs — 'approche algorithmique au sujet proposé par F. Grunewald et D. Segal dans
[ | pour les groupes arithmétiques et dans | ] pour les groupes S-arithmétiques.

1.4 Structure de la these

La premiere partie est formée de deux chapitres préliminaires. Au Chapitre 3 on rappelle la
classification des formes quadratiques a coefficients dans R et @Q,, et on fixe un représentant
de chaque classe d’équivalence, qu’on appellera forme quadratique standard. Ceci est un
concept important auquel on fera référence dans tous les chapitres. Puis, on révise la théorie
de représentations unitaires de SL(2,Q,) au Chapitre 4. Ici, le résultat important est la
décroissance effective des coefficients des représentations unitaires presque L*, qui plus loin
nous permet d’établir la vitesse de mélange effective pour le systeme dynamique sous-jacent
au probleme de Zg-équivalence.

La deuxieme partie est dédiée a la preuve de la borne pour le probleme de Zg-équivalence,
qui s’étale du Chapitre 5 au Chapitre 8. Au Chapitre 5 on traduit le probleme arithmétique
de Zg-équivalence a un probleme dynamique sur 'action d’un groupe orthogonal S-adique
Hyg sur I'espace Xg des réseaux de Q% : étant donnés des points ¥, y; dans une Hg-orbite
fermée Y dans Xg, on borne la S-norme ||ho||s de la plus petite hy € Hg qui envoie yp sur
y1. Ceci est accompli dans la Proposition 5.2.2 au Chapitre 6 quand H,, est non-compact,
et dans la Proposition 5.2.3 au Chapitre 7 quand H, est compact. La borne pour ||hg||s fait
intervenir le volume de Y, c’est pourquoi on donne au Chapitre 8 une borne supérieure de
ce volume en fonction du déterminant de () quand 'orbite Y vient d’une forme quadratique
entiere ().

Ayant établi notre borne de Zg-équivalence, on en déduit au Chapitre 9 le Théoreme
1.2.4 sur la partie génératrice explicite de O(Q, Zg). On traite le cas des formes quadratiques
R-isotropes et R-anisotropes respectivement au Théoreme 9.0.2 et Théoreme 9.0.3.

Les calculs qui donnent les constantes explicites dans nos énoncés sont rassemblées dans
deux appendices a la fin de la these. A I’Appendice B on donne des estimés du volume de
petites boules dans un groupe orthogonal réel, ainsi qu'une formule du volume dans le cas
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p-adique. Puis, on démontre des améliorations effectives, avec des constantes explicites, de
résultats de la théorie de la réduction de formes quadratiques réels a I’Appendice B. Enfin
on liste les constantes de nos énoncés a 1I’Appendice C.



Chapter 2

Introduction

The topic of my thesis is integral quadratic forms. Even though they have been studied
for centuries, they are still at the heart of diverse subjects of contemporary research. The
highlight is two new results, one concerning the problem of deciding if two given quadratic
forms are equivalent, and the other on the finite generation of S-integral orthogonal groups.
An important feature of this new theorems is that they are effective—i.e. quantitative—
and completely explicit. The results of my thesis, as well as the methods used to establish
them are inspired by the article | | of Li and Margulis. In fact my two main theorems
generalize two of their theorems in that paper.

This introduction is divided into four sections. The first two present some history of
the problems addressed, the original results of Li and Margulis, and the generalizations I
obtained. After spending a long time working on this topic I ended up with less answers
than questions, some of which are discussed in the third section. Finally, the structure of the
thesis is sketched in the fourth section.

2.1 Equivalence of quadratic forms

2.1.1 Classification of integral quadratic forms

To motivate the first problem we address let’s discuss some ideas and concepts developed to
attempt to classify integral quadratic forms. We say that two quadratic forms )1 and Q)5 in d
variables with coefficients in a commutative ring R with unit are R-equivalent if ), = Qs 0g
for some g € GL(d,R). The classification of integral quadratic forms is an unsolved hard
problem with a long history.

C.F. Gauss treats the binary case in Disquisitiones Arithmeticae | |, where he comes
up with a procedure that, starting from a binary integral quadratic form @), produces a
sequence of them equivalent to the original one that is eventually periodic. He associates to
Q its period or cycle of quadratic forms, and shows that @, and Q, are Z-equivalent® if and
only if they have the same cycle—see | , Theorem 1, p. 356]. He also characterizes the
quadratic forms of the cycle in terms of simple inequalities between the coefficients, which
leads to the notion of reduced binary quadratic form. We say that the integral quadratic

n fact properly equivalent, which a matrix in SL(2,7Z) takes Q1 to Qs.

17



18 CHAPTER 2. INTRODUCTION

form az? + 20x129 + crd is reduced—see | , D 358-359]—if it is positive definite and
12b] < a < ¢, or if it is indefinite and

0<b< Vb —ac<min{b+ |a|],b+ |c|}.

Inspired by the work of Gauss for the binary case, C. Hermite and later H. Minkowski,
generalize the notion of reduced to quadratic forms to 3 or more variables. The leading
principles are: every integral quadratic form should be Z-equivalent to a reduced one, and
there should be a way to figure out if two reduced quadratic forms are Z-equivalent. That is
how the Reduction Theory of quadratic forms was born. Here is the main finiteness result of
the theory. In the statement, dg is the determinant of the matrix of the integral quadratic
form R in d variables in the canonical basis of Z¢.

Theorem 2.1.1. Let d and N be positive integers. There are only finitely many reduced
integral quadratic forms R in d variables with |0gr| = N.

Reduction theory will play an important role in this work. I use the modern definition in
terms of Siegel subsets of GL(d, R).

Even with the advances in reduction theory, a complete classification of integral quadratic
forms was—and still is—out of reach, so mathematicians started to search for new ideas,
introducing new notions of equivalence of integral quadratic forms, hoping they would shed
some light on the hard problem of Z-classification. Let’s discuss briefly two of them.

The first is the genus: we say that two integral quadratic forms in d variables are in the
same genus if they are R and Z,-equivalent for any prime p?. Two Z-equivalent integral
quadratic forms are in the same genus, but the converse is false. For example,

Qi(r) = 2% + 8225 and Qo(w) = 227 + 41235

are not Z-equivalent because z? + 8272 = 2 has no integral solutions, but they are in the
same genus—see | , p- 129]. Nonetheless, quadratic forms in the same genus are almost
Z-equivalent in the following sense: they are Z(¥)-equivalent for any a finite set S of primes,
where Z®) is the subring of Q of rational numbers whose denominator is not divisible by any
p € S. In fact, this last condition is an alternative definition of genus—see | , Theorem
1.4, p. 130].

The second equivalence of quadratic forms we’ll discuss is the spinor genus, introduced by
M. Eichler. It is finer than the genus but (sometimes) coarser than Z-equivalence. To avoid
a big detour we won’t define it here—see | , Lemma 1.4, p. 201]—, but to emphasize
its importance we mention two facts: for R-isotropic integral quadratic forms in at least 3
variables, a spinor genera is the same as a Z-equivalence class—see | , Theorem 1.3, p.
202]. Second, J.H. Conway and N.A. Sloane describe in | , Chapter 15, Section 9, p. 388]
a practical way to compute the number of spinor genera. It is then possible to determine the
number of Z-equivalence classes of R-isotropic integral quadratic forms in d > 3 variables.
As for R-anisotropic integral quadratic forms, even though there are reasonable methods to
classify them for small d, Conway and Sloane [ , p- 353] believe there is no hope of an
explicit classification since there are too many Z-equivalence classes as soon as d > 24.

2This definition is undoubtedly motivated by the local-global principle for rational quadratic forms: two
such quadratic forms are Q-equivalent if and only if they are R-equivalent and Q,-equivalent for any prime

p-



2.1. EQUIVALENCE OF QUADRATIC FORMS 19

2.1.2 Criterion of Z-equivalence

After our brief discussion concerning the classification of integral quadratic forms, we present
the less ambitious related problem we’ll treat: Given integral quadratic forms @)1 and Q)5 in d
variables, decide if they are Z-equivalent. We’ll refer to this as the problem of Z-equivalence.
Here is a situation for which there is an easy solution to this problem, and which motivates
our approach to the general case: When (); and () are positive or negative definite—R-
anisotropic for short—, one can show with elementary arguments that any g € GL(d,R)
taking ()1 to (), verifies

d—1 1
9]l < d-dl|@1]].2 [|Q2]|2, (2.1)

where ||Q;]|. is the maximum of the absolute values of the coefficients of @);. So, @1 and Qs
are Z-equivalent if and only if Q1 oy = @2 has a solution  in the finite subset of GL(d,Z)
determined by (2.1).

This naive strategy doesn’t work for R-isotropic quadratic forms because the subset of
matrices in GL(d,R) taking ¢); to @ is unbounded. Surprisingly, C.L. Siegel shows in
[ | that even when the quadratic forms are R-isotropic, one can restrict the search of a
v € GL(d,Z) that takes @1 to Q2 to a finite subset of GL(d,Z).

Theorem 2.1.2. For any d > 2 there is an explicit real-valued function My with the following
property: if the integral quadratic forms Q1 and Q2 in d variables are Z-equivalent, there is
v € GL(d, Z) with

7l < Ma(Q1,Q2)

such that Q1 0v = Q.

A function M, as in Theorem 2.1.2 is a search bound for the problem of Z-equivalence.
Siegel uses the reduction theory of Hermite and Minkowski to prove the existence of search
bounds for the problem of Z-equivalence. Apart from the original article | | (written in
german), one can find a sketch of the proof of Theorem 2.1.2 in the book of Cassels | )
Chapter 13, Section 12, p. 324]. Siegel doesn’t give an explicit formula for M, but S.
Straumann shows in his master dissertation | | that Siegel’s ideas yield?

d3+d? d3—d2
)

Ma(Q1, Q2) = exp(Adldg,| = ) - max{[|Q[w, [|Qafl}

where ¢, is as in Theorem 2.1.1 and A, is a constant depending only on d. *

Once we know there are search bounds for the problem of Z-equivalence, it is natural
to look for an M, that grows as slow as possible. Straumann’s work shows that the search
bound of Siegel is exponential in ||Q1||, ||@2||«. In the sequel we'll simply say that M, is
exponential or polynomial when it has the respective property with respect to ||@Q1||s, || Q2] -

Now we’ll discuss the main contribution to this problem in chronological order. It is
known that Ms can’t be polynomial, because that would imply a polynomial bound for the
smallest solution for Pell-like equations

au® — bv? = +1, (2.2)

3Recall that g, is the determinant of the matrix of Q1 in the canonical basis of Z?
4In the sequel we'll use Ag, By, Cyq, ... to denote constants that depend only on d.



20 CHAPTER 2. INTRODUCTION

with a,b € Z. Indeed, if (ug,vy) € Z? a solution of (2.2), then

[ Uo bU()
Yo = < au ) € GL(2,Z)

Vo 0

takes Q(x) = ax? — bx3 to Qo(x) = +a? F abri. If M, is polynomial, the first column
of a g € GL(2,7Z) taking (); to @2 would be a solution of (2.2) with norm bounded by a
polynomial in a,b. An example of a family of Pell-like equations where the minimal solution
grows faster than any polynomial in a,b can be found in the article [ , p- 486] de J.
Lagarias.

The situation is quite different for quadratic forms in 3 variables. R. Dietmann proves in
[ | that one can take

M3(Q1, Q2) = Bs||Q:[I2°(1Qu] o + [1Q211) ™",

a polynomial search bound. D. Masser conjectures in his survey article | ] this phe-
nomenon is valid more generally for quadratic forms in 3 or more variables.

Conjecture 2.1.3. For any integer d > 3 there are constants Cy, Eq with the following
property: If the non-degenerate integral quadratic forms in d variables ()1 and Qs are Z-
equivalent, there is vy € GL(d,Z) with

1ol < Call|Q1]w + [1Q2l])™,

such that Qs = Q1 0 Yp.

The next major advance in this story is also made by Dietmann, who establishes Masser’s
Conjecture when dg,—the determinant of the matrix of @y in the standard basis of Q4—is
cube-free, not divisible by 4 and that not all entries in the main diagonal of the matrix of
()1 are even | , Theorem 3]. These assumptions allow him to extend his methods for
ternary quadratic forms. When d > 6 he obtains

Ma(Q1, Q2) = Camax{[|Q1]], Q2| }™,

where E; is polynomial in d with leading term 5%d4+1.
Li and Margulis establish Masser’s Conjecture in full generality in | , Theorem 1],
improving the search bounds of Dietmann. Here is a simplified version of their result.

Theorem 2.1.4. Let Q1 and Q3 be non-degenerate integral quadratic forms in d > 3 vari-
ables. If Q1 and Qo are Z-equivalent, there is o € GL(d,7Z) with

1

170l < Cal]|Q1]]2]|Q2l]) 04

such that Q1 0 v = Q3.
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2.1.3 The methods of Li and Margulis

The strategies of Dietmann and Li-Margulis to tackle the problem of Z-equivalence are very
different. On the one hand, Dietmann relies mostly on tools from analytic number theory,
such as the Circle Method of Hardy and Littlewood. This approach is natural considering that
his interest on search bounds for the Z-equivalence of integral quadratic forms comes from
its connection to search bounds to decide the solvability of the general quadratic diophantine
equation. In fact, this is the central topic of the survey | | where Masser formulates its
conjecture.

Now we’ll motivate the approach of Li and Margulis. To start, one has to change the
point of view of the problem by taking advantage of a simple, yet extremely important duality
phenomenon. Suppose we are dealing with quadratic forms )1 and ()5 of signature 2, 1. Let
P(x) = 22 + 22 — 22 and consider the groups G = GL(3,R), H = O(P,R) and I' = GL(3,Z).
We write @; as P o g; for g1, 9. € G. Since any quadratic form of signature 2,1 is of the form
Pog with g € G, the space of all such quadratic forms is naturally identified with H\G. Here
is the important observation: a Z-equivalence class of integral quadratic forms (of signature
2,1) is a T-orbit in H\G, which corresponds naturally to an H-orbit on the space X = G /T°,
which identifies with the space of lattices of R?. Finding vy € GL(3,Z) transforming Q; to
Q, is equivalent to finding an hg € H moving the lattice g,Z3 to ¢;Z>. It turns out that the
H-orbit Y of ¢»Z32 is closed in X and admits a finite H-invariant measure, which enables Li
and Margulis to tackle the problem with the powerful machinery of homogeneous dynamics,
more specifically, effective homogeneous dynamics. The action of H on Y is nearly mixing,
and moreover, there is an effective mixing speed that Li and Margulis use to show there is
an hy moving ¢,Z3 to ¢;Z3 of norm bounded by a function of ||g1]|«, ||g2||- and the volume
of Y.

To close the discussion of Theorem 2.1.4, let us mention the two main technical ingredients
of its proof. First, an estimation of the volume of Y that is deduced from the effective
recurrence of unipotent flows of Kleinbock and Margulis | ]. Secondly, the Kim-Sarnak
bound | , Appendix 2] for the Ramanujan-Petersson Conjecture for SL(2) over Q, a
profound result on the theory of automorphic representations, which yields a uniform effective
mixing speed for the action of H on closed H-orbits in X.

2.1.4 Criterion of Zg-equivalence

The first objective of my thesis is to obtain a result analogous to Theorem 2.1.4 for the slightly
more general problem of Zg-equivalence of integral quadratic forms. If Sy = {py,...,pr} is a
finite set of primes, we set S = {oo} U S;. The ring of S-integers Zg consists of the rational
numbers with denominator a product of powers of the primes in S;. The product of the
elements of Sy will be denoted by ps. By convention Zg = Z and pg = 1 when S = {oo}.
Given two integral quadratic forms in d variables )1 and ()2, this time we want to decide if
@1 and @)y are Zg-equivalent by searching a solution v of )1 oy = ) in an explicit finite
subset of GL(d,Zg). In Theorem 2.1.4, an inequality of the form ||y||.., < M determines a
search subset of GL(d,Z), which is finite because an entry of any such ~ is an integer with

5Before Li and Margulis, other authors have exploited the duality between I'-orbits of quadratic forms
and H-orbits of lattices of R%. For example, Eichler uses it to define spinor genera.
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absolute value at most M. But |z| < M has infinite solutions in Zg when Sy is non-empty,
hence the inequality ||7||.. < M is not enough. We'll proceed as follows: Recall that any

t € Zg is of the form
n

p‘lll e pzk
with n € Z and a4, ..., a; € N. If in addition to an upper bound for |¢| we impose an upper

bound on each a;, the resulting system has finitely many solutions in Zg. For v € My(Q),
let [|v||, be the maximum of the p-adic absolute values of the entries of v, and let

t =

[17lls = max{|7]..

Then ||v||s < M defines a finite subset of GL(d, Zg). Here is our result.

Theorem 2.1.5. Let ()1 and Q> be non-degenerate integral quadratic forms in d > 3 variables
and let Sy be a finite set of odd primes. If Q1 and Q2 are Zg-equivalent, there is vy €
GL(d,Zs) with
6 3
olls < Faps'™ (||Q1]]]|Q21])**

such that Q1 0 vy = Qs.

The assumption 2 ¢ S is not essential. In fact the proof we give works also, but at certain
points there are more cases to consider®. Recall that the easy case of Theorem 2.1.4, where
S = {0}, is when @1 and @)y are R-anisotropic. For general S, the easy case is when Q1 and
Q> are Q,-anisotropic’ for every v € S, because any g € GL(d, Q) taking Q; to Qo verifies

-1 1
llglls < d-d|Q1]].2 ||Q2]]2.

The interesting case is when ) and (), are isotropic over QQ, for some v € S, which is covered
by Theorem 5.1.1 and Theorem 5.1.2 when (); and () are R-isotropic and R-anisotropic,
respectively.

Li and Margulis address the case S = {oo} by studying the action of a real orthogonal
group H on the space X of lattices of RY. We adapt their strategy for general S in the
following way: Suppose that )1 and Q2 are Zg-equivalent. We need to control ||||, for any
v € S of some v € GL(d, Zg) taking @1 to Q2, so we’ll consider the quadratic forms ¢y and
Q- over every Q,. Let P, be a standard representative of the Q,-equivalence class of (); and
@2. To do the job in one shot, we’ll think the @Q;’s as quadratic forms over Qg = [],.4 Q.
via the diagonal embedding Q — Qg, so they are Qg-equivalent to P = (P,),es. Consider
the groups

Gs=GL(d,Qs) = [[GL(d,Q,),  Hs=0(P,Qs) = [[O(R, Q)),
vesS vesS

and take g1,90 € Gg such that Q); = P o g;. What replaces X in this context? Note that
diagonal copy of Zg in Qg is a lattice in Qg, hence Z¢ is a lattice in Q%. The group Gs

The difference between 2 and p > 2 comes from the fact that Q5 /(Q5)? has order 8 while QX /(Q)?
has order 4. As a result, there are more equivalence classes of quadratic forms over Q2 than over Q.
"Where Q. stands for R.
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acts transitively on the space Xg of lattices of Q%, and the stabilizer of Z¢ is the diagonal
copy I's of GL(d,Zs) in Gg. Finding vy € GL(d,Zs) taking @)1 to Q2 amounts to finding
ho € Hs moving goZ% to ¢1Z%. Happily for us, the dynamical setting is as good as in the case
S = {oo}: the orbit Y = HggoZs is closed in Xg, it admits a finite Hg-invariant measure,
and the action of Hg on Y is almost mixing, so we are also able to address the problem with
homogeneous dynamics. We’ll bound ||hg||s in terms of ||g;||s and the volume of Y—see
propositions 5.2.2 and 5.2.3.

The two main technical ingredients to prove Theorem 2.1.5 are very similar to those used
by Li and Margulis for S = {oco}. To estimate the volume of Y we’ll apply the effective S-
adic recurrence of unipotent flows of Kleinbock and Tomanov | ]. The uniform effective
mixing speed for the action of Hg on closed Hg-orbits in Xg will be deduced also from Kim-
Sarnak’s bound | , Appendix 2| for the Ramanujan-Petersson conjecture for SL(2)/Q
when the @);’s are R-isotropic, and when they are R-anisotropic, from Deligne’s theorem
on holomorphic modular forms | , Theorem 1.2, p. 148] in its representation theoretic
version | , Theorem 2.14, p. 158], and the classical Jacquet-Langlands Correspondence
[ , Theorem 3.4, p. 163].

2.2 The group of units of a quadratic form

2.2.1 The classical results of Siegel

It is likely that the interest of many that have worked with quadratic forms comes from
their connection with Number Theory. For example, to understand quadratic number fields
K = Q[v/D] one must study the binary quadratic forms Q(z) = 2? — Dx3. The group of units
O of the ring of integers of K is intimately related to the integral orthogonal group O(Q,Z),
for this reason some people refer to O(Q,Z) as the group of units of Q. In the milestone

paper [ | of 1939, Siegel undertakes the investigation of the group of units of integral
quadratic forms in 3 or more variables, obtaining two results of the utmost importance for
this thesis. The first one is | , Satz 11, p. 230].

Theorem 2.2.1. For any non-degenerate integral quadratic form Q) in d > 3 variables, the
group O(Q,Z) is finitely generated.

Li and Margulis obtain in [ | an effective version of Theorem 2.2.1, which we extend
to the group of S-units O(Q,Zgs) of @, for any S. These result are discussed in the next
subsection. The second important theorem of Siegel is | , Satz 12, p. 233].

Theorem 2.2.2. For any non-degenerate integral quadratic form Q) in d > 3 variables, the
group O(Q,Z) is a lattice in O(Q,R).

The role played by Theorem 2.2.2 in this work is the following: Consider again the
dynamical system H ~ X used by Li and Margulis for the problem of Z-equivalence. The
key fact that H-orbits in X admit a finite H-invariant measure comes® from Theorem 2.2.2.
More generally, the diagonal copy of O(Q,Zs) in O(Q,Qg) is a lattice in O(Q, Qg), and
that’s why closed Hg-orbits in Xg admit finite Hg-invariant measures.

8Because closed H-orbits come from integral quadratic forms—see Lemma 6.1.2.
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The proofs of theorems 2.2.1 and 2.2.2 rely heavily on the reduction theory of Hermite
and Minkowski, which was polished by Siegel himself. A. Borel and Harish-Chandra pushed
further these ideas in their 1962 article | | where, based classical examples of lattices
in semisimple real Lie groups, such as SL(d,Z) C SL(d,R) and O(Q,Z) C O(Q,R), they
introduce the notion of arithmetic subgroup of a linear algebraic Q-group G. They develop,
by analogy with quadratic forms, a reduction theory for arithmetic groups which is used to
generalize Theorem 2.2.1— arithmetic groups are finitely generated—and Theorem 2.2.2—
obtaining a condition on G for Gg /Gy to have finite volume. They also establish—at almost
the same time as G.D. Mostow and T. Tamagawa | |—Godement’s Conjecture, which
gives necessary and sufficient conditions on a Q-group G for Gg/Gyz to be compact. The
extension—by Borel—of these results to S-arithmetic groups came shortly after in | ].

2.2.2 Small generators of S-integral orthogonal groups

In the article | |, Li and Margulis deduce several interesting results on integral quadratic
forms from Theorem 2.1.4. One that I find particularly beautiful is an effective version | ,
Theorem 2] on the finite generation of O(Q, Z).

Theorem 2.2.3. Let () be a non-degenerate integral quadratic form in d > 3 variables. The
group O(Q,Z) is generated by its elements v with

7 4
Il < JallQILT

The proof is based on Theorem 2.1.4 and effective refinements of classical results on
reduction theory of integral quadratic forms.

Following their lead, I obtain an effective finite generation of O(Q, Zg) for any finite set S
of primes from effective results on reduction theory of quadratic forms over Qg and Theorem
2.1.5.

Theorem 2.2.4. Let () be a non-degenerate integral quadratic forms in d > 3 variables. For
any finite set Sy of primes, the group O(Q,Zs) is generated by its elements vy with

7 6
7lls < Lapd QU

2.3 Some interesting further problems

The main motivation of this thesis is the problem of deciding if two given integral quadratic
forms @)1 and @), in d variables are Z-equivalent. It can be reformulated in a more geometric
way as: are the quadratic spaces (Z%, Q) and (Z%, Q) isometric? But what if Q; has d;
variables and ()5 has dy < d; variables? An equally interesting problem is to decide if Q)
represents (Qy, which means there is an isometric embedding (Z%, Q,) < (Z%,Q,). Li and
Margulis obtain an effective search bound | , Theorem 4] for this problem, which is
yet another application of Theorem 2.1.4. Due to time constraints I didn’t include here the
natural S-adic generalization.

It is known that the groups O(Q,Zg) are finitely presented— see | , Theorem 5.11,
p. 272]—, and now that we have explicit generating sets %SQ of them thanks to theorems
2.2.3 and 2.2.4, it would be nice to give a set of relations on %SQ that defines O(Q, Zs).
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The program of making effective classical results on S-integral orthogonal groups could
also be extended to S-arithmetic groups of other classical Q-groups, such as unitary groups.
Some have already explored this line of research, like T. Chinburg and M. Stover who give
in the recent article | ] small generators of the group of S-units of central simple Q-
algebras. Although not effective, we mention also the algorithmic approach to the topic by
F. Grunewald and D. Segal, who treat arithmetic groups in | | and S-arithmetic groups
in | ].

2.4 Structure of the thesis

The first part consists of two chapters that set the stage. In Chapter 3 we recall the classifica-
tion of quadratic forms over R and Q,, and we fix a representative in each equivalence class,
which we’ll call standard quadratic forms. We make reference to them in every chapter of the
thesis. In Chapter 4 we review part of the theory of unitary representations of SL(2,Q,),
with emphasis on the effective decay speed of coefficients of almost L* unitary representa-
tions. This is the technical tool behind the effective mixing speed for the dynamical system
of Zg-equivalence.

The second—and biggest—part of the thesis is devoted to the proof of our search bound
for the Zg-equivalence problem, which spreads through chapters 5 to 8. In Chapter 5 we
translate the arithmetic problem of Zg-equivalence into a dynamical one in terms of the
action of an S-adic orthogonal group Hg on the space Xg of lattices of Q%: given points
Y2, 41 in a closed Hg-orbit Y in Xg, we bound ||hg||s for an hy € Hg moving ys to y;. This
is done in Proposition 5.2.2 when H,, is non-compact, and in Proposition 5.2.3 when H, is
compact. We prove these propositions in Chapter 6 and Chapter 7, respectively. The bound
of ||ho||s involves the volume of the orbit Y, so in Chapter 8 we obtain an upper bound of it
in terms the determinant of () when Y comes from an integral quadratic form Q.

Having established our search bound for Zg-equivalence, we use it in Chapter 9 to prove
Theorem 2.2.4 on the effective finite generation of O(Q, Zg). We handle R-isotropic quadratic
forms in Theorem 9.0.2, leaving the R-anisotropic ones to Theorem 9.0.3.

The computations that give the explicit constants in our statements are gathered in two
appendices at the end of the thesis. In Appendix A we estimate the volume of small balls
in orthogonal groups with coefficients in Q,. For real orthogonal groups we obtain upper
and lower bounds in Lemma A.2.1, and in the p-adic case we prove a formula for the exact
volume in Lemma A.2.11. In Appendix B we prove effective versions of classical results on
reduction theory of real quadratic forms with explicit constants. For commodity of reference
we list the constants in our statements in Appendix C.
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Chapter 3

Quadratic forms over Q,

In this first chapter we present the main object of study of this work: quadratic forms. After
giving the basic definitions in Section 3.1, we specialize to the case of quadratic forms over a
completion Q, of Q, recalling (without proof) the classification of these. For future reference,
we choose a representative in each equivalence class, which we call standard quadratic forms.
This is done in Section 3.2 for real quadratic forms and in Section 3.3 for p-adic quadratic
forms. We prove a bound on the size of a matrix relating a quadratic form to its standard
form in Lemma 3.2.2 and Proposition 3.3.4. In Section 3.4 we introduce the Spin group of
a quadratic form, which is the universal covering of the respective special orthogonal group.
We conclude with a discussion in Section 3.5 of the relation between SL(2,Q,) and isotropic
quadratic forms on Q3.

3.1 Basic definitions

A quadratic form in d variables is an homogeneous polynomial of degree 2

d
Qz) = Z QijTiZy,

ij=1

with coefficients in a commutative ring R with unit. We say that @ is isotropic if there is
v € RY— {0} such that Q(v) = 0, and that Q is anisotropic if there is no such v. Let Q, Q,
and Q2 be quadratic forms in d variables with coefficients in R. Q1 and ()5 are R-equivalent,
denoted ()4 ~ Q., if they coincide up to a base-change of R%. In other words, @Q; ~ Q- if

there exists ¢ € GL(d, R)—the group of d x d matrices whose determinant is invertible in
R—such that Q2(z) = Q1 0g(x). Q is non-degenerate if it is not R-equivalent to a quadratic
form in less than d variables.

Suppose that 2 is invertible in R. Let’s recall the correspondence between quadratic
forms in d variables and symmetric bilinear forms on R¢. @Q defines a symmetric bilinear
form (-,-)g on R? by the formula

(@90 = 5(QM +1) ~ Q) ~ Q).

27
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Conversely, if (-,-) is a symmetric bilinear form on R%, z + (x, ) defines a quadratic form.

We denote by bg the matrix ({(e;, €;)g)i,; of (-, ) with respect to the standard basis ey, - - - , €4
of R%, and we define dg = det bg.
Now, a quick remainder of the possible absolute values on Q, which are maps |-| : Q — Rx

such that for any s,t € Q:
(i) |s|=0<s=0,

(i2) |st| = |s] - [t],

(1ii) |s+t| <|s|+ |t].

An absolute value on Q is said to be trivial if it induces the discrete topology on Q. Two
absolute values on Q are equivalent if their topologies on QQ coincide. Besides the standard
absolute value, that we’ll denote by | - |, there is an absolute value | - |, for each prime
number p uniquely determined by:

p~t if n=p.

1 ifneZ—pZ,
nl, = {
The completion of Q with respect to |- |, and |- |, are respectively R and the field of p-adic
numbers Q,. The absolute values | - |5 and | - |, exhaust all the possible equivalence classes
of non-trivial absolute values on Q according to Ostrowski’s Theorem—see | , Theorem
1, p. 3]. For this reason, we’ll say that oo is also a prime number. We’ll use the symbol v to
refer to a prime number, possibly co, and p for finite primes. Let || - ||, be the norm on the
space of d x d matrices My(Q,) of the maximum of the v-absolute value of the entries. If @
is a quadratic form on Q¢ we define ||Q|], = ||bgl|.-

3.2 Real quadratic forms

Let’s review the classification of quadratic forms over QQ,, starting with the familiar case of
real quadratic forms. A non-degenerate real quadratic form R on R? is R-equivalent to a
diagonal quadratic form. The next classical lemma says a bit more—see | , Fact 5.1].

Lemma 3.2.1. Let R be a non-degenerate quadratic form on R, There is k € O(d,R) such
that R o k is diagonal.

Suppose that R is R-equivalent to R'(z) = a;2? + - -+ + aqr?. Permuting the variables
if necessary we may assume that a;,...,a, > 0 and a,41,...,a4 < 0. A suitable diagonal
matrix takes R’ to

2 2 2 2
vaq(x):xl_{_”'_i_'rp_xp—&-l_'“_'Ip—i-q?

where p + ¢ = d. Any non-degenerate quadratic form on R? is equivalent to exactly one Q,,
with p + g = d. We'll refer to these as the standard quadratic forms on R?.

We write R as Pog with P standard and g € GL(d,R). The next lemma says that we can
choose g with norm controlled by the size of the coefficients of R—see also | , Lemma
1].
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Lemma 3.2.2. We can write any non-degenerate quadratic form R on R? as P o go, where
P is a standard quadratic form on RY and g, € GL(d,R) verifies

900l < d]|R]]Z.
Proof. We start by proving an auxiliary inequality. Consider k € O(d,R) and A € My(R).

For any 1 < 1,75 < d we have
d d I/ d 3
Srno| < (305) (34)
=1 0 =1 =1
< Vd - ||A]|..

This proves that ||kA||. < Vd-||A]|..
We pass to quadratic forms. By Lemma 3.2.1 there is k € O(d, R) such that

R'(z) = Rok(z) = a123 + - - - agz3.

We assume further that ay,...,a, are positive, and the rest are negative—permutation ma-
trices are in O(d,R). Note that

||R/||r><> - ||bR’||oo = ||tkbRk||oo < d||R||oo

Consider
g/oo = dla’g( V ‘0,1’007 e 'V |ad|oo>7
and g = gi k™" Then g takes 27 +--- + 27 —--- — 27 to R and

9ol < VA|lg4]l = VA||IR||Z < d||R)|2.

3.3 p-adic quadratic forms

We move to the p-adic world. Let’s discuss first quadratic forms in one variable. For a,b € Q,,
az? is Qp-equivalent to bz? if and only if a/b is a square in Q, - The Q,-equivalence classes
of non-degenerate quadratic forms in one variable are thus parametrized by Q,’/ (Q;)Q. The
characterization of squares in Q' follows easily from the next lemma—see | , p- 34].

Lemma 3.3.1. Let p be a prime number. At € Z; 1is a square in Z, if an only if t mod p
is a square in F when p>2, ort =1 mod 8 when p = 2.

The group Q5 /(Q3)? is isomorphic to (Z/2Z)* and

is a system of representatives. When p > 2, Q¥/(Q))* ~ (Z/2Z)*. We fix the system of
representatives

Cp = {17npap7pnp} C @;7
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where n, is an integer that is not a square in Z/pZ.

Now we recall the classification of p-adic quadratic forms in d > 2 variables. We focus
in the diagonal case since any non-degenerate quadratic form on Qg is Q,-equivalent to a
diagonal one. The next lemma is a p-adic analog of Lemma 3.2.1—see | , Fact 5.4]:

Lemma 3.3.2. Let p be a prime and let R be a non-degenerate quadratic form on Qg. There
is k € GL(d,Z,) such that R ok is diagonal.

There are two invariants that classify p-adic quadratic forms. The discriminant §(R) of
R(z) = a1z + - - - + aqz} is the projection of a; - - - aq in Q) /(Q))?, and its epsilon invariant

e(R) = [ [(ai,a;),,

1<j

where (a,b), is the Hilbert symbol:

i 2 _ 2 2 .. .
(a,b), = {1 if 27 — ax; — baj is isotropic,

—1 if 22 — az? — bx? is anisotropic.
These two invariants classify p-adic quadratic forms—see | , p- 70].

Theorem 3.3.3. Two non-degenerate diagonal quadratic forms Ry and Ry on Qg are Q,-
equivalent if and only if 6(Ry) = 0(Ry) and e(Ry) = e(Ry).

For any prime p > 2, the number of QQ,-equivalence classes of non-degenerate quadratic
forms in d variables with coefficients in Q, is 4if d =1, 7if d = 2 and 8 if d > 3—all
the combinations of §(R) and e(R) are realized. As for non-degenerate quadratic forms in d
variables with coefficients in Q9, there are respectively 8, 15 and 16 Qy-equivalence classes if

d=1,d=2and d > 3. See | , Corollaire, p. 71].

3.3.1 Standard p-adic quadratic forms

Now we give the list of representatives of the Q,-equivalence classes of quadratic forms we’ll
be working with. A big difference between the real and the p-adic case is that in the latter
there are anisotropic quadratic forms only when d < 4—see | , Théoreme 6, p. 66]. We
treat separately p = 2 and p > 2. Suppose first that p > 2. Any anisotropic quadratic
form over QQ, is equivalent to exactly one of the following table. We'll call these standard
anisotropic quadratic forms over Q,.

ld=1] d=2 | d=3 \ d=4 |
:1:% x% — npxg x% — npxg + px% x% — npxg + px% — pnpx?1
n,z? | pr?—pn,a3 | 3 —n,a3 + pnyri
pri | wi—pri | @i+ pri—pnyrl
pnpa:% npx% — pnparg npx% + px% — pnpxg
I% - pnp:r%
npx% — paj
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As for isotropic quadratic forms, we define the standard ones as either a direct sum of
hyperbolic planes
2 2 2 2
T] =Xyt T Xy T Loy,

or a direct sum of hyperbolic planes and a standard anisotropic quadratic form. For example,
there are 7 standard isotropic quadratic forms on Q;‘D:

v — a5+ xs — a7 and 2% — x5 + P(as, 24),

with P(z3,z4) anisotropic standard on Qi. For any prime p > 2 and any d > 1, every
non-degenerate quadratic form on Qg is Q,-equivalent to a unique standard quadratic form.
For p = 2, we define the standard anisotropic quadratic forms in one variable as ma? with
m € Cy, in two variables as m;x3 —max3 with m; # my in Co, in three variables m(z3 +x3+x3)
with m € Cy and 2% + zo + 23 + 7 in four variables. Here we were less careful, there are
different Q9-equivalent standard binary quadratic forms, but this won’t cause troubles in the
proofs. Standard isotropic quadratic forms are also direct sums of hyperbolic planes, or sums
of hyperbolic planes and a standard anisotropic quadratic form.

The next result is analogous to Lemma 3.2.2.

Proposition 3.3.4. Consider a prime number p > 2. We can write any non-degenerate
quadratic form R on @g as P o g for a standard quadratic form P and some g € GL(d,Q,)
with )

lgll, < vp-[IR][Z.

Remark 3.3.5. The ideas we’ll use to prove Proposition 3.3.4 give a similar statement for
p = 2, but with we might need to replace \/p by a bigger constant. Probably 2v/2 is enough.

Let’s see that it suffices to prove Proposition 3.3.4 for a particular kind of diagonal
quadratic forms. Consider a non-degenerate quadratic form R on Qg. By Lemma 3.3.2 there
is k € GL(d,Z,) such that

R(z) = Rok(x) = a125 + - - + aqzs.
Write a; as p*™iu;, with u; € Zx UpZy and let g = diag (p™,...,p™*). Then gk~! takes
R'(x) = wa® + ... + uga?

to R and . )

k™11, < VP IRz = vpIIR:.
It suffices then to prove the result for R”. We'll call almost standard a quadratic form
biz? + - -+ bgx? with b; € Z, JpZ, . Proposition 3.3.4 follows then from the next lemma.

Lemma 3.3.6. Consider a prime number p > 2. We can write any almost standard quadratic
form R on Qz as P o g for a standard quadratic form P and some g € GL(d,Q,) with
coefficients in Zi,.

We’ll prove Lemma 3.3.6 by induction on d: we treat first the case d = 2, then d = 3 and
finally d > 4.
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3.3.2 Binary quadratic forms

Lemma 3.3.7. Let p > 2 be a prime number. We can write any almost standard quadratic
form R on QIZ, as P o g for a standard quadratic form P and a non-singular g € My(Z,).

We'll use two auxiliary results to prove Lemma 3.3.7.

Lemma 3.3.8. Let p > 2 be a prime number and let a € Q. There is v = (t1,t2) € Qi such
that 12 — t2 = a and

1

o], < v/p-lalg.
Proof. We'll first prove the result for @« € C,. If @ = 1, then (#;,%3) = (1,0) works. For
a = n,, we consider two cases: if p = 4m + 3, we choose n, = —1 and (t1,%) = (0,1). When

p = 4m + 1, consider the map Z — F,, s — s* +n,. Note that p never divides s* + n,, so
this function takes 1%1 values in F)*. We can then choose t; € Z such that u = n, + 13 is a
square in Zx, and set t; = y/u. Finally, if a € {p,pn,}, then u = a + 1 is a square in Z, by
Lemma 3.3.1, so (t1,t2) = (1/u, 1) does the job.

For the general case, we write a € Q) as cs® with ¢ € C, and s € Q, . Consider
v = (t),ty) € Q2 such that (#;)* — (t5)*> = c and ||V, < /P |C|§. Then (t1,t3) = sv’
works. 0

Lemma 3.3.9. Consider a prime p > 2 and an anisotropic standard quadratic form P on
Qg. For any v € QIQ, we have

P < [[vll, < (| P(W)],)3.

Proof. We write P(z) = ayx} + agx3, and let v = (t1,t;) € Q2. Consider first the case
lai], = 1 and |ag|, = p~'. Note that |a;t3|, # |ast3|, since they are even and odd powers of
p, respectively. Then

|[P(v)]p = max{|ta]5, p~" [ta]}-

If [t1]2 > p~'|ta|2, then [t1], > [to],. It follows that
1
loll, = [0l = [P(0)]5-
When [t1[2 < p~'|ta|2, necessarily [t1], < [t2],. Hence
1
[oll, = [talp = /P [P(V)]5-
Suppose now that |ai], = |as|, = 1. If |t1], # |ta]p, then |P(v)|, = max{|ti],, [t3],} = |[v]|>-
Assume now that [t;], = |t2|,. Leaving aside the easy case t; = ¢, = 0, we can write
t; = p~"u; for some m € Z and u; € Z;, SO
P(v) = p~ 2™ (ayu? + agu3).

Since P is anisotropic, |ajui + asu3|, = 1, thus [P(v)|, = p*" = [[v||>. Finally, when
lai], = |az|, = p~', the quadratic form p~'P falls in the previous case. O
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We are ready for the main proof.

Proof of Lemma 3.3.7. We write R(x) = a12] + asx3, 80 a1,ay € Z UpZY. Let P be the
standard quadratic form on Q?D that is Q,-equivalent to R.

Suppose first that R is isotropic, so P(z) = 2} — 3. Comparing the discriminants of R
and P we see that a; = —a;A\* for some A € Q. Moreover [\, = 1 since |a;], € {1,p'}.
By Lemma 3.3.8 there is v = (t1,t2) € Z such that P(v) = a;. Then

(M
g - (tZ )\tl) € M2(Zp)
takes P to R.

Suppose now that R is anisotropic and consider any g € GL(2,Q,) taking P to R. Let
vy and vy be the columns of g. Since |P(v;)|, = |a;], < 1, then ||v;||, < 1 by Lemma 3.3.9.
This shows that ||g||, < 1. O

Later we’ll use the following observation.
Lemma 3.3.10. Consider a prime p > 2. There is k € GL(2,7Z,) taking x*+1y? to —z* —1y>.

Proof. Tt suffices to prove there is (a,b) € Q such that a* +b* = —1 and ||(a,b)||, = 1,

because then

I

a —b
k= <b a> € GL(2,Z,)

works. If —1 is a square in Q,, we take a = /—1 and b = 0. If not, we choose b € Z — pZ
such that u = —1 — b* is a square in Z and we set a = \/u.
m

3.3.3 Ternary quadratic forms

Lemma 3.3.11. Let p > 2 be a prime number. We can write any almost standard quadratic
form R on Qz?; as P o g for a standard quadratic form P and a non-singular g € Ms(Z,)
Proof. We write R(x) = a;17% + aox3 + azzr3, so ai, as, a3 € Z, UpZ,. Let C be the natural
map QF — Q) /(Q))*. We consider two cases.

Case I: C(a;a;) = C(—1) for some i # j.| Up to a permutation of variables we may sup-
pose that C(ajaz) = C(—1). Then Ry (z) = ayx3+agx3 is Qp-equivalent to P (z) = 27 —x3. We
write ag = cA\? with ¢ € C, and \ € Z). By Lemma 3.3.7 there is a non-singular g, € M(Z,)
that takes P; to Ry. Then g = g1 & (\) takes P to R.

Case II: C(a;a;) # C(—1) for any i # j.| Consider a diagonal matrix £k € GL(3,Z,)
such that

R'(z) = Rok(x) = bjz? + boxs + b33
with by, by, b3 € C,. It suffices to prove the result for R'(x). We consider two subcases.
e Subcase IL.1: |by|, = |bs|, = |bs|,. Then C(b;b;) is C(—1) or C(—n,) for any i # j. We
assumed that the former case doesn’t happen, so C(b;b;) is constant. This implies that

by = by = by = —n, is a square. By Lemma 3.3.10 there is ¥ € GL(2,Z,) such that
ki = (1) & K takes R"(x) = by(a? — 25 — x3) to R. We are done since R’ falls in Case I.
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e Subcase I1.2: The set {1, by, b3} meets Z); and pZ)>. Suppose first that by, b, € Z
and b3 € pZ). Then C(b1by) = C(—n,). Comparing discriminants we see that R;(z) =
biz? + byxs is Qp-equivalent to Py(x) = x? — n,a3 or Py(z) = pz? — pn,a3. But P,
doesn’t represent 1 nor n,, so 2y is Qp-equivalent to P,. Then R is Q,-equivalent to
the standard form P(z) = 21 —n,23 + b3x3. By Lemma 3.3.7 there is ¢, € My(Z,) such
that g = g1 @ (1) takes P to R’. When by, b, € pZ) and b3 € Z, R, is Q,-equivalent
to P, and we conclude as before.

3.3.4 Quadratic forms in 4 or more variables

Everything is in place to complete the proof of our main result.

Proof of Lemma 3.3.6. We write R(z) = aya7 + - - - + aqx] with a1, ..., aq € Z) U pZs. We
proceed by induction on d. The cases d < 3 are covered by lemmas 3.3.7 and 3.3.11, so
suppose that d > 4. Two things can happen.

Case I: C(a;a;) = C(—1) for some i # j.|Let Ry(z) = a12% + asz3 and Ra(x) = agai +
-++ + aqgr3. Up to a permutation of variables we may suppose that R; is Q,-equivalent to
Pi(z) = 23 — x3. Let P, be the standard quadratic form Q,-equivalent to Ry. Then R is
Qp-equivalent to P(x) = Py(z1,x2) + Pa(xs, ..., x4), which is standard. By the result for
quadratic forms in 2 and d — 2 variables, there are g; € M(Z,) and g, € M,_(Z,) such that
g = g1 b go takes P to R.

Case II: C(a;a;) # C(—1) for any i # j.| Consider a diagonal matrix k € GL(d,Z,)
such that

R(z) = Rok(x) = bix} + - + bga?

for some by, ...,bq € C, with C(a;) = C(b;). If there are three b}s in either Zy or pZy, in
fact they are equal, so by the argument we used in subcase II.1 of Lemma 3.3.11 there is
ki € GL(d,Z,) such that R” = R' o k; falls in Case I (of this proof), and we are done. If this
doesn’t happen, then d = 4. Permuting the variables if necessary we have by,by € Z,; and
b3, by € pZ, . Arguing as in subcase I1.2 of Lemma 3.3.11 we see that

2 2 2 2 2 2 2 2
by + box5 > x] —n,xr; and  bsxg 4 baxy > PI5 — pn,Ty.
P P

By Lemma 3.3.7 there are g1, g2 € Ms(Z,) such that g = g; ® g takes the standard anisotropic
quadradic form P(z) = 2% — n,23 + pr3 — pn,z3 to R'(z). This concludes the proof. O

We close this section with a result about orthogonal groups of standard anisotropic
quadratic forms.

Lemma 3.3.12. Consider a prime p > 2. Let H, be the orthogonal group of a standard
anisotropic quadratic form on @Z. Then H, is contained in GL(d,Z,).
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Proof. 1t suffices to prove that ||h||, <1 for any h € H,. Suppose that H, = O(P,Q,) with
P(z) = a12% + - - - 4+ aq4r? standard anisotropic. Arguing as in the proof of Lemma 3.3.9 we

1
see that [[v]|, < \/p|P(v)| for any v € Qf. If vy, ..., v4 are the columns of h € H,, then

1
lvill, < vPlails < /p,
< Tland |h][, < 1. O

hence ||v;]|,

3.4 The Spin group

Let v be a prime and let G, G and H be groups of Q,-points of Zariski-connected semisimple
Q,-groups. A covering—or isogeny—is morphism H — G with finite kernel and cokernel.
We say that G is simply connected if for any H, any covering H — G is an isomorphism.
For any G there is a covering 7 : G — G with G simply connected—see | , Theorem 2.6,
p. 62]. In this situation we say that G and kerr are respectively the universal covering and
the fundamental group of G. When G is defined over QQ, there is also a universal covering of
G defined over Q—see | , Proposition 2.10, p. 76].

For example, SL(d,Q,) is simply connected while SO(P,Q,) isn’t—see | , Propo-
sition 2.15, p. 86]—, where P is a non-degenerate quadratic form on Q% d > 3. The
universal covering of SO(P,Q,) is the spin group of P, denoted by Spin(P,Q,). It is con-
structed using the Clifford algebra of (Q¢, P)—see | , Definition 3.4, p. 336]. If P is
rational, Spin(P,Q,) is the group of Q,-points of a Q-group Spin(P)', and the covering
Spin(P) — SO(P) is defined over Q. We’ll denote by SO(P,Q,)° the image of Spin(P,Q,)
in SO(P,Q,), which is a finite index subgroup. When v = oo, SO(P,R)° is the neutral
connected component of SO(P,R).

Later we’ll need a representative of small size of any SO(P,Q,)°-coset in O(P,Q,).

Lemma 3.4.1. Consider a prime number p > 2 and an integer d > 3. Let H, be the
orthogonal group of a standard isotropic quadratic form on Qg. Any Hp-coset in Hy has a
representative n with ||n||, < p.

Proof. Let H, = O(P,Q,) where P(z) is an isotropic standard quadratic form on Qf. In
particular P(x) starts with 22 — 22 + .. .. First we recall how we can identify in practice the
H-cosets of H,% For any v € Qg with P(v) # 0, let r, be the reflection with respect to the
P-orthogonal complement of v. Recall that these generate H,. The spinor norm of H), is the
unique group morphism S : H, — Q' / ((@;)2 such that

S(r.) = P(v)(@;)?

for every non-isotropic vector v € Qg—see [ , p- 336]. Hj is the kernel of the restriction
of S to SO(P,Q,), hence two elements of H, are in the same H , —coset if and only if they have
the same determinant and spinor norm, and in our situation the 8 possibilities occur. There

'We’ll use boldface to denote abstract linear algebraic k-groups.
2The discussion that follows is valid for any non-degenerate quadratic form with coefficients in a field of
characteristic # 2, but we’ll stick with the case relevant to us.
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is—for any non-degenerate finite dimensional quadratic space over a field of characteristic
different from 2—an exact sequence

Spin(P,Q,) — SO(P,Q,) —= QX /(Q})%.

Since P is isotropic and non-degenerate, we even have
. S

Indeed, consider e; = (1,0,...,0) and a non-isotropic vector v € Qg. Then 7,7, is in
SO(P,Q,) and
S(reyro) = P(er) P(v)(Qy)* = P(v)(Q))*.
Thus S is surjective since P represents any element in Q,—it is isotropic and non-degenerate.
Consider the following system of representatives of Q,’/ (Q;)2:

Cp = {1, 1, p,mpp},

where n,, is a non-square mod p integer. By Lemma 3.3.8, any m € C, can be expressed as
P(u,,) for some u,, = (am,bm,0,...,0) with ||u,||, < 1. It’s easy to see that in the four
cases we can choose u,, with ||u,||, = 1. The P-orthogonal complement of w,, is generated
by

U = (b, am, 0,...,0),€e3,...,€q4.

The inverse of
am bm
gm:(um7vm7e37"'7ed): < > @Id_z

b, an
is

1 [ am/m  —by,/m
Im = (—bm/m am/m > 5% ]d—2-

Hence ||gm||, = 1 and
g I, = [m ™, < p.

Let hg = diag(—1,1,...,1). The respective matrices of 1., and r,, in the standard basis of
Qg are hg and h,, = gnhog,,!. We have

1enlly < gmllollgm'|ls < p-

The matrices h,, and hoh,,, with m € C, form a system of representatives of H,/H, verifying
the desired condition. O

We'll need a statement like Lemma 3.4.1 also for p = 2. As we saw in the proof of
that lemma, when the quadratic form P we consider is isotropic, there is a bound for a
system of representatives of O(P,Q,)/O(P,Q,)° that depends only on the respective bound
for P(z) = 2% — 3.

Lemma 3.4.2. Let P(x) = 22 — 23 and Hy = O(P, Q). Any H3-coset in Hy has a repre-
sentative n with ||n|]s < 4.
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Proof. For v = (a,b) € Q?, let vt = (b,a). As in the proof of Lemma 3.4.1, it suffices to
see that for any m € Cy, there is u,, = (am,bn) € Q3 such that P(u,,) = m, and such that
the matrix h,, in the standard basis of Q2 of the linear map w,, — —um,, u — u verifies
[|hm||2 < 4. This matrix is

) — l (_(agn + b?n) 2ambm )

T m \ —2a,b, a +b%

One can take:

m U,
1 (1,0)
3 (2,1)
2 | (3/2,1/2)
6 | (5/2,1/2)
For m € {—1,—-3,-2,—6} we take u,, = ut,,. O

Here the statement for certain diagonal isotropic quadratic forms.

Lemma 3.4.3. Let d > 2 and let Hy be the orthogonal group of a diagonal quadratic form
P(z) = 23 — 23 + a323 + ... + a2 with as,...,aq € Q. Any Hy-coset in Hy has a
representative n with ||n||2 < 4.

3.5 Isotropic ternary quadratic forms and SL(2)

Let v be a prime. We'll explain the connection between SL(2,Q,) and non-degenerate
isotropic quadratic forms on Q2. Recall that the adjoint representation of SL(2) is the linear
representation of SL(2) on its Lie algebra s[(2) given by conjugation. It preserves the Killing
form ¢ of sl(2), hence it is a morphism SL(2) — SO(.¢). Note that ¢ (z) = 8(z125 + 23)

in the basis 01 0 0 Lo
(=G 0) 7= (0= )

of mathfraksl(2,Q), so in particular % is Q-isotropic. For any g = (CCL Z) € SL(2,Q),
the matrix of Ad g with respect to [ is

a? —b* —2ab
[Adgls=| —¢* d&*  2cd |. (3.1)
—ac bd 2bc+1

The same formulas hold when we replace Q by Q,. # is similar to any non-degenerate
isotropic quadratic form R on Q3, hence writing the adjoint representation of SL(2,Q,) on an
appropriate basis of s1(2,Q,) yields a morphism SL(2,Q,) — SO(R,Q,). For later reference
we gather some properties of this morphism when R is standard.

Let’s work first with SL(2,R). Consider

cosht sinht 0

t/2
Qoo = (eo 6_2/2) € SL(2,R), byt = |sinht cosht 0] € SO(2,1)
0 0 1
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Lemma 3.5.1. There is a covering of Lie groups to : SL(2,R) — SO(2,1)° such that
Loo(aoo,t) = boo,t-

Proof. Note that £ (z) = 8(2? + 22 — 22) in the ba81s 51
adjoint representation gives a morphism ¢, :
that

(h ,e+f e— f) of sl(2,R), so the
SO(2,1)°. From (3.1) we deduce

_>

0o 0 1\ /e 0\ /0 1

tolasey) = [1/2 172 0] [0 e—t 0] (o 1 1| =bu.
1/2 —1/2 0/ \o 1) \1 0 o

Counsider now
1 0 0

Coot = | 0 cosht sinht
0 sinht cosht

Here is a slight variation of Lemma 3.5.1.

Lemma 3.5.2. There is a covering of Lie groups (., : SL(2,R) — SO(1,2)° such that
U (oot) = Coot-

Now we’ll discuss SL(2,Q,). Consider

p™ 0
= ( 0 p’”)

for any m € Z. We'll denote by K, the group SL(2,7Z,) and K,(n) = ker(K, — SL(2,Z/p"Z))
forn > 1.
Recall that SO(P,Q,)° is the image of Spin(P,Q,) — SO(P,Q,)—see 3.4.

Lemma 3.5.3. Consider a prime p > 2 and a standard isotropic quadratic form P on Q;’).
There is a group morphism t, : SL(2,Q,) — SO(P,Q,)° with the following properties:

(@) Nep(apm)ll, < p*™* for any integer m > 0.
(ii) For every n > 1, 1,(K,(n)) is contained in the kernel of SL(3,Z,) — SL(3,Z/p"'Z).
We’ll use the next easy result to prove Lemma 3.5.3

Lemma 3.5.4. Let p > 2 be a prime number. Consider # (x) = 8(xy+ 2?) and an isotropic
standard quadratic form P on Qf,. There is g € GL(3,Q) such that % o g is a multiple of
P, |lgll, < p and [[g”|], < 1.

Proof. Note that P(x) = x% — x3 + ca3 for some ¢ € C, and that |¢™!|, < p. The matrix

0
g=1 1 1 0
1
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takes # to %P. Its inverse is

/2 1/2 0
gt=1-¢/2 1/2 0
0 0 1
We readily see that ||g]|, < p and ||g7!||, < 1. O

Proof of Lemma 3.5.3. Recall that ¢ (x) = 8(xy + 2?) in the basis 8 = (e, f, h) of s[(2,Q,).
By Lemma 3.5.4, there is go € GL(3,Q) such that J# o gy is a multiple of P, ||go||, < p and
llgo M|, < 1. We define ¢, : SL(2,Q,) — SO(P,Q,) as

w(9) = 90 [Ad glsg0.

Let’s see that ¢, has the claimed properties.

Since go is a rational matrix, ¢ defines a morphism of Q-groups SL(2) — SO(P) with
finite kernel. SL(2) is a simply connected Q-group—see | , . 63]—, so by the uniqueness
of the universal covering there is an isomorphism of Q-groups ¢ : SL(2) — Spin(P) such
that the diagram

S

> Spin(P)

L(2) v
\ /
SO(P)

commutes—see | , Proposition 2.10, p. 76]. Taking the Q,-points we see that the image
of ¢, is indeed SO(P,Q,)°.
From (3.1) we see that [Ad a,,.]s = diag(p*™,p~*™,1). Then

lep(apa)ll, < lgo "1, [Ad apm]sl1, goll, < p*™,

which proves (7).
Let’s prove (iz). We have

(a—1)(a+1) —b? —2ab
[Adgls— I3 = —c? (d—1)(d+1) 2cd
—ac bd 2be

If g € K,(n), then ||[Adg|s — ]|, < p~™ since a — 1,b,¢,d — 1 are in p"Z,. Hence

len(9) = Lsll, < llga ™, llAd gls — Ll llgoll, < 5=,

so we are done.

[]

Corollary 3.5.5. Consider a prime number p > 2 and an integer d > 3. Let H, be the
orthogonal group of a standard isotropic quadratic form on (@g. There is a morphism with
finite kernel p: SL(2,Q,) — Hp with the following properties:
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(@) [lp(apm)ll, < p*™** for any m >0,
(ii) p(K,(n)) is contained in ker(SL(d,Z,) — SL(d,Z/p" 7)) for every n > 1.

Proof. Suppose that H, is the orthogonal group of the standard isotropic form P on Qg. P
is of the form
P(z) = 25 — 23 + aza3 + ... + aqx3.

Note that Pj(z) = 2% — 23 + a3 is standard isotropic. We define p as the composition
SL(2,Q,) % SO(P,Q,)° % H?,

with ¢, as in Lemma 3.5.3 and, for any h € SO(P;,Q,)°, p(h) actson V = Q,e1 Q,e2 B Qe
as h and as the identity on Ques @ - -- @ Qpeq. The claimed properties follow from Lemma
3.5.3. 0



Chapter 4

Decay of coefficients of unitary
representations

In this chapter we introduce the tools we’ll need from the theory of unitary representations of
semisimple groups. Our motivation is the unitary representation that arises from a measure-
preserving dynamical system, that we discuss in Section 4.1. We’ll explain how an estimate
of the decay of the coefficients of this representation implies a mixing speed of the underlying
dynamical system. In the three remaining sections we cite the results for SL(2) that we’ll
need.

4.1 Basic definitions and motivation

If H is a Hilbert space—always assumed to be complex—, we denote by U(H) the group of
unitary transformations of H. A unitary representation of a locally compact group G on ‘H
is a group morphism 7 : G — U(H) such that g — 7(g)v is continuous for any v € H.

Let m be a unitary representation of G. We’ll often denote by H, the Hilbert space of
7. For v,w € H,, the map g — (7w(g)v,w) is the coefficient of v and w. When v = w we
call it the diagonal coefficient of v. The unitary representations m; and 7y of G are unitary
equivalent if there is a G-equivariant bijective isometry H,, — Hn,.

We say that 7 is irreducible if 0 and H, are the only G-invariant closed subspaces of H.
The set of equivalence classes of unitary representations of G, denoted by G, is known as the
unitary dual of G. We denote by [r] the unitary equivalence class w. A unitary representation
o of G is weakly contained in 7 if any diagonal coefficient of o can be approximated uniformly
on compact subsets by finite sums of diagonal coefficients of 7. The support suppm of
consists of the [o] € G weakly contained in 7.

Here is the important example of unitary representation that justifies the existence of
this chapter: Let Y be a topological space endowed with a finite Borel measure p. Suppose
that « is a measure-preserving, continuous action of a locally compact group G on Y. The
formula

Ta(9)f(y) = flalg™")y)

defines a unitary representation 7, of G on L*(Y,u). Recall that a is mixing if for any

41
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p, € L*(Y), 1
lim (7. (g)p, 1) = Pval /Y pdp /Y ¢dp.

g—0o0

The fact that « is mixing can be reformulated in terms of certain coefficients of m,. Note
that

i) = {re 2w [ rau=of
Y
is a G-invariant closed subspace of L?(Y'). We denote 7° the restriction of 7, to L(Y). The
orthogonal projection of ¢ € L2(Y) to LE(Y) is ¢o = ¢ — ﬁ Jy wdp and
1 _
7o (9)%0; o) = (Ta(g)p, ¥ ——/wdu/wdw
<()00><<)>N<Y)Y y

This means that o is mixing if an only if any coefficient of 77 vanishes at co. To obtain
effective results about quadratic forms, we’ll need to estimate the error term

1 _
(ma(9)p, V) — m/ysodﬂ/ytbdu

in terms of ¢g. In other words, we want to know how fast the coefficients of 7 decay.

4.2 Effective decay of coefficients

The result on the decay of coefficients we’ll use applies to a family of unitary representations
that verify an integrability condition that we explain now.

Let k € [2,00). A unitary representation m of G—again, a locally compact group—is
almost L* if there is a dense subset 2 of H, such that the coefficient of any two vectors in
9 is an L¥*¢ function on G for any ¢ > 0—see the article | , p- 125] of Y. Shalom for a
discussion of this concept.

The case k = 2 is particularly important. A unitary representation of G is tempered if and
only if it is weakly contained in L?(G). There is a close connection between tempered and

almost L? unitary representations: A result—]| , Theorem 1]—of Cowling, Haagerup
and Howe says that any almost L? unitary representation of a locally compact group G is
tempered. Conversely, they show—]| , Theorem 2]—that any tempered unitary rep-

resentation is almost L? when G is the group of Q,-points of a semisimple linear Q,-group
L. They achieve this by proving there is a dense subset 2 of H, such that the coefficient
of any v,w € & decays at least as fast as the so-called Harish-Chandra spherical function
of G, which is known to be in L?**¢(G) for any € > 0. In the next section we’ll define the
Harish-Chandra function of SL(2,Q,).

From now on we focus in the theory for SL(2), which is enough for our needs. We
denote by K, , the group SL(2,Z,) and K = SO(2,R). The Harish-Chandra function of
SL(2,Q,) is the map =, : SL(2,Q,) — [0, 1] given by

=9) = [ llghe |k
KQ,V

1Since we work with othogonal groups of quadratic forms in at least 3 variables, for us almost L? and
tempered are interchangeable terms.
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where || - || is || - ||, when v < oo, and the standard euclidean norm || - [|cue of R? when
v = 0o. We integrate with respect to the Haar probability measure on Ky ,. If 7 is a unitary
representation of SL(2,Q,) and v € H,, we denote by 6, (v) the square-root of the dimension
of the C-linear span of 7(Ks,)v. We say that v is K, ,-finite if and only if 6, (v) < co. The
next result—which is a particular case of | , Theorem 2]—tells us that the coefficients
of K, ,-finite vectors decay at least as fast as =,.

Theorem 4.2.1 (Cowling, Haagerup, Howe). Consider a prime v. Let m be a tempered
unitary representation of SL(2,Q,). For any vi,vy € H, we have

[(m(g)vr, v2)| < By (g)l|va]] [[va]|6, (v1)d0 (v2),

for any g € SL(2,Q,).

In Chapter 6 we’ll need a decay speed for the larger family of K .-smooth vectors of
unitary representations of SL(2,R). A vector v € H, is K -smooth if the map Ks o —
Hy k — w(k)v is smooth. Consider the matrix

0 —1
2= (1 4);
in the Lie algebra of Ky . If v € Hy is K3 o-smooth, we define its first Sobolev norm as
lv[|z = ([o]]* + |7 (2)v][*)2, where

d

(2 = T

tZ
t:07r(e )v.

Lemma 4.2.2. Let m be an almost L** unitary representation of SL(2,R), where k is a
positive integer. For any K o-smooth vectors vy, vy € H, and any g € SL(2,R) we have

1
[{m(g)vr, v2)] < 5Z8(g)[|vn ][] va]l2-

Proof. Note that 7®* is tempered because the coefficient of v; ® --- ® v, and w; ® - - - @ wy,
is the product of k coefficients of 7. Consider v, w € H,. Applying Theorem 4.2.1 to 7% we
obtain

[(m(g)v, w)]* = [ (g)v*, w)]

oo ()| [ [HTw* 1000 (v oo (w*)

oo (9) (0[] [[w]]000 (v) 30 (w))",
[(w(g), w)] < Z(g)]le]][leo]1320(0)Foc 10).

Let rg € K o be the rotation of angle §. To obtain the inequality for K ..-smooth vectors
we decompose H, as Hilbert sum of K .-invariant subspaces

Hﬂ' :®Hm7

MmEZ
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where K o, acts on H,, by 7(rg)v, = €v,,. Note that e’Z = ry?, so

d
T(Z)vy = — O Vm = iMy,.

dé ‘9:06

Consider a K3 o-smooth v =% v, with v, € H,,. We have m(Z)v =Y/ imup,, so
(2] =D m? o]

meZ

Consider a second K3 -smooth vector w = Y, w,. To obtain the bound for (7(g)v,w)
we use the Cauchy-Schwarz inequality as follows:

< =k(g) (m%“"””) (%Hwnu)

meZ—{0} neZ—{0}

1 1 1
< (1+2¢(2)) Z&(9) ([lvol® + [Im(2)v[1%)* ([wol |* + [I7(2)w|[*) ®
<5Eu(g) vl zl|wl|z.

For Chapter 7, we need a decay speed of coefficients of vectors fixed by small compact-
open subgroups of SL(2,Q,), that we achieve in Corollary 4.3.7. In the proof we’ll use the
next two lemmas. For any positive integer n we denote by K5 ,(n) the kernel of the natural
map Ky, — SL(2,Z/p"Z). Let m be a unitary representation of SL(2,Q,). A vector v € H,
invariant under some K ,(n) is K ,-finite, and the next result gives an upper bound of 6,(v).

Lemma 4.2.3. For any positive integer n we have
#SL(Q, Z/an) — p3n o p3n—2

Proof. Let A,, be a free (Z/p"Z)-module with basis (e, e2). The SL(2,Z/p"Z)-orbit of e;
has size p*® — p*"~2 because it consists of the elements x;e; + x2es of A, such that p does
not divide x; and xo simultaneously. The stabilizer of e; in SL(2,Z/p"Z) is

(1 Z/p"Z
)

#SL(2,Z/p"L) = #(SL(2, Z/p"L)er) #S, = p*" — p”" 72, (4.1)

as claimed. n

Thus

L . . . . . —b
2An easy way to see this is with the standard identification of C with the matrices (Z a ) ,a,b € R.
Note that ¢ corresponds to Z.
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Here is a more explicit decay of coefficients of K ,(n)-fixed vectors.

Lemma 4.2.4. Let m be a tempered unitary representation of SL(2,Q,). If vi,vs € Hn are
respectively Ks,(n1) and K ,(ng)-invariant, then

3 (ny4ng)—
[(m(g)vr, v2)| < 2™ () unl| o]

for any g € SL(2,Q,).

Proof. Note that m(Ks,)v; has at most [Ks,, : Ko p,(n;)] = #S5L(2,Z/p™Z) elements because
v; is Ky ,(n;)-invariant. Then, by Lemma 4.2.3 we have

3
2

N

ng

op(vi) < (#SL(2,Z/p" L))
From Theorem 4.2.1 we deduce that

[(m(g)vi, v2)| < Ep(g)]|va]||v2] |6, (1) (v2)
3 (nq t10) —
< p2 " FIE, (g)fonl[ | [v2]],

<p

for any g € SL(2,Q,). O

4.3 The Harish-Chandra function of SL(2)

The purpose of this section is to give estimates of the decay of =,. Before that, we explain
briefly how Z, arises as a coefficient of an important irreducible unitary representation of
SL(2,Q,). To lighten the notation, in this section we denote G, = SL(2,Q,) and K, = K»,,.
Let B, be the subgroup of upper-triangular matrices of G,. We define a,, = diag(p™,p™™)
and ao; = diag(ez, e 2) for m € Z and t € R. Consider

Af =A{apm | meN} and AL = {as. |t > 0}.

For any irreducible unitary representation o of G,,, the subspace of K,-invariant vectors HX
is either trivial or a line—see | , Proposition 5.1.4, p. 63]. In the latter case we say
that o is a spherical or class-one irreducible unitary representation of GG,. Suppose that o
is spherical and let v be a unit vector of HX». The diagonal coefficient ¢, : g — (o (g)v,v)
of v is the a spherical function of o3. The unitary representation o, of G, induced by the
trivial representation of B, is irreducible and class-one—see | , Theorem 5.1.7, p. 64].
Its spherical function is the Harish-Chandra function =, of G,,.

As Z, is K, bi-invariant, its decay speed depends only on the values it takes on AT, since
G, = K, A} K, according to the Cartan decomposition of G,.

3Let C.(G,//K,) be the space of continuous K, bi-invariant functions G, — C with compact support.
A function F' : G, — C is spherical if it verifies the next three conditions:

(I) F is continuous and K, bi-invariant.
(II) F(I) =1.
(ITI) For any ¢ € C.(G,//K,), F * ¢ = nr(p)F for some nr(p) € C.

The classification of class-one irreducible unitary representations of G, is equivalent to the classification of
positive definite spherical functions of G,—see | , Theorem 9, p. 65].
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4.3.1 Decay speed of =

Let 7y € K., be the rotation of angle . The map 6 — ry is a parametrization [0, 27) — K,
and Ag__ is simply (27)~'<. Thus

1 2
Zltod) = 5 [ Nlaeroer 2209
1 2w 1
= — (et cos? 0 + e sin? 9) 2df.
2m Jo
The next lemma describes the behavior of Z.(a+) for big t. See | , p. 236] for a

proof.
Lemma 4.3.1. The functions t — ZEx(aeot) and t — te~s are equivalent as t — oo.

For our purposes it will be convenient to dispose of an exponential upper bound of
Eoo(@oot). The next corollary is immediate from Lemma 4.3.1.

Corollary 4.3.2. There is a positive constant Dy such that Z(as0t) < Die 5.

Combining Corollary 4.3.2 and Lemma 4.2.2 we get a decay estimate along AX for coef-
ficients of K -smooth vectors.

Corollary 4.3.3. Let m be an almost L*™ unitary representation of SL(2,R), with m a
positive integer. For any K o -smooth vectors vy, ve € Hr we have

1
|<7T(@oo,t)vl702>| < e_ﬁ(n’)DﬁHUlHZHWHZ)

fort > 0.

4.3.2 Decay speed of =,

This time we’ll obtain an explicit formula of Z,(a, ), which easily implies an exponential
decay of =, along A}

Lemma 4.3.4. For any prime p and any integer m > 0 we have

=) = L (@m+ D= 1) +2),

To compute Z,(a,.,) we'll use a well-adapted measurable partition of K,,. For any integer
n > 0 we define

Fo = {(ky) € Kp | [kulp =p7" k|, = 1}
and
Fop={(ky) € Kp | lkulp = Llknl, =p™"}.

As usual, we denote by Ay a Haar measure of a locally compact group H. When H is
compact we take the Haar probability measure.
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Lemma 4.3.5. The subset | J,,o; Fr of K, has full measure and

p—1 _
A\ (F,) = ——=p " 4.2
o () = (42)

for any n € Z.

Proof. Let (e, e3) be the standard basis of V' = Qf). We denote by ¥ be the map k& — ke
from K, to the unit sphere Sy of V. Note that u = W,\g, is the unique Kp-invariant
probability measure on Sy, thus

p(A) = Av(ZpA), (4.3)
for any measurable subset A of Sy. Consider C,, = VU(F},). Then
>‘Kp<Fn) = N(Cn)a

since F,, = ¥~1(C,). Note that {J,., C, is conull in Sy because it consists of the points
(x1,22) € Sy with 21 # 0 # x9. Since C,, = diag(p™, 1)Cy for any n > 0, from (4.3) we get

N(Cn> =

dar (77 1)] mw =iy

In the same way one shows that 1(C,) = p~™u(Cy) for any n € Z. Thus

L=pu(Sy)=> puCy) = EM(Co),
nez
SO
M (Fa) = (C) = 2y
Kp\t'n n D+ 1
for any n € Z. O]

Let’s prove the formula of =,(a, ).

Proof of Lemma 4.5.4. From the definition of F,, we easily see that

p" if n < —2m,
||ap,mkel||;1 =qp ™" it —2m<n<O0,
p " ifn >0,
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for k € F,, and m > 0. Then

CEDS llap,mkelll;ldkxp(k)

nez
= ( > AKP(Fn)>p Y A (F)pm <ZAK,,<Fn>> p
n<—2m —2m<n<0 n>0
m-+n —m—n
Sty P T SRR
n<—2m —2m<n<0 n>0
_ p+1 [Zp—i—Qm—l—i—Zp ]
<0 n>0
—1p™™ 2
_(p—=1p +om—1
p+1 1—pt
pfm
=2 (@m+1D)(p-1)+2),
2 (em+ )1+
as we wanted. O

Here is the exponential bound of =, we’ll use in practice.
Corollary 4.3.6. For any prime number p we have
Zp(apm) < 10p~ 2
form > 1.
Proof. Note that

| p—1 2
ay) = — ((2m+ 1)2—= 1 2
(@p.) pm<< >p+1 p+1)
1 4
< ((2-—"Ym+1) <3
pm p+1
and 7 < 5p7 2 4. Thus
= () < o p ¥ < 10p7F
=p\Up,m log2p p 2.

Using Corollary 4.3.6 in Lemma 4.2.4 we obtain the next decay speed of coefficients.

Corollary 4.3.7. Let m be a tempered unitary representation of SL(2,Q,). Suppose that
U1,V € Hn are respectively Ky ,(ny) and K ,(ng)-invariant. Then

[T (@pm)v1, v2) oo < P (10p2 72 [un]| o),

for any m > 1.

4Indeed: ) y on 2
m/2 m/2 og
4 2 1+ =5"m _ log2
> > > .
m - m m 2




Chapter 5

Effective criteria of Zg-equivalence

In this chapter we are interested in a slight generalization of the classical problem of 7Z-
equivalence of integral quadratic forms, which consists deciding if two given integral quadratic
forms are Z-equivalent. Gauss describes in | | an algorithm that solves the problem for
binary quadratic forms. Unfortunately, it is hard to extend it to quadratic forms in 3 or more
variables. An amazing contribution to the problem of Z-equivalence is the following elegant
result of Li and Margulis—see [ , Theorem 1]. The statement we present here is less
sharp, but easier to read.

Theorem 5.0.1. Let ()1 and Q)2 be non-degenerate integral quadratic forms in d > 3 vari-
ables. If Q1 and Qo are Z-equivalent, there is vy € GL(d, Z) with

1

13
10l < Aa(lQ: | |Q2] ) 0% (5.1)
such that Q1 0 vyp = Q3.

Here A, is a positive constant that depends only on d, and ||Y0||«, ||@i]|- are respectively
the maximum of the absolute values of the entries of vy and the coefficients of ();. Theorem
5.0.1 gives an effective criterion to decide if )1 and @), as in the statement are Z-equivalent:
one checks if the equation @7 o 79 = @2 has a solution in the finite subset of GL(d,Z)
determined by (5.1). We'll sometimes refer to Theorem 5.0.1 as the Z-equivalence criterion
of Li and Margulis. The goal of this chapter is to obtain an effective criterion of Z[1/n|-
equivalence of quadratic forms.

Before going further we give an alternate description of the ring Z[1/n] and we introduce
new notation. The ring Z[1/n] depends only on the prime divisors py, - - - , pr of n because its
consists of the rational numbers with denominator of the form p{* - - - p* with ay, ..., a; € N.
Thus it is natural to introduce, for any finite set Sy = {p1, ..., px} of primes, S = {oo}USF—
we’ll explain in a moment why we add oo—and the ring of S-integers

m
Zsz{ﬁ|m€Z,a1,---,ak€N},
p

pl DRI k

with the convention Z.y; = Z. We denote by pg the product of the primes in Sy, setting
Piscy = 1. The product ring [],.qQ, will be denoted Qg and we define the S-height of
t=(tu)ves € Qs as

As(t) =T 1tlo-

ves

49
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The main reason for working with S = SyU{oco} instead of Sy is that the diagonal embbeding
of Zs in Qg is a lattice in Qg (but is dense in Qg ).

5.1 Effective criteria of Zg-equivalence

Thanks to the criterion of Z-equivalence of Li and Margulis we can decide if @); and @) are
Z-equivalent by searching for a solution v of Q)1 oy = (3 in a finite subset of GL(d,Z) since
any entry of a v € GL(d,Z) with ||7||. < M is an integer between —M and M, hence there
are finitely many choices. When Sy # (), |z|o < M has infinitely many solutions in Zg, so
[17]]c < M doesn’t determine a finite subset of GL(d, Zg). To fix this, note that a system of
inequalities
x|, < M,, ves,

defines a finite subset of Zg. In our criteria of Zg-equivalence we’ll bound all the norms

V||, v € S, of ay € GL(d, Zs) taking Q; to Q2. When Q; and Q) are anisotropic over Qg
there is a uniform bound of

[7ls = max{[y]l.

for any v € GL(d,Zs) taking Q1 to ()2, thus the kind of criteria we aim at says nothing
new in that case. Suppose then that ; and @, are Qg-isotropic’. We have two criteria
of Zg-equivalence depending on whether (); and @)y are R-isotropic or not. The reader can
find an explicit value of C; 4, as well as of any of the other constants in our statements that
depend on d, in Appendix C.

Theorem 5.1.1. Let Sy be a non-empty finite set of odd primes and let S = {oo} U Sy.
Consider non-degenerate, R-isotropic integral quadratic forms Q1 and Q2 in d > 3 variables.
If Q1 and Qo are Zgs-equivalent, there is o € GL(d, Zg) with

6 3
70l < Ciap&® (1|Q1]]w]|Q21])**

_1
and [[70l], < plog,lp* for p € Sy, such that Qy © 7 = Q.

Theorem 5.1.2. Let S = {oo}USy be a finite set of primes. Consider non-degenerate integral
quadratic forms Q)1 and Q2 in d > 3 variables that are R-anisotropic and Q,,-isotropic for
some po > 2 in Sy. If Q1 and Q2 are Zg-equivalent, there is vo € GL(d, Zg) with

10l lpe < CaaPB® (1Qu 1| Q2l )2+,
17oll, < pldal®  forpe Sy —{po},
[olle < d*1 - dl|Qu]1Z Qs 2,

such that Q1 0 vy = Q3.

Remark 5.1.3. The hypotheses 2 ¢ Sy in Theorem 5.1.1 and py > 2 in Theorem 5.1.2 can
be removed by extending Proposition 5.3.1 (valid for all primes v # 2) to all v. See Remark
3.3.5.

In other words, anisotropic over Q, for every v € S.
2That is, isotropic over Q, for some v € S.
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Remark 5.1.4. The last inequality in Theorem 5.1.2 is in fact verified by any matriz gy in
GL(d,R) taking Q1 to Q2. We included it in the statement for the sake of completeness.

To prove our criteria of Zg-equivalence we need various tools that we’ll introduce in
subsequent chapters. In the rest of the present one we explain the dynamical interpretation
of the arithmetic problem of Zg equivalence of quadratic forms, we state three intermediate
results and, taking them for granted, we prove Theorem 5.1.1 and Theorem 5.1.2.

5.2 Dynamical interpretation

Now we present a dynamical reformulation of the problem of Zg-equivalence. Suppose that
@1 and (), are Zg-equivalent, non-degenerate integral quadratic forms in d > 3 variables.
We denote by G4 the group GL(d,Qg). There is a standard quadratic form P on Q% such
that

Qr=Pof and @y =Pogy,

for some f, g € G45. We want to bound all the v-norms, v € S, of some 79 € GL(d, Zg) that
transforms @)1 to ()>. Let’s consider first an easier question:

Q1. Which matrices in Ggg take Q1 to Q2 ?

It’s easy to see that precisely those of the form f~'hg with h € O(P, Qs). We denote O(P, Q)
by Hg and I'y s will be the diagonal copy of GL(d,Zs) in G4s. Since we are looking for a
matrix in GL(d,Zs) taking Q)1 to @2, the next natural question is:

Q2. For which h € Hg is f~*hg inTyqg?

To detect these elements of Hg we introduce the homogeneous space Xy = Gas/ Fd,53.
Let zq5 = T'ys/Tas be the base point of X, and consider the action of Hg on X,¢ by
left multiplication. Here is the link between the arithmetic problem of Zg-equivalence of
quadratic forms and the dynamics of Hg on Xgg: f~thg is in Tyg if and only if h moves
gras to frgg. Since () and )y are Zg-equivalent, their corresponding points fz4¢ and
grqs in Xgg lie in the same Hg-orbit Y in X, g, which is closed since it comes from an
integral quadratic form. Hence the problem of Zg-equivalence of integral quadratic forms is
intimately related to the next dynamical problem.

Problem 5.2.1. Given two points y; and ys in a closed Hg-orbit in Xy g, bound the size of
the smallest h* € Hg moving yo to y;.

The answer is easy when Hg is compact—which happens iff (); and )5 are anisotropic
over Qs—because Hyg itself is bounded. So let’s consider the case where Hg is non-compact.
With their [ , Theorem 5], Li and Margulis answer Problem 5.2.1 when S = {o0}. We
extend their result to any finite set S = {oo} U Sy of primes in Proposition 5.2.2 when H,
is non-compact, and in Proposition 5.2.3 when H, is compact. A crucial fact to prove these
results is that any closed Hg-orbit Y in X;g¢ admits a unique—up to multiplication by a

3The space X4 s has finite volume with respect to its G4 s-invariant measure—unique up to multiplication
by a positive constant.
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positive real number—Hg-invariant measure y, (see Lemma 6.1.3). For ¢’ € Gy g,v € S and
S" C S we define

/

d
Ty / — ||gl/||I/ d T , / — Ty ! )
(9) Tdotg, 94 T (¢) g (¢)

Here are out two dynamical statements.

Proposition 5.2.2. Let S = {oo} U S be a finite set of primes and let Hg be the orthogonal
group of a standard quadratic form on Q% with d > 3. Suppose that H., is non-compact.
Consider f,g € Ggs such that frgs and grgs are in a closed Hg-orbit Y in Xgqg. Then
there 1s h* € Hg with

* 3 3d(d— 2
1P5llee < Capg" (Too ()T (9)) 240 (T, ()T, (9))*" piv (YV)°,
[[hsll, < p for odd p € Sy and ||hs]|a < 4 if 2 € Sy, such that h*gras = fras.

Proposition 5.2.3. Let S = {oo} USy be a finite set of primes and let Hg be the orthogonal
group of a standard quadratic form on Q% with d > 3. Suppose that H, is compact and that
H,, 1is non-compact for some py > 2 in Sy. Consider f,g € Ggg such that fxys and gxqs
are in a compact Hg-orbit Y in X4 g. Then there is h* € Hg with

* 2 _
1 llne < Faps™ (T (F)To(9))* (T (F)Ts(9)) "~V (V)1
[[hall, < p for odd p € Sy —{po}, and ||h3||s < 4 if 2 € Sf, such that h*gxys = frq4s.

Chapters 6 and 7 are devoted to prove propositions 5.2.2 and 5.2.3, respectively. We follow
closely the original arguments of Li and Margulis, making an extra effort to give explicitly
the constants Cj and F, in the statements. Even if the strategy of the proof is the same in
both cases, we keep them separate hoping that the ideas will be more transparent in this
way.

5.3 The proof of the equivalence criteria

Taking the dynamical statements for granted, the thing missing to prove the criteria of Zg-
equivalence is the relation of the terms 7,,(f), 7T, (g) and u, (Y') in propositions 5.2.2 and 5.2.3
to the quadratic forms )7 and ()3. The next two results take care of this. The first one is a
combination of Lemma 3.2.2 and Proposition 3.3.4, which are proved in Chapter 3.

Proposition 5.3.1. Consider a prime v # 2 and an integer d > 2. Any non-degenerate
integral quadratic form R on Q% can be written as P o g, with P a standard quadratic form
on Q% and g € Gy, such that

l .
Lol < {d||R||§o ifr=c
(p||R||,)z ifv=np.
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Now we handle the term pu, (V). If @ is a non-degenerate integral quadratic form in d
variables, we define

Yos = Hsg'was,

where Hg is the orthogonal group of the standard quadratic form on Q¢ that is Qg-equivalent
to @, and ¢ is any matrix in Ggs such that O(Q,Qs) = (¢') 'Hsg'. Yo is closed in
X5 —see Lemma 6.1.1—thus it admits a unique Hg-invariant finite measure quvs‘l up to
multiplication by a positive constant—see Lemma 6.1.3. We denote by dg the determinant
of the matrix bg of @ in the standard basis of Q?. The next result, which extends | ,
Theorem 6], gives an upper bound of the volume of Yy g. Its proof is the goal of Chapter 8.

Proposition 5.3.2. Consider a finite set S = {oo} U Sy of primes and d > 3. Let Q be a
non-degenerate integral quadratic form in d variables isotropic over Qg. Then

+1

ol p3d6%(5Q) > if Sy # 0,
Hvg s (YQS) < ‘ jdﬁ .
C’d 2 |5Q\oo if S ={o0}.

To close this chapter let’s prove our criteria of Zg-equivalence.

Proof of Theorem 5.1.1. Recall that the R-isotropic, non-degenerate integral quadratic forms
(21 and Q7 in d > 3 variables are Zg-equivalent. Let P be the standard quadratic form on
Q¢ that is Qg-equivalent to (Q1)s and (Q2)s° and let Hg = O(P,Qg). Consider f,g € Gas
taking respectively P to (Q1)s and (Q2)s, with coordinates f, and g, verifying the inequalities
of Proposition 5.3.1. Note that fz,;s and gzgs are in the Hg-orbit Y = Yy, ¢ in Xyg,
which is closed by Lemma 6.1.1. According to Proposition 5.2.2 there is h* € Hg such that
hWgras = fras,

17| < Cap2 (Too ()T (9)) 22407 (T (£)Ts, (9))° v (V)°,

and ||h3][, < p for p € Sy—recall that 2 ¢ Sy. Since f~'h*g = (70,...,%) € Tas takes (Q1)s
to (QQ)S, then 7o € GL(d, Zs) takes Q1 to Qs.
Now we relate T,,(f) and T,(g) to @1 and Q. For p € S, [|Q1]], < 1 because )y is

integral, so ||f,||, < /. Since || f,||, is an integral power of p, in fact ||f,||, < 1, thus
1
15115 <|(5P) | )2 3
T,(f) = P < PP < dg,lp 2. 5.2
= Tac ), = Ulbaly ) =100 2
For T, we have
|| fool 12 a (HQulIZN?

To(f) = ———F7—<d = . 2.3
) | det fooloo ™ 100: [0 (53)

4Note that ju, is determined by a Haar measure on Hg, which we fix as follows: each factor H, is the
orthogonal group of a diagonal quadratic form, and we endow it with the Haar measure determined by the
basis in (A.1) of its Lie algebra. In the introduction of Appendix A we explain how a basis of the Lie algebra
determines a Haar measure. We consider in Hg the product measure.

5To avoid confusions, we’ll write Qg when we think a rational quadratic form Q as quadratic form over
Qg via the diagonal embedding Q — Qg.
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Similar bounds hold for 7},(¢g) and T (g). Recall also that
i (Y) < CPPY" H5(60,) 5 = O p8" Hs(0g,00,) "

by Proposition 5.3.2. Then

—1)+6

d d\ 3dd
. 3 Q ES Q ES 3.2 6 d+1
Rl < Capl (dw A, (501 50,) 3 (COPE HeB0r00,) ")

V |5Q15Q2|OO

6.t o8 Hy(80,00,)2 @D
<jp18d +9d (||Q1HooHQ2|| ) 2(d—1)+3d S( Q Q)

T e (80,00,) 5

34
2

| Q15Q2

where J; = d3®@-D+1240,(CPN6  Since 4 (50,60, is a positive integer and d > 3,

3 34 342 32
H5(30,00,) 2 Y < H(50,00,)27 = |00,00,1% 4, (30,00,)2%

SO
332
%”5(5@ 3g,) 7@ 160,60, |2 &2
< < |5Q15Q2’oo
d(d—1)+3 30 3a(d—1)+3
|5Q15Q2|oo Hs,(00,00,)2%  [00,10q.]%

Thus we obtain

6 342(d— 2
175 < Tap§™ ([1Q1]|]1Q2] 1) 5 D760, 80, 1%

We are ready to bound ~y:

10l = [/ Pagoolloe < d?I1fs ool gocl ol 172

1l
de'—oo Jool|eo h oo
e o119/
< QI QA L
< (@ AT Q|1 Qal L) F DO+ 5, 1

< (@™ AL TP (|Q1] ||| Qall) ™ |6Q16Q2\22
< CiapE” (||Q1 ]| 1Qall)*%

where
Cia= ditt. d!QdQHJd — 3dP(d=1)+13d+1 d!QdQHCd(Cgf))Q

Finally, for p € Sy

_1
[1olls < 11£ Ll lgal 11511, < plog,ln *-
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Proof of Theorem 5.1.2. This time ); and ()2 are R-anisotropic, Q,,-isotropic for some odd
po in Sy, and Zg-equivalent. Consider f, g € Gy ¢ as in Proposition 5.3.1 such that

(Qi)s=Pof and (Qz)s=Pog,

where P is a standard quadratic form on Q%. Let Hg be the orthogonal group of P and let
Y = Yg,.s. The bounds 5.2 and 5.3 for T,(f) and 7,(g) hold also in the current situation.
Take h* € Hg moving gzqs to fxys as in Proposition 5.2.3. Once more f~'h*g = (70,...,7%)
isin Iy g, and 79 € GL(d, Zg) takes Q1 to Q3. We have

1B5olle < Fap§™ (T ()T (9))°(Ts(f) Ts(9)) "y (Y)*
d(d—1)

< F, B -3 d2dHQ1H‘>0HQ2H°° C 3d6=%p 5 ) od
dp | Ql | < %(5Q16Q2) ( @ s S( Q) )

1y
< Coap§" (1111 /1Q21) 2 00, 0,

where C; ; = dzdg(d_l)Fd(C’y))‘l. Then

d—1
Folloe = 112 R% gl < el 00
Yollpo = PO Opopo_‘dtfplp 9po | lpo po | 1P0
0 0

< |5Q1|p0 || 0||P0

6 2 T
< € pE " (1Qu]] Q2] [)2F V50, 00,13
l
< Caap§” ([|Qu]] || Qaf[ )2 F D2
6 1.3
= Caaps™ ([|Q1]]]|Q2l]) 2,

where
Ca,d = (d!)7C;7d = (d!)7d2d2(d*1)Fd<C§2)>4’

For p € Sy,

Folly = 115 B3g 1l < 180l 2 1911, < pldoy ]y ™.
To conclude we bound the co-norm of . Recall that Ho, = O(d,R), so ||h% || < 1.

V0] = [|foe Pl Gool |

||foo||f>lo1 Hg H
|det fooloo 0

d-1 1
<A™ - dl|Q: ]2 [|Qal] 2

<d-d!
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Chapter 6

Dynamical statement I: R-isotropic
case

The goal of this chapter is to establish Proposition 5.2.2, the dynamical result we used
to obtain our Zg-equivalence criterion for R-isotropic integral quadratic forms 5.1.1. We’'ll
restate it below.

Recall that G4 stands for GL(d). If S = {oo} U S is a finite set of primes, I'; ¢ is the
diagonal copy of GL(d,Zs) in G4, Xas is the homogeneous space Ggs/I'qs and x4 is the
basepoint I'y g/T'ys. For g € Ggg,v € S and S’ C S we define

||ngd
T,(g) = —%— d Tg = I I T,(q).
(9) [det g, [, an 5(9) P (9)

Finally, remember that a quadratic form P = (P,),cs on Q% is standard if, for each v € S,
P, is a standard quadratic form on Q?—see Chapter 3 for this definition. Here is the main
result of this chapter:

Proposition 6.0.1. Consider a finite set of primes S = {oo} U Sy and d > 3. Let Hg be
the orthogonal group of a standard quadratic form on Q%. Suppose that H., is non-compact.
Take f,g € Ggg such that fxqs and grgs are in a closed Hg-orbit Y in X4g. Then there is
h* € Hg such that h*grqs = frag,

115l < Cap® (Toa () Toe(9)) 2“4 (T, ()T, ()™ p (V)

[[hsll, < p for any odd p € Sy, and [|h3]]; < 4 if 2 € Sy.

I

Here is a cartoon of the strategy that Li and Margulis follow to prove | , Theorem
5], the same that we adapt to obtain Proposition 6.0.1: Consider points y; = fzgs and
Yo = gTqs in a closed Hg-orbit Y in X;g. We want to estimate the size of an hy € Hg
moving y; to yo. Suppose that the action of Hg on Y is mixing, and moreover that we
dispose of an estimate of the mixing speed of the form: There is a function F': Hg — [0, 00)
vanishing at oo such that, for any measurable subsets U;,Us of Y and any h € Hg,

My (UI)NY <u2)
45% (Y>

27

po ((htdy) N Uz) — < Cuy 2, F' (D), (6.1)
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where Cy, 1, > 0 depends only on U and U,. Suppose now that U, and U, are small
neighborhoods of y; and ys. If we choose h' € Hg such that

py (UL pry (Us )

CU1,U2F(h) < ,uY(Y) )

by (6.1) necessarily puy ((R'U;) NUy) is positive. In other words, i’ moves a point near y; to
a point near y,. Thus, there is hg € Hg of about the same size as A’ that moves y; to ys.

The purpose of this chapter is to turn this cartoon—which although somewhat inaccurate,
serves as guide—into a real proof. The chapter is organized as follows: In Section 6.1 we’ll
prove that the orbits Yg ¢ are indeed closed, which justifies our interest in the dynamical
situation of Proposition 6.0.1, as well as a partial converse in Lemma 6.1.2. In the sketch
of proof above we assumed that Hg ~ Y is mixing, and this is not always the case, but in
Section 6.2 we’ll show that this is virtually true: there is a finite partition Y;U- - -LUY, of Y and
a finite index subgroup H¢ of Hg whose action on each Y; is mixing. To obtain an estimate
like (6.1) for Hy ~ Y; we'll first show that L3(Y;) is an almost L* unitary representation
of H3 and then we’ll apply the decay speed for coefficients of smooth vectors—Corollary
4.3.3. Since the indicator functions of i, and Uy are not smooth, we need to replace them
by smooth functions supported on these small open sets. In Section 6.3 we prepare for this.
Finally, we complete the proof of Proposition 7.0.1 in Section 6.4.

6.1 Closed orbits and integral quadratic forms

Let Hg be the orthogonal group of a non-degenerate quadratic form on Q%. The goal of
this section is to explain the nice relationship there is between closed Hg-orbits in X;g
and integral quadratic forms: if ) is integral and non-degenerate, Y ¢ is closed in X, g.
Conversely, closed Hg orbits in X, g are always of this form when d > 3 and Hg is non-
compact. This will play an important role to reduce the proof of Proposition 6.2.1 to the
case when Hyg is the orthogonal group of a ternary quadratic form. We start with the easy
implication.

Lemma 6.1.1. Let () be a non-degenerate integral quadratic form in d > 2 variables. Then
Yo.s is closed in Xq for any finite set S = {oo} U Sy of primes.

Proof. We write Qs = P o g with g € Gy5 and P a standard quadratic form on Q%. Let
Hs = O(P,Qg). Suppose that h,grss — fxas for some h, € Hg and some f € Gyg.
n—oo

There are v,, € I'q g such that h,gv, — f, so

Po f=lim Po (h,gv,) = lim Qgo,.
—00 n—oo

The diagonal copy My(Zs)> in My(Qs) of My(Zs) is discrete and closed. Since each bQoryn
is in My(Zs)®, then the matrix of Po f is as well and Po f = Qg o, for n > 1. Since

Qs = Pog, we have f = hgvy, for some h € Hg and some big enough n. In other words,
fxd,S is in YQﬂg. ]
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Now we’ll see that closed Hg-orbits in X, ¢ always come from integral quadratic forms.
When Hg is compact, every Hg-orbit in X, g is closed, but not all of them are of the form Y, g.
Leaving aside this case, when d > 3, closed Hg-orbits come always from integral quadratic
forms. This fact will be important in the proofs of Proposition 6.2.1 and Proposition 7.1.1.

Lemma 6.1.2. Consider a finite set S = {oo} U S of primes and let R be a non-degenerate
quadratic form in d > 3 variables with coefficients in Qg. If R is Qg-isotropic and SO(R, Qg)zq.s
is closed in X45, then SO(R,Qg) = SO(Qs,Qs) for a non-degenerate integral quadratic form

Q@ in d variables.

To prove this we need a fact that we’ll use over and over: closed Hg-orbits in X, g
admit finite Hg-invariant measures. This is a result of Dani and Margulis, and is valid more
generally for any semisimple subgroup Hg of G, which means that Hg = [], .4 H,, and all
the H/, are semisimple, algebraic subgroups of GL(d, Q,)—see | , Proposition 3.1] for a
proof for semisimple real Lie groups.

Lemma 6.1.3. Consider a finite set S = {oo} U Sy of primes and let Hg be the orthogonal
group of a non-degenerate quadratic form in d > 3 wvariables with coefficients in Qg. Any
closed Hg-orbit Y in X4g admits a finite Hg-invariant measure ji,. Moreover, [ty s unique
up to multiplication by a positive scalar.

Proof of Lemma 6.1.2. For v € S, let R, be the component of R in QQ,. Since R is Qg-
isotropic, then R,, is isotropic for some vy € S. We'll prove first that R,, has an integral
multiple (). Let Hg = SO(R, Qg), which is semisimple since d > 3. Then Ag =Ty 6N Hg is
a lattice in Hg by Lemma 6.1.3. For Sy C 5, let Ag, be the projection of Ag to Gg, 4. If we
show that A,,—which is contained in SO(R,,,, Q)—is Zariski-dense, so R,, has a non-trivial
integral multiple (). Let T be the subset of v € S for which R, is isotropic. Note that Ap
is still a lattice in Hy because Hg_r is compact. Hrp is semisimple, Zariski-connected and
has no compact factors, hence Ar is Zariski-dense in Hy by Borel’s Density Theorem—see
[ , p- 41 and Remark in p. 42]. Ar projects to A,,, so this last one is Zariski-dense in
H,.

Let " = S — {r}. To show that Hg = SO(Qs,Qg) it suffices to prove that Hg
contains a neighborhood of the identity in SO(Q,Qg ). Let Ag be the diagonal copy of
SO(Q,Zs) in Gge. Since SO(Q, Q,,) is non-compact, by the Strong Approximation Theo-
rem ‘the closure—with respect to the analytic topology—of Ag is a clopen subgroup Ug of
SO(Q, QS/). Write Gd75 = GVO X Gd,sl. Note that

(1 X AS’)-Td,S = (SO(Q,Zs) X 1)[L’d,s C Hgilid,g,

hence (1 x Ugr)zqs is also contained in Hgzyg, since this last is closed in X, g. This implies
also that there is a neighborhood of the identity Wg = HVE ¢ W, in G4 g such that w +— wwg g
is an homeomorphism Wy — Wsxys and (Wszas) N (Hsxas) = (Ws N Hg)zas. Then Hg
contains Ug N W.

O

To close this section we rewrite Lemma 6.1.2 in terms of the orbits Yy .

1See [ , Theorem 7.12]
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Corollary 6.1.4. Consider a finite set of primes S = {o0} U Sy and d > 3. Let Hg be the
orthogonal group of a Qs-isotropic standard quadratic form on Q%. Then any closed Hg-orbit
in Xgg s of the form Yg g for some integral quadratic form Q).

Proof. Let Y be a closed Hg-orbit in X;¢ and take gryg € Y. Consider R = P o g. The set
g 'Y = O(R,Qg)z4s is also closed in X, 5. Since R is isotropic, Lemma 6.1.2 tells us that
O(R,Qs) = O(Qs,Qs) for some integral quadratic form @, so Y =Yy s. O

6.2 Mixing speed for closed HZ-orbits

Let Hg be the orthogonal group of a standard quadratic form on Q%. In the introduction we
said that the action of Hg on any closed Hg-orbit Y in X g is virtually mixing. Let’s precise
what we meant by that. Let Hg be the image in Hg of the corresponding Spin group?. Since
Hg has finite index in Hg, there are finitely many Hg-orbits Yi,...,Y, in Y. When H is
non-compact, the action of HS on each Y; is mixing. What is really surprising is that there
is a mixing speed for HS Y, valid independently of ¥; and Y. This is a consequence of
deep results in the theory of automorphic representations. A detailed discussion of them is
out of the scope of this work, we’ll just present the relevant statements for our applications
in 6.2.1. Once more, following the original arguments of Li and Margulis, and to keep things
as concrete as possible, we'll state the mixing speed for a particular copy of SO(2,1)° in HZ,.
To do so, we introduce first more notation.

Consider a non-degenerate quadratic form R on R? and a linear subspace V of R%. If
R‘V is non-degenerate, then R? = V @ V+, where V+ is the R-orthogonal complement of
V. We denote by O(R,R)" the subgroup of h € O(R,R) such that h(V) =V and h acts as
the identity on V*. Suppose that H,, is orthogonal group of a standard isotropic quadratic
form P on R%. By definition of standard, P(z) = 2% + - + 22 — 22, — -+ — 27 for some
1 < r < d. Suppose that r > 2 and let V = Re; & Res & Re,.1. We'll denote py_ . the
morphism SL(2,R) — H,, obtained composing to, : SL(2,R) — SO(2,1)° as in Lemma
3.5.1 with the natural isomorphism O(2,1) — HY. If r = 1, set V = Re; @ Re, 41 @ Re,yo
and define py_ as the composition

SL(2,R) = SO(1,2)° —s HY,

with ¢/ as in Lemma 3.5.2. Note that the image of pg._ is HY°, the neutral connected
component of HY. We'll denote by Xy € b, the image of

Z = (? _01) € sl(2,R)

under (the derivative at Iy of) pg.__.
Let 7 be a unitary representation of H,,. Recall that if v € H, is H,-smooth, for X € b
we define )
[lvllx = (vl + [|w (X)v][?)2.

Finally, we set D = 5y/D;, with D; is as in Corollary 4.3.2.

2For the definition of Spin see Section 3.4 of Chapter 3.
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Proposition 6.2.1. Consider a finite set S = {oo} U Sy of primes and d > 3. Let Hg be the
orthogonal group of a standard quadratic form on Q% with H., non-compact and let p = pp._ .
Suppose that Y' is a closed Hg-orbit in X45. For any HS -smooth functions 1, ps € L*(Y)
we have

1
//(901 0 p(aso,—t))P2dityr — m/w sﬁlduy'/l@d/iw

fort > 0.

< De 01|y, |02l 20,
(6.2)

Like we said in Chapter 4, a mixing speed of Hg ~ Y’ can be interpreted as a speed of
decay of coefficients of L3(Y'). We'll obtain Proposition 6.2.1 from the next lemma and the
decay speed of coefficients of Corollary 4.3.3.

Lemma 6.2.2. Consider a finite set S = {oo} U Sy of primes and d > 3. Let Hg be the
orthogonal group of a standard quadratic form P on Q% with H,, non-compact. Let V be
a 3-dimensional subspace of R? where P, is non-degenerate and isotropic. For any closed
Hg-orbit Y' in X5, the unitary representation of HY° on LZ(Y') is almost L*.

Taking Lemma 6.2.2 for granted for the moment, let’s deduce Proposition 6.2.1.

Proof of Proposition 6.2.1. Let Y’ be a closed Hg-orbit in X;g¢ and let 7 be the unitary
representation of HS, on L*(Y"). Consider o1, s € L*(Y') and define

1
Vi =i — / eidpyr,
py (Y') Sy
which is simply the orthogonal projection of ¢; to L3(Y”). Note that the left-hand side of
inequality (6.2)—the one we want to prove—is equal to [(7(p(dsot))V1, V2)|c0-
By definition of p : SL(2,R) — H,, its image is of the form HY°, where

V= Rel @Rez @R@j

for some 1 < i < j. By Lemma 6.2.2, the unitary representation of HY° on L3(Y”) is almost
L*. Since p : SL(2,R) — HY° is a finite covering of Lie groups, the unitary representation
of SL(2,R) on LZ(Y") is also almost L*. The decay speed of coefficients of smooth vectors—
Corollary 4.3.3—give the result:

[{m 0 plaoe.t)t1, P2)loo < €78 (5V/Dullén |y, 102l )-
[l

The technical results we use to prove Lemma 6.2.3—Proposition 6.2.5 and Theorem
6.2.6—work only when the subspace V of R? is defined over Q. The next lemma is es-
sentially a restatement of Lemma 6.2.2 with this extra hypothesis. After stating it we’ll see
that we can eliminate the rationality assumption.

Lemma 6.2.3. Let ) be an R-isotropic non-degenerate integral quadratic form in d > 3
variables. Consider a 3-dimensional subspace W of Q such that Q) is non-degenerate and

isotropic on V' = Wg. For any finite set S = {oo}U Sy of primes, the unitary representation
of SO(Q,R)V"® on LE(SO(Qs,Qs)°x4s) is almost L.
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!/

Proof of Lemma 6.2.2. Suppose that Y/ = Hggzras is closed in X;5. Then so is g7V’ =
(g7*Hg)xqs. By Lemma 6.1.2, g7'Hgg = O(Q,Qg) for some non-degenerate integral
quadratic form @ in d variables. Consider a 3-dimensional linear subspace V of R? where P,

is isotropic and non-degenerate, and let V" = g 1V. The unitary representations of H'° and

9 HY g0 = SO(Q,R)V" on L2(Y') and L?*(SO(Q,Qs)z4s) are unitary equivalent. We'll
show that the latter one is almost L*.

Choose a linear subspace W C Q7 of dimension 3 such that the restrictions of Q) to V"
and V' = Wg have the same signature. By Witt’s Theorem—see | , p- H8]—there is
ho € SO(Q,R)° such that SO(Q,R)V" = heSO(Q,R)V"°hy*. The left multiplication by
ho is a measure-preserving homeomorphism SO(Q, Qs)°zqs — SO(Q, Qs)°xq4,s, equivariant
with respect to SO(Q,R)"V'"® — SO(Q,R)"V" (the conjugation by hg). Hence the unitary
representations of these groups on L3(SO(Q,Qg)°r4s) are unitary equivalent. The one of
SO(Q,R)V" is almost L* by Lemma 6.2.3, so we are done. O

The remaining of this section is devoted to the proof of Lemma 6.2.3.

6.2.1 Automorphic representations at oo

We introduce here the technical statements we use to prove Lemma 6.2.3.

Let J be a semisimple Q-subgroup of GL(d). The group Ay, = Joo NGL(d,Z) is a lattice
in J, by Borel, Harish-Chandra’s Theorem. For any positive integer N, the N-th principal
congruence subgroup of A, is defined as

Aw(N) = ker(Aw — GL(d, Z/NTZ)).

More generally, if S = {oo} U S is a finite set of primes, then Ag = G4 s NIy is a lattice in
Ggas. If N is a natural number not divisible by any p € Sy, the N-th principal congruence
subgroup Ag(V) of Ag is the kernel of A¢ — GL(d,Z/NZ). A congruence subgroup of Ag is
a subgroup that contains a principal congruence subgroup.

Recall that the unitary dual of J,,, denoted by .J, is the set of equivalence classes of
irreducible unitary representations. We endow it with the Fell topology—see [ , -

427]. If  is a unitary representation of J, its support supp 7 is the set of elements of J,

—— Aut —
weakly contained in m. The automorphic spectrum J “ of J is the closure in Joo of

U supp(L2 (o /Aco (V).

N>1

This notion is independent of the Q-embedding J — GL(d) since the commensurability
class of congruence subgroups is independent of the the Q-embedding—see | , Corol-

lary 2.8]. For us, an automorphic representation of J., is a unitary representation whose
— Aut
support is contained in J “ The next lemma provides various examples of automorphic

representations.

Lemma 6.2.4. Consider a simple, simply-connected Q-subgroup J of GL(d) and a finite
set S = {oo} U Sy of primes. Let A be a congruence subgroup of Ag. Suppose that Js is
non-compact. The natural unitary representation of Jo, on L*(Js/A) is automorphic.
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Proof. First, let’s see that it is enough to treat the case where A is a principal congruence
subgroup of Ag. If A’ is a finite-index subgroup of A, the natural map F': Jg/A" — Jg/A is a
Js-equivariant finite covering, thus we can identify L?(Jg/A) with the subspace of functions
in L?(Js/A’) constant on almost every fiber of F. So let’s assume that A = Ag(N) with N
relatively prime to pg.

We’ll show that, as unitary representations of J.,

supp L*(Js/As(N)) = | supp L2 (Joo/ Ao (NPZ)).

n>1

It suffices to see that there is, for n > 1, a J-invariant subspace H,, of H = L*(Js/As(N))
such that U,>1H,, is dense in H, and the unitary representations of J,, on L*(J/As(NpZ))
and H,, are isomorphic.

For p prime and n > 1 consider K, = GL(d,Z,), K} = ker(K, — GL(d,Z/p"Z)) and
Uy = J,NK]. Suppose that Sy = {py,...,pe}. We'll denote by Ug, the group Uy, x---x Up,.
For every n > 1, Jo x U g, is an open subgroup of Jg, and we’ll see that it acts transitively
on Jg/A. By the Strong Approximation Theorem | , Theorem 7.2], J A is dense in
Js, hence Js = (Jx X Ug,)A. Note that (Joo x Ug,) N As(N) = Ax(NpY), so there is an
identification

Js/AS(N) = (oo X UZ,) /Aol Np).

We then have an isomorphism of J-spaces
Joo/ Nos (NPY) = Ugf\<Joo x Ugf)/AOO(Npg>7

which identifies L?(J /Ao (Np?)) with the subspace H,, of UZ ,-invariant vectors of H. Since
the (U gf)nzl are arbitrarily small, U,>;H,, is dense in H3.
0

Lemma 6.2.4 says that we can define also the automorphic spectrum of J, as the closure
in J,, of the union of the supports, as unitary representation of J.,, of L?(Js/A), where S
runs though all the finite sets {oo} U Sy of primes and A is any congruence subgroup of Ag.
In the next chapter we’ll introduce the ring A of adeles of Q, thanks to which we construct
a natural unitary representation of J., that contains all the L?(Js/A). The automorphic
spectrum of .J,, can be also defined more succinctly as the support of this representation.

Following Li and Margulis, here is the first technical tool—see [ , Lemma 5]—we’ll
use to prove Lemma 6.2.3. As they remark in their article, it is a consequence of two
deep results from the theory of automorphic representations: the Kim-Sarnak bound for
the Ramanujan Conjecture for SL(2) over Q—see | , Appendix 2]—and the Jacquet-
Langlands Correspondence—see | , Theorem 3.4, p. 163].

Proposition 6.2.5. Let R be a non-degenerate integral quadratic form in 3 variables. Any

o € Spin(R) s either trivial or almost L*.

3A continuous function F : Jg/A — C with compact support is the uniform limit as n — oo of F, : & +—
Jorn F(uz)du and C.(Jg/A) is dense in H.
Sy
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In the proof of Lemma 6.2.3 we’ll show that the unitary representation of SO(Q,R)""° on
LA(SO(Qs,Qs)°z4,5) is automorphic using the so-called Burger-Sarnak’s Restriction Principle—
see | , Theorem 1.1]:

Theorem 6.2.6. Let J be a connected semisimple linear Q-group and let J’ be a semisimple
Q-subgroup of J. If m is an automorphic representation of J,, then 7 1s an automorphic

i
representation of J._.

6.2.2 The proof of Lemma 6.2.3

Having now the adequate tools at our disposal, let’s complete the proof of Lemma 6.2.3.

Proof of Lemma 6.2.3. Let R be the restriction of Q to W. We’ll denote by H and H?
the semisimple Q-groups SO(R) and SO(Q). Let ¢ : H® — H® be the natural morphism
of Q-groups such that ((H}) = SO(Q, k)"* for any field extension k of Q. Let J® be the
Q-group Spin(R) and let R be the covering J* — H®. We define Q : J¥ — H? in the same
fashion. To become familiar with the new notation, remark that SO(Q,Qg)° = Qg(JS).
The composition ¢ o R lifts to 7 : J® — J%, so we have the commutative diagram

JE Je
Rj jg
HE H?

We denote A = le(Hg? N T'ys), which is a congruence subgroup of Jg?. To see that the
unitary representation of SO(Q, R)V"® on L2(Qgs(J%)xq.s) is almost L*, it suffices to show that
one of JB on LZ(JZ/A) is almost L*, because R, has finite kernel and by the commutativity
of the diagram. We see J® as a Q-subgroup of J9 using 7. The unitary representation 7
of J¢ on L%(JSQ/A) is automorphic by Lemma 6.2.4, hence o = 7T’JR is automorphic by

e}

Theorem 6.2.6. Proposition 6.2.5 says that an irreducible automorphic representation of J%
is either trivial or almost L*, hence we have to show that the trivial representation of JZ
is not weakly contained in o. If this happens, then o would have a non-zero JZ-invariant
vector?, which is impossible. Indeed, if ¢ € L2(J$/A) is JE-invariant, then ¢ is JQ-invariant
by the Howe-Moore phenomenon—see Lemma 8.3.8. Since J% is normal in Jg, then p—as
function on Jg—is J@-invariant on the right. The group J< is non-compact, so JEA is dense
in Jg? by the Strong Approximation Theorem—see | , Theorem 7.12]. This shows that
¢ is almost surely constant. Recall that fy, ¢ = 0, so the only possibility is ¢ = 0. O]

6.3 Preparing to apply the mixing speed

Suppose that y;3 = frgs and y, = grgs are in a closed Hg-orbit Y’ in Xy g. To prove
Proposition 6.0.1, we’ll apply Proposition 6.2.1 to smooth functions ¢, s supported on

— Aut
4Because the trivial representation is an isolated point in J& by Proposition 6.2.5.
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small neighborhoods U;,Us of y; and ;. We have to estimate the L?-norms of ¢; and of
some derivative of it, so it will be convenient to choose U; that identifies with a neighborhood
of the identity in Hg, in that way we can do the computations on Hg. We take care of this
in 6.3.1, and in 6.3.2 we construct the bump function on Hg that we’ll use to define the ¢s.

6.3.1 Injectivity radius in X;g¢

For any r > 0 we define

Good(r) = {95 € Gooa(r) | llgoc — Tallow <7 and [lg! — Lgl| <7},

and
Gap(r) ={gp € Gayp | llgp — Lall, <7 and ||g, " — Lyl], < r}.

For g € G4 and v € S we denote

_ | det g, |,
ru(g) =T, (9) = g l]2

and

2= G (55 ) % TL Gastrto)

peSf
Lemma 6.3.1. The map B — Xus, [+ fgras is injective for any g € Gys.
We’ll use the following observation in the proof of Lemma 6.3.1.
Lemma 6.3.2. The ball Gy4,(r) is a compact-open subgroup of Ga, for any 0 < r < 1.

Proof. Consider g, € Gayp. If ||g, — I4||, < 1, then g, has coefficients in Z, because

gpll, < max{[lgy — Lall,., [|Lall,} = 1.
This implies that Gy,(1) = GL(d,Z,) of G4,. More generally we have
Gap(p™) =ker(GL(d, Zy) — GL(d,Z/p"Z))
for any positive integer n. m
Proof of Lemma 6.5.1. The statement is equivalent to
(97'(#%) " #sg9) NTas = {la}

for any g € Gus. Suppose that f,h € $% and v = (0,...,7%) € Las verify v = g~ f'hyg.
We'll prove that vy — Iy has integral coefficients and ||y — I4||.. < 1. Note that f,'h,, is in
G, for p € Sy since r,(g) < 1. Hence:

7o = Lall, = llg, ' (f5 oy — L) gpll,
< gy o llgpll 1Sy Py = Tall,

g |12
< =g =1,
|det9p|p g
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so v — 14 has integral coefficients. The computation in the real coordinate is similar:

170 = Lallee = 195 (f s oo — La)gool|
< g9l e oo — Tl

d-d
< M hoo = fM e F I = L)l
_roo(g>(||foo foo e + IS, dllss)
@2 d .
- .y -l
<Too<g)(||fool|oo\|hoo dlle Hf = Lalls)

d*>-d rso(9) [ Teo(9)
: 2
S r(g) 34 <3d2-d! * )

The only integral matrix with co-norm strictly less than 1 is the zero matrix, so v = I;. [

6.3.2 Bump functions on closed HZ-orbits

Let Hs be the orthogonal group of a standard quadratic form P = (P,),es on Q% and
suppose that Y’ = Hggxzas is closed in X4 5. We define U9 = (BLN Hg)gaas, ry = 2202(-23 and
0y Y —[0,00) as

Ur, (o) if y = bgxgs with b € Hg N A,
pg(y) = . .
0 ifyeyY —us.

Here v, is as in Lemma A.2.18. The function ¢, is well-defined—recall that 2% — X;4,b
bgz, s is injective by Lemma 6.3.1—, H -smooth and has support in /9. Here we prove some
properties of ¢, that we’ll use in the proof of Proposition 6.0.1. We’ll use freely the properties
of ¢, proved in Lemma A.2.18. Before doing computations, we remind the reader that if
P,(z) = alx% + -+ ad:vfl, we endow H, with the Haar measure induced by the basis

Eij — CLZ'CLj_lEjZ', 1<i<y < d

of the Lie algebra of H,—see the introduction of Appendix A. We have

/ codiiy: = / 4, (beo) ity (8)
Y’ HsNY,

= A, (Hs, N #3,) / U, (bso)dA 1. (boc)
Hoo(rg)

d(d—-1) < ]-7

— (p5°rs, (9))?
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where 75,.(9) = [],c s, rp(g). To get the last line we used the volume formula of Corollary
A.2.12. Note that r,(g) <1 for p € Sy, hence pg°rg,(g) < 1. Similarly we have

1
2

|lpgllL2vry = (/ @ng(bm)dAHs(b))
Hsﬂ(@g
= Ang, (Hs; 0 25.) ||V, || L2(h1.0)

< Mdrgf(id(dfl)Jrl)

= (3d2 - d)TUEDH AL (g)(FAA=DHD) (6.3)
where M, is as in Lemma A.2.18, and®

¥ (Pl 20y < N X ()| 22 (110)
< (3d2 . d!)%d(dfl)JrlMdHXHoo"ooroo(g)—(id(dfl)Jrl)
= 2(3d? - d)) 1M M gro (9)~(UTDHD), (6.4)

Recall that |[¢g||x, = (||<pg||%2(y,) + ||XHOO(909)||%2(Y,))%. Combining (6.3) and (6.4) we
obtain

gl < Naroo(g) ™ GAEDHD,

where Ny = 3(3d2 - d!)3%@=D+1 M, We gather these properties of ¢, in the next lemma.

Lemma 6.3.3. Consider a finite set of primes S = {oo} U Sy and d > 3. Let Hg be the
orthogonal group of a standard quadratic form on Q%. Suppose that Hy, is non-compact.
Take g € G such that Y = Hggxqs is closed. The function ¢, :Y' — [0,00) has support
U9, is HS -smooth,

Ld(d—1)

gl vy = (P57rs,(9))2 <1

and
1
egllas., < Nyrog(g)~(add=D+1),

6.4 The proof of the dynamical statement
We are finally ready to prove the main result of this chapter.

Proof of Proposition 6.0.1. Let’s choose € Hg such that ngzs s and fz4g are in the closed
Hg-orbit Y’ C Y in Xy, N is a diagonal matrix with £1 in the main diagonal, ||n,||, < p
for odd p € Sy and ||n|]2 < 4 if 2 € S4°.

Consider the HJ -smooth functions ¢y 1= @, 02 = @5 : Y = [0,00) of Lemma 6.3.3,
supported respectively in the open subsets U™ and U7 of Y'. By Proposition 6.2.1 and

I,

SHere Xy € bhoo is as in Proposition 6.2.1.
This is possible thanks to lemmas 3.4.1 and 3.4.3 when H,, is non-compact and Lemma 3.3.12 when H,
is compact.
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Lemma 6.3.3 we have

(ps°rs, (f)rs,(ng))z4@V
My (Y,)

_t
< De s l|o||an 2]l xm

< DNZe™5 (1o (f)roo(g)) G0,
(6.5)

/ (901 © p(aoo,ft»@dlhv -
Y/

Recall that p = pp_ is the morphism SL(2,R) — H,, of Proposition 6.2.1. Let’s assume that
(p(aco )UM) NUT = O for any ¢ € [0,1]7. Then, for any such ¢, [,.,(¢1 0 p(aces))@adpy =0,
so (6.5) yields

(p5°rs, (f)rs, (ng)) 2~V
py (Y7)

Let ty — 1 be positive number for which we have equality in (6.6) for t =ty — 1. Then

< DNZe™5 (roo (f)roo(g)) ~G2E-DFD), (6.6)

(p5°rs, (f)rs, (ng))z4@=
145% (Y,)

DNZe™ 8 (roo(f)roc(g)) 4D+ <

Let Al = p(booy,). From (6.5) we deduce that

| ere 0z (v) 20

so h. U™ meets U’. Thus there are
sc BYNH, and te BLnHS
such that (t7'h. s)ngzxas = fras. We set h* =t"'hl_sn. For p € S; we have

p ifp>2,

* _ —1
31l = lit5 syl < Il < {4 o

It remains only to prove the bound for ||k} ||... Before doing so, note that by the choice of
to we have

(9577, (F)rs, (19)) ") = DAGete™? (roe( froa(9)) "G4 Dy (v7),

SO

e < BDNPpE ™ (rg, (F)rs, (n9)) 4D (o (£)rao(9)) =14 0, (1)
< 3 PPEDDINIZIE (g ()1, (9)) 00D (1o (f)ro(g)) " EUDT0 0, ()0,

TIf this is not the case there is h* € Hg such that h*gzq,5 = fza,s, [|h}|], < p for odd p € Sy, [|h3]|> < 4
if 2 € Sy and ||h% || < 1242
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To obtain the last line we use that rs,(ng) ™" < 2%pérs, (g)~" by the choice of 7°. Recall that
T,(g9) = r,(g)~" by definition. Now

1751 oe = [1t50 PloSooToo| |
< Pt o800 oo 1P 1o
< Ad?||h| |
<12 PPEDDENTEE (1, (9)rs, (9)) D 11 (9)) B (1)
: _ 3 d(d—
= Cdp%dd(TSf (g)TSf (9))3d(d 1)<T00(f)T00(9>)2d(d 1)+6F‘Y<Y)67

which completes the proof. O]

8In fact rs, (ng) ™' < plrs,(9)~*if 2 ¢ Sy.
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Chapter 7

Dynamical statement II: R-anisotropic
case

The purpose of this chapter is to establish Proposition 5.2.3, which is the main ingredient
of the proof of the criterion of Zg-equivalence of R-anisotropic integral quadratic forms—
Theorem 5.1.2. We'll use the same notation as in Chapter 6.

Consider a finite set S = {00} US} of primes and d > 3. We look at the action of Hg—the
orthogonal group of a standard quadratic form on Q%4—on the space X4 of lattices of Q%,
but now H,, is compact. An important difference with respect to the dynamical setting in
the previous chapter is that closed Hg-orbits in X, g are compact®. Here is the main result
we’ll prove.

Proposition 7.0.1. Consider a finite set of primes S = {oo}USy and d > 3. Let Hg be the
orthogonal group of a standard quadratic form on Q%. Suppose that Hy, is compact and H,,
is non-compact for some py > 2 in Sy. Take f,g € Ggg such that fxgg and grys are in a
compact Hg-orbit Y in Xgs. Then there is h* € Hg such that h*grqs = fzas,

115l < Fap§ (T (1) T (9))* (Ts () Ts(9)) ) gy (V)
[[hsll, < p for odd p € Sp —{po} and ||hs]|s < 4 is 2 € S;.

Remark 7.0.2. The assumption py > 2 can be removed easily, we just need to extend Lemma
3.5.83 top=2.

The main idea behind the proof of Proposition 7.0.1 is now an effective uniform mixing
speed—Proposition 7.1.1—for the action of H, on compact Hg-orbits in X4 g, which is the
topic of Section 7.1. Having this, we prove Proposition 7.0.1 in Section 7.2. Many arguments
will be identical to those in Chapter 6, so we’ll take the liberty of skipping some details.

I

7.1 Mixing speed for compact Hg-orbits

Once more we'll state the mixing speed for compact Hg-orbits just for a copy in H), of an
orthogonal group of a ternary quadratic form.

ndeed, if Hsgrq,s is closed, g7'Hsg = O(Q, Qs) for a non-degenerate integral quadratic form @, and
g 'Hsgx, s is homeomorphic to O(Q,Qs)/0(Q, Zs), which is compact since O(Q, R)/O(Q, Z) is compact—
see | , Theorem 5.8, p.48].

71
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Consider p > 2. Suppose that H, is the orthogonal group of a standard isotropic quadratic
form P on Qz. Then

P(x) = 2] — 23 + azxs + - - -
and R(z) = 3 — 23+ a3x3 is a standard isotropic quadratic form on V' = Q,e; & Qe B Qpes.
We define the morphism py, : SL(2,Q,) — H, as the composition
SL(2,Q,) - SO(R,Q,)° — HY° — H,

with ¢, as in Lemma 3.5.3%. For any positive integer m we denote

Gy — (P(T p9m> € SL(2,Q,). (7.1)

Let K4p = GL(d, Z,) and K4,(n) = ker(Kqp — GL(d,Z/p"Z)). Here is the uniform mixing
speed.

Proposition 7.1.1. Consider a finite set S = {oo} U Sy of primes and d > 3. Let Hg
be the orthogonal group of a standard quadratic form on Q%. Suppose that H., is compact
and Hp, is non-compact for some py > 2. Let p = pm, : SL(2,Q,,) — H, as defined
above. Consider a compact Hg-orbit Y' in Xgqs and L*-functions ¢, and @y on Y that are
respectively Hy N (Kap,(n1)) and Hy 0O (Kgp,(n2))-invariant. Then

fY{ ©1 d,LLY/ fy/ @dMY’
py(Y7)

— -7 2 (n1+n2+2)
| 1o s m)zadny: - <o ? (1055l llgallie)

Lemma 7.1.2 shows that the unitary representation of H%O on L3(Y’) is tempered. Let’s
see first how to deduce Proposition 7.1.1 form Lemma 7.1.2: the unitary representation
SL(2,Q,,) ~ L") (through p) is also tempered since ¢,, is a finite covering. Using
Lemma 3.5.3 we see that

p(KZpo (n + 1) N SL(27 @P)) - Kd,Po(n)ﬂ

thus ¢; is invariant with respect to Ks,,(n; +1) NSL(2,Q,). Then the inequality of Propo-
sition 7.1.1 is obtained by applying Corollary 4.3.7 to ¢ and 15, the orthogonal projections
of ¢1, 9 to LE(Y”), and using that |[1;||z2 < |wil|ze-

The fact that H)° ~ L§(Y”) is tempered follows from the next result in the same way
that Lemma 6.2.3 implies Lemma 6.2.2.

Lemma 7.1.2. Let S = {oo} U Sy be a finite set of primes and let Q) be an R-anisotropic
integral quadratic form in d > 3 variables. Consider a 3-dimensional linear subspace W of
Q% po € Sy and V' = Wa,, - Suppose that Q|,,, is isotropic and non-degenerate. Then the

unitary representation of SO(Q,Q,,)""® on L2(SO(Q,Qs)°was) is tempered.

In 7.1.1 and 7.1.3 we introduce the tools we’ll use in the proof of Lemma 7.1.2, which we
give in 7.1.4.

2As in the real case, if W is a linear subspace of Q, on which P is non-degenerate, H;,/V consists of the
h € Hy such that h(W) =W and h acts as the identity on the P-orthogonal complement of W.
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7.1.1 Automorphic representations at finite primes

Let J be a connected semisimple Q-subgroup of GL(d). In Chapter 6 we defined the auto-
morphic spectrum of J,, and now we extend this notion to J,. For a finite set of primes
S = {oo} USy, let Ag be the diagonal copy of Jz, in Jg and let Ag(NN) be the corresponding
principal congruence subgroup for any natural number N relatively prime to pg. If 7 is a
unitary representation of Jg and S’ C S, we’ll denote by suppg 7 the support of the restric-
tion of w to Jgr. We endow j; with its Fell topology. The automorphic spectrum of J, is the
subset of jp given by

~ Aut
Ty =|Jsupp,L2(Js,/As, (N)).
PIN
The proof of the next lemma goes along the same lines as the proof of Lemma 6.2.43.

Lemma 7.1.3. Let J be a simple connected Q-group and let S = {oo} U Sy be a finite set of
primes. Suppose that J, is non-compact for some p € Sy. Then the unitary representation
of J, on L*(Js/A) is automorphic, for any congruence subgroup A of As.

We'll need an extension of the Restriction Principle of Burger and Sarnak—Theorem
6.2.6—to finite primes.

Theorem 7.1.4. Let J C J be connected semisimple Q-groups and let v be a prime number.
The restriction to J), of an automorphic representation of J, is automorphic.

This result is proved by Clozel and Ullmo | , Théoreme 5.1]%,

7.1.2 Unitary representations of adelic groups

We make a small technical detour to explain the form of irreducible unitary representations
of adelic groups.

The ring of adéles A of Q is the restricted product of all the Q, with respect to (Z,),.
In concrete terms, A consists of the a € [[, Q, such that a, is in Z, for almost every p°,
endowed with the topology having as basis all the subsets of the form [, U,, where U, is an
open subset of Q, and U, = Z, for almost every p. The sum and multiplication on A are
defined component-wise. A is a locally compact topological ring. We work with the Haar
measure \y of A determined by

)\A (Z/{) = H )‘Qu (uu)a

for any basic open subset U = [[,U,. If r € Q, then r is a p-adic integer for almost any p,
hence there is a diagonal embedding Q < A, whose image we identify with Q. Consider the
subset

W= (-1,1)x [ %,

3Minor modifications are required. For example, when applying the Strong Approximation Theorem:
since we are not assuming that J is simply connected, J,A might not be dense in Jg, but its closure is a
finite index subgroup of Jg.

4See also [ , Section 5.4, p. 227], where it’s shown that it’s not necessary to ask for J simply connected.

5This means for all except finitely many p.
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of A. Note that Q is a lattice in A since QNW = {0} and A =Q+ W.

Consider now a Q-subgroup H of GL(d). The adelic group H, is the restricted product of
the H, with respect to (U,),, where U, = H,NGL(d,Z,). 1t is a locally compact group, and
one can describe its unitary dual in terms of the ff\,, when H satisfies a technical condition:
we say that H is nice if H, is a group of type I-—for this definition, see | , . 222]—for
every v and, for almost any p, the subspace 'ng of Up-invariant vectors of H,, is of dimension

at most one for any o, € H The unitary representation o, is spherical if dim 7-[ =1.
Assume that H is nice. Here is the construction of irreducible representatlons of Hy:

Consider an irreducible unitary representation o, of H, for each prime v. Suppose that o, is
spherical for almost any p and, for such p, choose an Uj-invariant unit vector w, € H,,. The
restricted tensor product 0 = ®,0, is defined as follows: Let H. be the linear span of the
vectors ®,v, with v, € H,, each v and v, = w, for almost every p. We consider the inner
product

(®,0,,®0,) = H(Uw v,)-
Let (H,, (-,-)) be the Hilbert space obtained by completing (H., (-,-)). The action of Hy on
H, given by

o(h)(®,v,) = ®@,0,(h,)vy,

is a unitary representation o. It doesn’t depend on the choice of the U,-invariant vectors wy,.
The following description of H, is taken from [ , D- 273, 274].

Theorem 7.1.5. Let H be a nice Q-subgroup of GL(d). Any irreducible unitary repre-

sentation of Hy is of the form ®,0,, where o, € H, and o, spherical for almost any p°.
Conversely, any unitary representation of Hy of this form is irreducible.

We close this parenthesis with the lemma that allows to apply the previous theorem to
orthogonal groups.

Lemma 7.1.6. The special orthogonal group SO(Q) of a non-degenerate rational quadratic
form @Q in d > 3 variables is nice.

7.1.3 Automorphic representations of quaternion algebras

Here we cite two important technical results we’ll use to prove Lemma 7.1.2: the Jacquet-
Langlands Correspondence and a representation-theoretic formulation of a famous theorem of
Deligne about holomorphic modular forms. The role of these is similar to that of Proposition
6.2.5 in the previous chapter. Both are stated in terms of quaternion algebras. We start by
fixing some notation.

Let D be a Q-quaternion algebra. We’ll denote by G” the Q-group of automorphisms of
D. In concrete terms, for any prime v, GP ~ QX\ D since all the automorphisms of D, are
interior by the Skolem-Noether Theorem. Recall that we say that D is ramified at v if D, is
a division algebra. When this doesn’t happen, D, ~ M(Q,) and we say that D is split at v.
Alternatively, D ramifies or splits at v if G is respectively compact and non-compact. In

5The o, are unique up to unitary equivalence.
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the latter case GP ~ PGL(2,Q,). Let’s fix a Q-embedding G < GL(3)7. For any finite
set S = {oo} U S} of primes, let AL be the diagonal copy of Ggs in GE. We denote AP the
diagonal embedding of G in Gf.

In this chapter, the next result replaces Proposition 6.2.5.

Lemma 7.1.7. Let D be a Q-quaternion algebra ramified at oo and split at py. Any p €

——Aut
GD s either one-dimensional or tempered.

We'll deduce Lemma 7.1.7 from the two technical results mentioned before. Suppose
that Dg is a division algebra. The first black box is the Jacquet-Langlands Correspondence,
a link between irreducible automorphic representations of GP and cuspidal representations
of PGL(2,A). We won’t cite the most general formulation, which is given in terms of the
multiplicative group of D, rather than G”—see | , Theorems 10.1 and 10.2]. For our
purposes, the following statement taken from | , Theorem 6.2.1, p. 80] is enough.

Theorem 7.1.8. Consider Q-quaternion algebra D and let S be the set of primes on which
D ramifies. Let o' = ®a’, be an irreducible unitary representation of GY contained in
L*(GP/GR). If o' is not one-dimensional, there is an irreducible unitary representation

o= ®o, of PGL(2,A) contained in L*(PGL(2,A)/PGL(2,Q)) such that:
a) o, is in the discrete series of PGL(2,Q,) if v € S.
b) o, and o, are unitary equivalent if v ¢ S.

Our second black box is a theorem of Deligne, originally formulated in the language of
modular forms. Again, the statement here—taken form | , Theorem 6.1.2, p. 79]—is
weaker than the original one, but it spares us the work of defining cuspidal representation.

Theorem 7.1.9. Let 0 = ®,0, be an irreducible unitary representation of PGL(2,A) con-
tained in L*(PGL(2,A)/PGL(2,Q)). If 0 is in the discrete series of PGL(2,R), then o,

is tempered for any p < 0.

We are ready to prove the lemma about irreducible automorphic representations of sz?o

Proof of Lemma 7.1.7. To start, note that Gfg/Gg and Gg/A are compact since GZ is com-
pact®, where S = {oo}US} is a finite set of primes and A is any congruence subgroup of AL—

see | , Theorem 5.8, p. 48]. Thus L*(G?/AP) and L*(GE/A) decompose as a Hilbert
sum of countably many irreducible unitary representations—of G% and G%, respectively—,
each with finite multiplicity | , Theorem, p. 23].

—

Let Ay, be the subset of G’ consisting of the equivalence classes of one-dimensional or

tempered irreducible unitary representations. Since A, is closed” in GD it suffices to prove

"Every automorphism of D, is an orientation-preserving isometry of (Im(D,), Np,), hence the Q-
embedding can be defined writing any automorphism in terms of a basis of D.

8More generally, this holds whenever D is not isomorphic to M2(Q). Equivalently, when D ramifies at
some V.

9Tempered irreducible unitary representations form a closed subset since they are the support of L? (Gg)).
Also, there are finitely many one-dimensional representations, each corresponding to a closed singleton in

Gl —see | , Corollary F.2.9, p. 432].
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that supppoLQ(Ggp /M) is contained in A, for any congruence subgroup A of Agpo. Take

pE 5?0 contained in L*(G§ /A). As we did in the proof of Lemma 6.2.4, one can show that
L*(G{/AP) contains a subrepresentation of G§ unitary equivalent to L*(G /A)—see also
[ , Proposition 6.3.1, p. 82]—, hence there is an irreducible representation ¢’ = ®,0/,
of G} contained in L*(G}/AP) such that o], is unitary equivalent to p. Since p is not one-
dimensional, neither is ¢/, so it corresponds to an irreducible unitary representation o = ®,0,
of PGL(2,A) contained in L*(PGL(2,A)/PGL(2,Q)) by Theorem 7.1.8. Since D ramifies
at 00, 0 is in the discrete series of PGL(2,R), so 0, is tempered by Theorem 7.1.9. As D
splits at po, op, = 0, = p, so we are done. O]

Now we reformulate Lemma 7.1.7 in terms of quadratic forms.

Corollary 7.1.10. Consider a non-degenerate integral quadratic form R in 3 variables. Sup-
pose that R is R-anisotropic and Q,,-isotropic. An automorphic representation of H;f) that
doesn’t contain one-dimensional unitary representations is tempered.

Proof. Let D be the Q-quaternion algebra such thaﬁO(R) and G? are Q-isomorphic. Then
D ramifies at oo and splits at py. Consider A,, € G an in the proof of Lemma 7.1.7. If an
automorphic representation 7 of Hﬁ) contains weakly a one-dimensional representation p, in
fact ™ must contain p since the points in A, corresponding to one-dimensional representations
are isolated in A, . O

7.1.4 The proof of the mixing speed

We are ready to prove the representation-theoretic result that gives the effective mixing
speed.

Proof of Lemma 7.1.2. Let R be the restriction of Q to W. H? and H? denote the groups
SO(Q) and SO(R). We extend any h € H(g to Q% by the identity of the Q-orthogonal
complement of W. This defines a Q-morphism H? < H®, which we use to see H as
Q-subgroup of HY.

The space Y = ngdﬁg has finitely many Hgo—orbits, say Y{ = HstOLL’ds, ..., Y/. Consider
the closed subspace L§,(Y') of the ¢ € L*(Y) with [, o =0 for 1 < i < ¢, and the natural
Hgo—equivariant inclusion

Lg(Y{) = L () (7.2)
We'll show that the unitary representation of H)Y on L,(Y) is tempered. This implies the
result we seek by (7.2) and since H[** is an open, finite-index subgroup of Ht.

Let 7 be the unitary representation of HSQ on L3, (Y). 7r| ye 1s automorphic by Lemma
PO
7.1.3, so 7T‘ yr 18 also automorphic thanks to Theorem 7.1.4. So, according to Corollary
PO

7.1.10, it suffices to check that L3,(Y) doesn’t contain one-dimensional representations of
Hlt. Take ¢ € L§,(Y) such that

m(h)p = x(h)e

for every h € H]', where x is a (unitary) character of H. Since y is trivial on H[, ¢

. RO . . RO . . . . o .
is H,’-invariant. As H,° has non-trivial unipotents, ¢ is HI% -invariant by Lemma 8.3.8.
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As function on Hg?, @ is HI%O—invariant on the left and Fg—invariant on the right, where
Fg = (S0(Q,Zs) — Hg) But HZ° is a normal subgroup of Hg, thus ¢ is also H2°-
invariant on the right. By the Strong Approximation Theorem, Hgo is contained in the
analytic closure of Hﬁffg, hence ¢ is Hg?o—invariant on the left—thus also on the right since
H ggo < Hg?. This shows that ¢ is almost surely constant on each Y;, but recall that sz-' =0,
so necessarily ¢ = 0. O

7.2 The proof of the dynamical statement

Having the uniform mixing speed of Proposition 7.1.1 at our disposal, we establish now the
dynamical result behind our criterion of Zg-equivalence for R-anisotropic integral quadratic
forms.

Proof of Proposition 7.0.1. We choose n € Hg such that ngr,s and fz,g are in the same
compact Hg-orbit Y' C Y, ||n,|], < p for odd p € Sy, ||n2]]s < 4if 2 € S; and e =
diag(£1,1,...,1)1°.

For ¢’ € G4, recall that we introduced in 6.3.1 the small balls

" roo(g') -3 /
# = (552257 > T Gartr st
f

where r,(g') = %% and rg(g) = [Leym(g)if S C S. Consider the neighborhoods of

IFAIE;
frqs and ngrys in Y’

U= (BLNH fras, V= (BYNH)ngzas.

Let ny = —log, (rp,(f)) +4. Consider p : SL(2,Qy,) — H,, as in Proposition 7.1.1. Note
that U is invariant under

Hiso N Gd,po (PSng(f)) = H;o N Kd:po (p*(n2*1)>'

In other words, o = 1y is a Hy N Kgp,(p~"2~Y)-invariant vector of L*(Y’). By the same
token, if ny = —log, (7p,(1g))+4, then o1 = 1y is Hy NKqp, (p~(m~D)-invariant. Proposition
7.1.1 applied to ¢ and ¢y yields

My Uy (V)

< o 2" (1002 " | Lyl 21 12)
ILLY<Y,) 00

pv ((p(apym)V) NU)

=

-1 _3
=po > (10pg” (rpo (f)rpe (19)) 72 (v U) v (V))2),
(7.3)
for any m > 1. Suppose that p(a,, 1)V and U are disjoint''. Let mq be the smallest positive

py U py (V

integer such that the right-hand side of (7.3) is strictly smaller than oy (71 ) and set

10 As before, this is possible thanks to lemmas 3.4.1 and 3.3.12.
"'Otherwise there is h* € Hg such that h*gza.s = fra,s, |0}, |lpe < 5, [|h5]], < p for odd p € Sy — {po}
and ||h3]|]2 < 4if 2 € Sy.
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I, =

P(@py,my)- From (7.3) we deduce that that h;, 'V meets U, hence there are

s€BLNHS and te BYNH
such that (t7'h s)ngres = fras. We set h*
we have

t~'hy, sn, which is in Hg. For p € Sy — {po}

. » p if p> 2,
51 = 115 sppll, < 1l < {4 if p =2

Before bounding hj mnote that by the choice of my

L U L Y I 25 _3

% <po* (10pg (rpo(f)7pe(ng9)) ™2 (1 U) iy (V)
Y

[N

);

thus
Py < 10°D37 (rp0 (F)Tp0 (19)) ™2 (it (U) 1y (V) ™y (V)2 (7.4)

Since U and %% have the same volume by Lemma 6.3.1, using the volume estimate of Lemma
A.2.1 and Corollary A.2.12 we get

_ dd _laid—
i U) ™ = A (L) < Fapt™ s ()30

where F; = R;"(3d? - d1)24@-1) with Ry as in Lemma A.2.1. Similarly

_ 2d(d—1 —la(d—
py (V)7 < Fapa™ Vrg(ng) 2900,
Now we go back to (7.4):

Py < (L0Fa)2pBp ™ (1 (F)rpo (ng)) = (rs (f)rs(ng)) 2

Since |[n,[|, < p for odd p € Sy, then r,(ng)~" < pPry(g)~".
ro(ng)~t < 49ry(g)~t. Thus

(d—l)My(Y)Z‘

If 2 € Sg, |In2ll2 < 4, so
Py < (10F,)? - 23R D25z 0 () (1) (rs(Frs(g)
< (10F,) -2 ) (P (9)) 2 (rs()rs(9))

N

)2 (v)?
D3 2@y (V)2
Recall that ||h), ||, =

10(@pomo)|pe < P+ by Lemma 3.5.5 and, by definition, Ts/(g) = Tis/(g) ™"
it S” C S. We are ready to bound h’ :

H Hpo = Htplh’/ SpoTpo | |po

0 PO

< <10fd> (=D pTE =52 (1 (Y1 (9)) O (rs(f)rs(g)) 4D py (V)
< (L0Fg)* - 28D p B (T, ()T (9))*(Ts(f) Ts(9)) "Dy (V).



Chapter 8

Volume of closed H g-orbits

The objective of this chapter is to prove Proposition 5.3.2, which gives an upper bound of
the volume of the closed orbit Y ¢ C Xy ¢ associated to a non-degenerate integral quadratic
form @ in d > 3. We'll recall the notation and restate the result.

Let § = {oo} U S; be a finite set of primes. Consider the groups Gus = GL(d,Qg),
Tys = (GL(d,Zs) — Ggas) and the space of lattices X5 = Ggs/Tas of Q% and its base
point 245 = 'y 5/Tas. Let @ be a non-degenerate integral quadratic form in d variables and
let P be the standard quadratic form on Q% that is Qg-equivalent to Qs'. We define

Yos = Hsgxas,

where Hg is the orthogonal group of P—we’ll say that Hg is the standard conjugate of
O(Q,Qs)—and g € Gy takes P to Qg. The orbit Yy ¢ is closed in X, ¢ by Lemma 6.1.1,
hence it admits an Hg-invariant measure jiy,, ;> by Lemma 6.1.3. Remember that dq is the
determinant of the matrix of @ in the standard basis of Q? and pg is the product of the
primes in Sy if Sy # 0. Here is the main result of this chapter, a generalization of | ,

Theorem 6, p. 891]. We remind the reader that an explicit value of the constant C’f), as well
as all the constants that depend on d in our statements can be found in Appendix C.

Proposition 8.0.1. Consider a finite set S = {oo} U Sy of primes and d > 3. Let Q be a
non-degenerate integral quadratic form in d variables such that Qg s isotropic. Then

d+1

(Yo,5) < {0‘52)19?5‘16%(%) > if Sy #£0,
H Q,s 6 il )
CP2T|5ld if S = {oo}.

8.1 Intermediate statements and main proof

Our proof of Proposition 8.0.1 relies on three intermediate statements. To formulate them,
it is convenient to replace X, ¢ by the space X i ¢ of covolume 1 lattices of Q¢ because the
latter has finite volume. We identify X ¢ with G 4/T'qs, where

Gl ={9 € Gus | Hs(det g) =1},

IRecall that Qg is the quadratic form on Q% determined by @ via the diagonal embedding Q — Qg.
2In 8.4.1 of Section 8.4 we’ll fix a Haar measure on Hg, which determines the normalization of My s-

79
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Let 2y g = T4s/Tas € X;g, and let 845 be the G g-invariant measure on Xj ¢ determined
by our choice of Haar measure on thi, g—see section 8.4. Consider @), P and Hg as before.
Instead of Yy g, we'll work with the following subset of Xé,s3 Write @ = Po f' with f' € Gy.

Let
Ms(Q) = (ﬁ;ggg) (8.1)

We define N = Ng(Q) € Qg as Ny, = Mg(Q)"7 and N, =1 for p € S;. It’s easy to see that
f=Ns(Q)f isin G}LS, so we set

1 1

Notice that Yo 5 € Xg and Y g € X ¢ have the same volume. Indeed, both are identified
with Hg/(Hs N (f'Tysf)) since conjugation by f and f’ is the same. For g € My(Qg) we
define its S-height as
A5(9) = [ 1ol
ves

We pass to the intermediate statements. The first one—proved in Section 8.2—says that
if we move a point in Yé, g in a transversal direction, the time it takes to get back to Y(}z’ g can’t
be arbitrarily small. In other words, the orbits Y;) ¢ are isolated in directions transversal to
Hg. This corresponds to | , Lemma 16, p. 893] in the article of Li and Margulis.

Lemma 8.1.1. Let S = {oo} U Sy be a finite set of primes. Consider a non-degenerate
integral quadratic form @Q in d > 3 variables and the standard conjugate Hs of O(Qs, Qs).
Take g € Gy g and u € Gy g — Hg with ||uy||, < 1 forp € Sy. If gxg g and ugzy g are in Yy g,
then

oo — la||oe > =5  Hs(g) 2 H5(5g) 4.

1
- 243
Consider a non-compact orthogonal group Hg of a non-degenerate quadratic form on
¢ d > 3. The second intermediate result—proved in Section 8.3—says there is a compact
subset of X ¢ that meets at least half of any closed Hg-orbit in X ¢. This generalizes [ )
Lemma 13, p. 892]. We need some notation for the precise statement. For any M > 0 we

define
Qas(M) = ¢ g€ SL*d.R) x [[ GL(d,Z,) : [|gacllc < M 3,
pESf

and Qg (M) = ﬁd,g(M )2yg. Consider & = 28" . 32 3 We introduce the following
compact subset of Xj ¢

0 . JQus(Epd") if Sy #0,
5T Quea(Ea2) it S = {ool.

Lemma 8.1.2. Consider d > 3 and a finite set S = {o0}US of primes. The compact subset
Qa5 of Xis has the following property: Let Hg be the orthogonal group of an isotropic, non-
degenerate quadratic form on Q%. For any closed Hg-orbit Y in Xjg we have

1
py (Y N Qys) > §NY(Y)-
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The last intermediate result—proved in Section 8.4—shows a recurrence of closed Hg-
orbits in directions transversal to Hg. It is the counterpart of Lemma 8.1.1. For the case
S = {oo}, see | , Lemma 15, p. 892].

Lemma 8.1.3. Consider a finite set S = {oo} U Sy of primes and d > 3. Let Hg be the
orthogonal group of a non-degenerate diagonal quadratic form on Q%. Suppose that Hyg is
non-compact. For any closed Hg-orbit Y in X g with iy (Y') > Agps?, there is u € Gys—Hs
such that u(Y N Qys) meets Y, ||u,l||, <1 for any p € Sy, and

4 _1
e = Lol | < €3 ppy (¥) 5.
Let’s deduce the main result of the chapter from the intermediate results.

Proof of Proposition 8.0.1. Let () be a non-degenerate integral quadratic form in d > 3
variables. Suppose that Qg is isotropic. Let P be the standard quadratic form on Q% that
is Qg-equivalent to Qg and set Hg = O(P,Qg). As we explained right before Lemma 8.1.2,
the Hg-orbits Y g and Y := Y}, g—respectively in Xy and X; ¢—have the same volume

Hyq.s (Yst) = Uy (Y)

Let A, be as in Lemma 8.1.3. We consider two cases:

dcg

o |1y (Y) > Ayps® | By Lemma 8.1.3 there is g respectively in ﬁd,g(é'dp%&) and §d75(8d2d4)
if Sy # () and S = {00}, as well as u € G ¢ — Hg with ||u,l|, < 1 for p € Sy and

_1
oo = Lol < O3 phps (V)54
such that gz ¢ and ugzj ¢ are in Y. We also know that
I _ 1
Huoo - [dHoo > Q_d?’psl%<g) Qt%(éQ) 4,
by Lemma 8.1.1. Let’s consider the case Sy # (). It follows that

.

242

< (2d(EapE V2Pl Vet (5q)
d+1

< dedp?édﬁc%@wQ)T,

-

H(9)* eV, H5(5)

c

al?

where Fy = (22445 . 344" @64 +1yca When S = {co}, a similar computation yields

- d+1
1y (V) < FaVa22®160]ee .

o |1y (Y) < Agpe®| Since #(dg) is a positive integer, we have

1

(V) < Agpt < Agpie* H5(89) .

Since Agpg® is smaller than F Va3 and FyV,22% | in both cases we get the inequality
of the statement. O
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8.2 Transversal isolation of compact Hg-orbits

In this section we prove Lemma 8.1.1. The proof is short and elementary. It is based on the

next four lemmas. For the definition of Mg (Q) see (8.1).

Lemma 8.2.1. Let () be a non-degenerate integral quadratic form in d > 2 variables. Then

1 < Ms(Q) < psHts(3g)?

for any finite set S = {oo} U Sy of primes.

Proof. Let P be the standard quadratic form on Q¢ that is Qg-equivalent to Qg. We have
(6p)oe =F1 and p 2 < |(0p)yl, <1

for p € S, thus
ps> < Hs(dp) < 1.

1
Since Mg(Q) = <§z Egﬁ;) * and H5(dg) is a positive integer, the inequality we want follows.
]

Lemma 8.2.2. For any g € GL(d,R) we have
1
| det goo| &
olloe 2 ——=—.
ol > 1

Proof. Consider f = |det goo|?g. Notice that f is in SL*(d,R). Thanks to the Iwasawa
decomposition of this group we can write f = kan, for some k € O(d, R),

a = diag(ay, ..., aq)
and n unipotent and upper-triangular. Since |a; - - - a4/ = 1, then ||an||, > 1. Thus
1
1< [lan|lec = 17" flloo = [ det gooloc” [~ goo| |
1
< Vd | det ool ||goo -

which is equivalent to what we wanted. [

Lemma 8.2.3. For any g, € GL(d,Q,) we have
1
gpll, = [ det gyl -
Proof. We write g = kan with k € GL(d, Z,),
a = diag(p™,...,p"),

and n unipotent, upper-triangular. Then

l9pll, = llanl], = max|p™],.

_1
pldetgylp @ for 1 < i < dis 1, so at least one

The product of the positive real numbers |p™
is > 1. Thus

1
lgpll, = [ det gpl5 -
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Lemma 8.2.4. If t is a real number in the interval [0, 3], then

Vi+1-1>

t.

o] DN

Proof. Since F(t) =/t + 1 — 1 is concave, it suffices to verify the inequality for ¢ € {0,1/2}.
When t = %,
3
2 ——1]1=044...
(RS

We are ready to prove the transversal isolation of the orbits Yy s.

ot o

Proof of Lemma 8.1.1. Let @) be a non-degenerate integral quadratic form in d > 3 variables.
The strategy we’ll follow is: points in Yés correspond to quadratic forms Zg-equivalent to
. The ones associated to 995(11,5 and ugzy g are different because u ¢ Hg, so the S-height of
the difference of their matrices is at least 1. From this we’ll deduce the bound for u..

First we recover the matrices with coefficients in Zg corresponding to points in Yé g We'll
recall briefly the definition of Yéj g- Let P be the standard quadratic form Qg-equivalent to
Qs, Hs = O(P,Qg) and consider f" € Gy such that Q = Po f'. Let f = Ng(Q)f’, where
Ns(Q) € Qg is defined as:

Ns(Q)s = Ms(Q) 73,
and Ns(Q), = 1 for p € Sy. See (8.1) for the definition of Mg(Q). Then f is in G 4 and

Let b € GL(d,Qs) be the matrix of P in the standard basis of Q%. If ¢’ is in Hg T4, then
'g'bg’ =" fofy = "vbosy

for some v € I'y 5. It follows that the matrix '¢’bg’ € My(Qg) is the diagonal image of a ma-
trix in My(Zg). This implies that if 9195(11,5 is in Yés—for g1 € G}l’s—then Ns(Q)2tgibg, €
M;(Qg) is the diagonal image of a matrix with coefficients in Zg.

Now we compare the matrices B, C' € M,(Qg) associated to the two points of the state-
ment. We’ll renormalize them to make the estimates in My(R). Let g,u € G4 as in the
statement. Then ga:cll’ g and ungi g are in Yy . We consider

B = Ns(Q)*('gbg), C = Ns(Q)*("g'ubug).

For any p € Sy we have

[|Cpll, = 1| tgptupbpupngp
< gpl 1 up L P ] 9
< lgpll?,
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and similarly [|B,|[, < ||gpl|?. It follows that 5, (9)*Bs and %, (g)*Cs have integral
coefficients, where

s, (9) = 1] llgwll.-

pGSf

These two matrices are different because ‘ubu # b, hence the co-norm of their difference is
at least 1:

1 < ||#,(9)*Coc — H#5,(9)* Boo |
= H4,(9)* Ms(Q) 7] *goo “thosbootiog — boo) o]

We rearrange this inequality and we work with the right-hand side:

%f<g)_2MS(Q)_% < tgoo(tuooboouoo — boo ) Goo||
< @] goo oo + ] "ttocboctio = bosle * [[gool ]
= d2Hgoono N (oo — Ta)boo (tioe — 1) 4 *(ttoo = I2)boo + boo(to — 1a)]|
< d&|]goo|[2,(d oo = Ll oo - [1oo (oo = La)l|e + 2l tce — Lal|-c)
< d*]goo|I2 (oo = Lol % + [Juce = Lallo)-

Hence
[t = Lal|Z + l[tios — Igl|c = Cy,

where C, = d~3.4(g)"2Mg(Q)~i. We obtain that ||us — Iy||.. is greater or equal than the
positive root of t* +t — C,, that is

1
[|too — Lal|oe > 5(\/409 +1-1).
Using (8.2.1) and lemmas 8.2.2, 8.2.3 we deduce that
ACy =4+ ™ Hs(g) " Ms(Q) 7 < 4+ d ™ (dAs(det g) ™)

1

=4.d72
2

We use now Lemma 8.2.4 and the lower bound of (8.2.1):
1
e — Tl > 3 -4C,

> @psﬁﬁs(g)‘?%(%ﬁ
1

= 5abs

1

s Hs(9) " Hs(dq) 1,

which is what we wanted. O
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8.3 Uniform recurrence of closed Hgs-orbits

The goal of this section is to prove the existence of the compact subset €4 g of X ¢ of Lemma
8.1.2 that intersects at least a half of any closed Hg-orbit in Xjg. In other words, closed
Hg-orbits are uniformly recurrent. This is a refinement of Dani-Margulis’ Recurrence of
Unipotent Flows, and in fact the heart of the proof is an effective version of it.

The section is divided into four parts: Suppose that €2 is a subset of X é, ¢ and that the
systole of any A € (2 is at least ¢, for some ¢t > 0. In 8.3.1 we give—in terms of t—a compact
subset of GL(d, Qs) that covers 2. We describe in 8.3.2 a compact subset 4 5 of X; ¢ having
the properties of €); g, using the systole map o; : X ;75 — R. To achieve this, we’ll use an
effective result of recurrence of unipotent flows on X j’ g, Whose proof is postponed to 8.3.4.
The main proof is given in 8.3.3.

8.3.1 Effective S-adic Mahler’s Criterion

The classical version of Mahler’s Criterion gives a necessary and sufficient condition for a
subset of lattices of R? of covolume 1 to be relatively compact in terms of the systole® map.
We'll prove here an effective version for lattices of Q4. The statement is specially tailored
for our needs: it gives an explicit lift to GL(d, Qs) of a compact subset in Xj ¢ described in
terms of the systole map. We'll prove the result first for S = {co} and then for general S.

Recall that any lattice of R? is of the form ¢Z¢ with ¢ € GL(d,R). Thus we can
identify respectively the space of lattices and lattices of covolume 1 of R? with Xy, =
GL(d,R)/GL(d,Z) and X = SL*(d,R)/GL(d,Z). We parametrize these spaces with the
Siegel sets of GL(d,R). Let’s recall the definition.

Consider the following subgroups of Gy = GL(d,R):

K =0(d,R)
A ={diag(ar,--- ,aq) € Gaoo | a; > 0 for every 1 <i < d},

N = {unipotent, upper-triangular matrices in Gy }.
For o, 8 > 0 we denote

Aa:{diag(ah'” 7ad)€A|ai§aai+l fOI‘]_SZSd_].},
Ny={neN|ln—ILil. <}

The (a, 5)-Siegel set of G4 is defined as
S = KA.N;.

The next lemma bounds the co-norm of g € Yd'f‘(;f NSL*(d,R) in terms of c, 3 and the length
of a vector in A = gZ<. It can be thought as an effective version Mahler’s Criterion since

Xgoo = (yd?g NSL*(d,R))Tq00

for o and S big enough—see Proposition 9.3.1. We denote by || - ||cue the standard euclidean
norm on RY.

3The systole of a lattice A of R is the length of the shortest non-zero vector in A.
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Lemma 8.3.1. Let Ydo";f be a Siegel set of GL(d,R) with § < 1 < . Any g € ydﬁﬁ N
SL*(d,R) verifies
(d-1)

2
lgll.e < Vd-a™= " max{1, [|ges|| 5V},

euc

Proof. We write g = kan with k € O(d,R), a = diag(aq, . ..,aq) € A,, and n € Ng. Notice
that ||ge1||ewe = a1, and
lan||< = [|(a1, - .., aa)ll«

because an is upper-triangular and
[(an)ij|o0 = |ainijloo < Blailoo < |ifoo

if ¢ < 5. We’ll bound from above a; in terms of a; and «. By the definition of A, we have
a; < a?"'a; and aj’l < aiia; 1 if i < j. Then

L= [ar - ar)agfars - ad) > lar(a""ar) - (@7 Pay)]ar[(a " ar) -+ (a7 Pay)]

= 2)(k-1) o (d—R)(d—k+D)
=« > ala = af

)

hence

(k=2)(k—=1) g—p — k=1
ay S o 2(d—k+1) aTal d—k+1

(d—2)(d—1) d—1 —(d—1
<a 2 a?2 max{l,al( )}

(d-1)? —(d-1
= 2 max{l,al( .

This gives and upper bound for ||an||.. To finish we have

19l = [Ikanl|« < Vd-[an||.
2
< d- o7 max{l,alf(dfl)}.
[

We pass to the S-adic case. Let S = {oo} U Sy be a finite set of primes. We define the
height of v € Q% as
H5(v) = [|voo|[eue H [|vpl],-

pESf

Notice that in the real factor we are using the euclidean norm of R instead of ||-||.. First we
characterize the lattices—that is discrete and co-compact subgroups—of Q¢ in an analogous
way to the case S = {oo}.

Lemma 8.3.2. Consider a finite set S = {oo} U Sy of primes and let d > 1. Any lattice of
4 is of the form gZ% with g € GL(d,Qs).

Proof. Consider a lattice A of Q4. We start with two general observations. We'll take Zg
embedded diagonally in Q4.
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First we’ll see that A is indeed a Zg-module. Take p € Sy. Then pA is also a lattice of
Q%. We have pA C A, so
[A : pAlcov A = cov (pA). (8.2)

Since % (p) = 1, the multiplication by p is a volume-preserving linear automorphism of Q%,
hence A and pA have the same covolume. Thus A = pA by (8.2). More generally, A = uA
for any u € Zg since Z7 is generated by Sy U {—1}. This shows that A is a Zg-module.
Now we’ll show that if v € A has a zero coordinate, then v = 0. Recall that pg is the
product of the primes in Sy if this set is non-empty and pg = 1 for S = {oo}. If v = 0,
then pév — 0 as n — oo. Since pgv € A and A is discrete, pgv = 0 for n > 1, so v = 0.
Suppose now that v,, = 0 for some py € Sy and let T'= S — {py}. Choose ky > 1 such that

p’go > pr Then
lim (p_;) v = 0.
n—o0 po

These vectors are in A, so we conclude as before that v = 0.
Now we prove the result by induction on d.
Take first d = 1. Let

ai1(A) = inf{Hs(v) |v e A —{0}}.

We claim that «;(A) is attained by some vy € A — {0}. Consider a sequence v, € A — {0}
with 5 (v,) = a1(A). We may suppose that (vy), is in ZX for every n and any p € S¢”.
Then (v,) is trapped in a compact of the form Cy = [N, N| x Hpesf Z). The set ANCy is
finite, hence some vector in it attains aq(A). Let’s see that A = Zgvy. Since vy is invertible
in Qg, any v € A is of the form vgt with t € Qg. Let Fg = [0,1) x Hpesf Z,. Note that
Qs =Zg+ Fs. Write t = z + f with z € Zg and f € Fs. Then vyf = v — vgz is in A. We
have (v f) < 7 (vg), so vof = 0.

Suppose that the result holds for some d > 1 and consider a lattice A in QdSH. Take
vy € A — {0} such that % (vy) < H#%(v) for any v € (Qsvg) N (A — {0}). The case d =1
shows that A N (Qsvg) = Zgvp, so AN (Qsvp) is cocompact in Qgvy. This implies that
A" = A + Qguy is discrete in V' = QdSH/QSUO >~ Q%. Since A is cocompact in Q%H, A’ is
cocompact in V. Thus A’ is a lattice in V. By the inductive hypothesis, A’ has a Zg-basis
v1 + Qgvo, - .., vg + Qgvy that is also a Qg-basis of V', with vy,..., v € A. The matrix g
with columns vy, ... vg is in GL(d + 1,Qg) and A = gZ4<. O

As usual, we endow R and Q, with the Haar measures such that
)‘R([Ov 1]) = )‘Qp(Zp> =1,
and Qg with A\gg = ®,es\g, - Let A be a lattice of Q4. We define its systole as

A) = i
WA =, Al 7
and its covolume covA as the volume of Q% /A. If we write A as gZ¢ for some g € GL(d, Qg),

it’s easy to see that
cov gZ% = H(det g).

*Just note that % (uv,) = H#5(vy,) for any u € Z§ and remember that (v,,), # 0 since v # 0.
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Thanks to Lemma 8.3.2 we identify, respectively, the space of lattices and lattices of covolume
1 of Q¢ with Xyg = Gq,s/Tas and X4 = G} ¢/Tqs. Again, these spaces are parametrized
by the Siegel sets of G4 g: for any «, 5 > 0 we define

Il =70 < | GL(d, z,).
pESf
Here is an effective S-adic Mahler’s Criterion.

Lemma 8.3.3. Consider a finite set of primes S = {oo} U Sy and an integer d > 2. If A
is a lattice of Q% of covolume 1, then A = gZ% for some g € Gy with g, € GL(d,Z,) for
p €Sy and

(d—1)2

||gooums¢2z-(%) " max{Loy(A) D), (8.3)

2
Proof. Thanks to Proposition 9.3.1, A = gZ% for some g € 5@?7 . Further, we choose g
with

N[

Hs(ger) = an(A).

Since g, is in GL(d,Z,), then |det g,|, = 1 and ||ge;||, = 1 for any p € S;. Thus g is in
SL*(d,R) because
1 = cov(A) = H5(det g) = | det ool oo,

and
Oél(A) = %(961) = HgooelHeuc-
We obtain inequality (8.3) by applying Lemma 8.3.1 to guo. O

To close this part we state a non-effective S-adic Mahler’s Criterion. It follows directly
form Lemma 8.3.3.

Corollary 8.3.4 (Mahler’s Criterion). A subset Q of Xé,s 1s relatively compact if and only
if

inf{a1(A) | A € Q} > 0.
8.3.2 The compact in terms of oy

Here we give a compact subset D45 of X; ¢ with the property we want for Q;g, but defined
in terms of a;. We begin with some notation. The set

Gas(e) = {A € X5 | ai(D) > ¢}
is compact for any € > 0 by Mahler’s Criterion (Lemma 8.3.4). Let d > 3. We define

1 1 (a-1)* 1 1 (d-1)*
wa=y () ™ =y (smm)

For S = {oo} U S} a finite set of primes we define

€4, = Hleiél&,,d and Dd,S = Gd’s(éd,s).
14

This is the compact subset that meets all the closed Hg-obits in Xj .
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Lemma 8.3.5. Consider d > 3 and a finite set of primes S = {oo} U Sy. Let Hg be
the orthogonal group of a non-degenerate isotropic quadratic form on Q%. For any closed
Hg-orbit Y in X} ¢ we have

1
py (Y NOqs) > éﬂY(Y)'

Suppose that Hg is the orthogonal group of a non-degenerate quadratic form P on Qg,
and that H,, is non-compact. To prove Lemma 8.3.5 we will approximate p, (Y N Og4s) by
averages of 1y, ; along pieces of Uy -orbits, where Uy, is a one-parameter unipotent subgroup
of H,,. After justifying why this is possible, we'll introduce the main ingredient of the proof
of Lemma 8.3.5: the effective refinements of Dani-Margulis’ Recurrence of Unipotent Flows—
see | | and | ]. These are due to Kleinbock-Margulis | | for S = {0} and to
Kleinbock-Tomanov | | for general S.

Recall that Hg denotes the image of Spin(P, Qg) in Hg. H$ is a normal subgroup of Hg
of finite index, thus a closed Hg-orbit in X} g is a finite union of closed Hg-orbits. There is no
harm then if we work with the latter. Consider a closed Hg-orbit Y of X i g, its Hg-invariant
measure /1, and a mesurable subset (2 of X 0}7 g- The next two results justify that u, (Y NQ) can
be approximated by averaging 1 along pieces of suitable orbits of a one-parameter unipotent
subgroup of H,,. The first is a version of Birkhoft’s Theorem for every Q,. It follows from
[ , Chapter 6, Corollary 3.2]. For T" > 0 we define

B,(T)={teQ |, <T}

Theorem 8.3.6. Consider a prime v. Let ® be a measure-preserving, ergodic action of Q,
on a locally compact space Yy endowed with a finite measure pg. For any measurable subset
Q of Yy, there is a measurable subset Eq of Yy of full measure such that

m(&) L Ae, (1€ BUT) | Bi(y) € 92})
po(Yo) T Mg, (By(T))

for any y € Eq.

Recall that we chose py € S; such that Hp, is non-compact. Moore’s ergodicity result
will allow us to apply Birkhoff’s Theorem:

Lemma 8.3.7. Consider a finite set of primes S = {oo} U Sy and d > 3. Let Hg be
the orthogonal group of a mon-degenerate quadratic form on Q%, and suppose that H,, is
non-compact for some vy € S. Let U,, be a one-parameter unipotent subgroup of H,, with
non-trivial projection to each simple factor of H,,”. The action of U,, on any closed Hg-orbit
in Xjg is ergodic.

Our proof of Lemma 8.3.7 relies on the next useful result, which we’ll call the Howe-Moore

phenomenon®.

°In fact H,, is always simple, except possibly when d = 4. In that case H,, can be locally isomorphic to

SL(2,Q,,) x SL(2,Q,,).

6 Another (perhaps more widely used) name for this is Mautner’s phenomenon, like in the article | ]
of C. Moore.
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Lemma 8.3.8. Consider the group of Q,-points J of a semisimple Q,-group. Let 7w be
a unitary representation of J and let J° be the subgroup of J generated by the unipotent
elements. If v € H, is fized by a unipotent element with non-trivial projection to each simple
factor of J, then v is J°-invariant.

Proof. The case J = SL(2,R) is done in | , Proposition 3.4], and the proof extends to
SL(2,Q,). Now consider a general J.

We prove first that a vector v € H, is J°-invariant if it is fixed by a hyperbolic element”
h € J with non-trivial projection to each simple factor of J. We take an h-invariant vector
v of unit length. Consider the subgroup

Ut = {g € J | lim hgh™" = e}.
n—oo

Since 7(h)v = v, then
(m(g)v,v) = (m(h"gh™")v,v)

for any n € Z. If g is in U,", we obtain that (7(g)v,v) = 1 by letting n — 00, so v is fixed by
g. This proves that v is U, -invariant. In a similar way we see that v is U, -invariant, where

Uy ={g€ 7| lim hrght = e}
n—oo

The groups U, ,f have non-trivial projection to each simple factor of J since h has this property.
Then J° is generated by U," and U, —see | , Proposition 1.5.4 (ii)]—, so v is J°-
invariant.

Suppose now that v is fixed by a non-trivial unipotent element u of J. By Jacobson-
Morozov’s Theorem wu is in the image of a group morphism v : SL(2,Q,) — J with finite
kernel. The vector v is then SL(2,Q, )-invariant because it is fixed by a non-trivial unipotent
element of SL(2,Q,). The image of ¢ has non-trivial projection to each simple factor of .J
because it’s generated by conjugates of u, which have this property. Since ¥(SL(2,Q,)) has
non-trivial hyperbolic elements, v is J°-invariant thanks to the previous paragraph. O]

We are ready to prove that unipotent groups act ergodically on closed Hg-orbits.

Proof of Lemma 8.3.7. Let Y = Hgig:v}w be a closed Hg-orbit in Xé,s- Since Hg is non-
compact, then g7'Hgg = O(Qgs,Qs) for some non-degenerate integral quadratic form in d
variables by Lemma 6.1.2. Let Js = g~ 'Hgg, Y' = Jsa}y g and U, = g~'U,g. We'll prove
that U], ~ Y is ergodic.

Let 7 be the unitary representation of J§ on L*(Y”). Suppose that ¢ € L*(Y') is U}, -
invariant. Then ¢ is Jj -invariant by Lemma 8.3.8 because U,, has non-trivial projection
in each simple factor of H,,. To see that ¢ is Jg-invariant, consider the function ® : Jg —
C,h— @(hzyg). ®is (J§NTyg)-invariant on the right and Jp -invariant on the left. Since
Jp, is normal in Jg, then ® is also J; -invariant on the right. By the Strong Approximation

Theorem—see | , Theorem 7.12]—J (Jg NTqs) is dense in Jg, so @ is Jg-invariant on
the right. This proves that ¢ is pys-almost surely constant, thus the action of U, on Y is
ergodic. ]

"h € J is hyperbolic if Ad(h) : Lie(J) — Lie(J) is diagonalizable over Q,.
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Before giving the statement of effective recurrence of unipotent flows, we extend the
definition of covolume of a lattice of Q% to discrete Zg-submodules of Q% whose rank is not
necessarily d, and we prove a finiteness lemma for these. Let A’ be a discrete Zg-submodule of
Q%. The covolume cov A’; of A’ is the volume of V/A/, where V® is the Qg-module generated

by A’. We give an explicit formula to calculate cov (A’) that we’ll use later. Let eq, ..., e4 be
the standard basis of Q¢ and let I = (iy, ..., i) be a k-tuple of integers 1 < i; < --- < i), < d.
We denote e;, A--- Ae;, simply by e;. On /\k R? we consider the only euclidean norm ||+ ||eue
such that (er); is an orthonormal basis, and on /\k QZ we consider the ultrametric norm given
by
Za;e[ = max lar|p-
I P
Let vy, ...,v, € Q% be a Zg-basis of A’. Then
cov A" = [[(v1 A+ -+ AUk ool leue H (w1 A Aok, (8.4)
pESf

For A € X, 4, we denote by ¥(A) the set of non-zero Zg-submodules of A and
Y4 (A)={A" e Z(A) | cov A" < 1}
Lemma 8.3.9. Let S = {oco} U Sy be a finite set of primes and let A be a lattice of Q%.
Then £ 1(A) is finite.
Proof. For any A’ € %(A), let Was be the Qs-submodule of Q% generated by A’ and consider
W ={Wa | A€ Z4(A)}.
For W e #, let Ay, = AnW. We'll show that the map X1(A) = #, A" — Wa is finite

to one and that % is finite.
Take W € # and A’ € ¥ 4(A) such that W = W. Then A’ is contained in Aj;,, so

cov A 1
/ /o
cov Ay, cov Ay,

A A =

To conclude note that Ay, has finitely many subgroups A of index, say N > 0. Indeed, any
such A contains NAY;,, and A}, /(NA},) is finite.

Let’s prove that # is finite. It suffices to see that the subset #} of elements of # of
Qg-rank k is finite for 1 <k <d—1. f W € #;, let vy,..., v, be a Zg-basis of Aj;,. Then
v A~ - Ay, belongs to A* A and its S-height is cov Al < 1. Since A is a lattice in Q%, A* A
is a lattice in A" Q%. Moreover, Z3(vy A --- A i) doesn’t depend on the chosen Zg-basis of
Ay, and the map #, — Z3§\ A" A is injective. To conclude note that there are finitely many
Ziv e ZH\ A" A with s6(v) < 1

O
8We choose a Haar measure on V as follows: on V,, we take Ay = ki\gk, where k € O(d,R) sends
R* x {0} to V4, and on Vp we choose Ay, so that Ay, (V, N Zg) =1.
9Because Zg/NZs is finite.

19This is a fact valid for any lattice A in Q. Take v € A — {0} with % (v) < 1. We'll see that ZJv has
a representative in the finite set A = AN ([~1,1] x [[ g, Zp). We showed in the proof of Lemma 8.3.2 that

v, # 0 for v € S, so [|v||s;, = Hpesf l[vp|[, is a unit in Zg < Qg. We set v" = [[v]|s,v. Note that [|v,|[, =1
for p € Sy and ||v || = #5(v) < 1, hence v/ is in A.

o0




92 CHAPTER 8. VOLUME OF CLOSED Hg-ORBITS

If v is a prime and d > 2, we define
3@ if = oo,
v,d AP G =

and ¥y = (d_%. Here is the statement of recurrence of unipotent flows.

1)
Proposition 8.3.10. Let S = {oo}US} be a finite set of primes, v € S and d > 2. Consider
a one-parameter unipotent subgroup U, = (u;); of SL(d,Q,) and a covolume 1 lattice A of

Q<. Suppose that U, doesn’t preserve the Qg-submodule generated by any A € Y1(A). There
is To = To(Uy,, A) such that for any T > Ty and 0 < e < 1,

Ao, {t € B,(T) | on(uwA) <e}) < Cy,ds’gd)\@y(By(T)).

Proposition 8.3.10 follows from results in the article | | of Kleinbock and Tomanov.
To state the latter we need several new definitions, so we postpone the proof of Proposition
8.3.10 to Subsection 8.3.4 to avoid a big detour here.

The last result we need to prove Lemma 8.3.5 says that for a fixed A, the hypothesis of
Proposition 8.3.10 is verified by almost any conjugate of U,,.

Lemma 8.3.11. Consider a prime v and d > 3. Let H, be the orthogonal group of a non-
degenerate isotropic quadratic form on Q% and let U, be a one-parameter unipotent subgroup
of H, with non-trivial projection to each simple factor of H,. For any proper linear subspace
V of Q% the subset

{he€ H, | h'U,h preserves V'}

of H, has measure 0.

Proof. We denote € (V) the set in the statement. Since €' (V') is Zariski-closed, it has measure
0 or it contains a Zariski-connected component of H,. We’ll show that the latter case implies
V =0o0rV =Q% Let H' be the Zariski-connected component of the identity of H,. If €' (V)
contains hoH’, then V' is stable under the groups

(h) " (hg Uyho) b

with i’ € H'. Let Z be an infinitesimal generator of hy'U,hg. V is invariant under Ad h'(Z)
for ¥ € H'. Note that the lie algebra b, of H, is generated by the Adh(Z)'s for W € H'
since Z has non-trivial projection to each simple factor of h,. Thus V is h,-invariant. Then
V =0 or V = Q% because the natural action of b, on Q¢ is irreducible. O

We are ready to prove that O,¢ meets at least half of any closed Hg-orbit.

Proof of Lemma 8.3.5. Since Hg is non-compact, we take vy € S with H,,, non-compact. Let
C = C),q and ¥ = ¥, be as in Proposition 8.3.10. Recall that

D45 ={A e Xjg| (D) >eqs}

7971
1 1
€d,8 < Eypd = 5 (20

and
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Let €1 = 26,,4. Then 0 < g4 <1 <1 and Ce¥ = %

Let’s see that Og 5 does the job. Once more, a closed Hg-orbit in X ¢ breaks into finitely
many closed Hg-orbits, so we work with the latter. Let Y be such a closed Hg-orbit and take
A €Y. Let U, be a one-parameter unipotent subgroup of H,, whose conjugates generate
Hp . The action of U,, on Y is ergodic by Lemma 8.3.7. By Birkhoff’s Theorem 8.3.6 there

is a co-null subset E of Hg such that for any h € E,

i ©0s0Y) _ Ay (€ Bu(T) | whh € Das)
py (V) T—00 Agy, (B (1))
I )‘Qu()({t € BVO(T) ‘ h_luthA € h_lgdﬁ})
= 111m
T—o0 Agy, (B (1))

Notice that
Sas(e1) = {A € X | ai(A) > 1)}

is contained in the interior of O4 ¢ because 45 < 1. We choose hy € E close enough to I so
that G45(e1) is still contained in hy 'Oy 5. Moreover, we ask that hy'U,,ho does not preserve
the Qg-module generated any A’ € ¥_1(A). This is possible since, by Lemma 8.3.11, the
h € H,, such that h='U,,h preserve (A')g, form a null subset of H,,, and X_;(A) is finite
by Lemma 8.3.9. Thus

Moy ({t € Buy(T) | hg'wihoA € hy'Ous}) _ Mgy, ({t € Buy(T) | ho'uwhoA € Gasler)})
A0y, (B (1)) N A0y, (B (1))

By Proposition 8.3.10, for 7" > 1 we have

Mg, ({t € Byo(T) | hyluthoA € Sq 5(e1)})
AQu, (Bu (1))

1
>1—Ce¥ ==
- 61 27

S0 ILLY(Dd,S N Y) > %NY(Y)'

8.3.3 The main proof

Now we combine the results of 8.3.1 and 8.3.2 to show that (13 g meets at least half of any
closed Hg-orbit.

Proof of Lemma 8.3.5. Recall that Q45 = deg(é’dp?gdél) if Sy # 0 and Qg = Qoo’d(gdZdél),
where & = 2% . 324" $34* Take A € 945. By Lemma 8.3.3 we can write A as gZ% for some

g€ SL*(d,R) x |] GL(d,Z,)
pGSf

with

(d-1) 4
2\ 7 @y _ JEwE if Sy #£0,
sol | < Vd (@-1 < )
g ( 3) tas = {sdzd if § = {oo}.
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This shows that O4 ¢ is contained in €;g. Let Y be a closed Hg-orbit. Then

1
pr (YN Qas) 2 py(Y N 0as) 2 5w (V)

by Lemma 8.3.5. O

8.3.4 Effective recurrence of unipotent flows

The purpose of this subsection is to explain how to obtain Proposition 8.3.10 from the fairly
general | , Theorem 9.3] of Kleinbock and Tomanov. We'll introduce three new concepts
needed to state the result of Kleinbock and Tomanov and we’ll establish the auxiliary results
for the proof of Proposition 8.3.10, which is given at the end of the subsection.

Let Z be a metric space. We denote by Bz(z,7) the open ball with center z € Z and
radius . We say that Z is a Besicovitch space if there exist a positive integer N with the
following property:

e Besicovitch property:For any bounded subset A of Z and any function r : A —
(0,00), there is a finite or countable subset B of

B, .={Bz(a,r(a)) | a € A} (8.5)
that still covers A, and such that any point of Z belongs to at most Ny elements of AB.

For example, Q,—more generally any ultrametric space—is a Besicovitch space with
Ng, = 1. Indeed, for any pair of open balls in Q,, either they are disjoint or one is contained
in the other. Consider a bounded subset A of @, and a positive function r on A. If r is
unbounded, let ag € A with r(ag) > diam(A). We can choose B = {Byz(ag,r(ag))}. If ris
bounded, any point of A is in a unique maximal—with respect to the inclusion—element of
PB,. We take £ as the subset of maximal elements of 4,. Notice that 4 is at most countable
because any two distinct elements of it are disjoint and @, is second-countable.

As a second example, R? with its standard metric is a Besicovitch space according to
Besicovitch’s Covering Theorem. For a proof see | , p- 30]. It’s easy to see that if three
intervals of R meet, one of them is contained in the union of the other two, so Ng = 2.

Next, we introduce a measure-theoretic analog of Besicovitch spaces. We say that a Borel
measure A\ on a metric space Z is doubling if for any ¢ > 1

Dy (c) = sup {% | z € supp A\, r > 0} (8.6)

is finite.

The Haar measure of R is doubling since Dy, (c) = c. Let’s see that the Haar measure Ag,
of Q, is also doubling. We take the standard normalization Ag,(Z,) = 1. Then the measure
of a closed ball of radius p™ is p™ for any n € Z. It follows that

rpt < Mg, (Bg,(z,1)) <7
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for any z € Q, and any r > 0, so

Mg, (Bg, (2, ¢7))
Ao, (Bo, (2,7))

for any ¢ > 1. This shows that Dy, (c) < cp.
Lastly, we are interested in a class of functions that can’t take small values for a long
time. Let’s formalize this intuition. Let Z be a metric space and let K be a field endowed

with an absolute value | - |. Consider a non-empty subset B of Z and a measurable function
F:Z — K. We define

<cp (8.7)

B(F,e)={be B||F(b)| <¢e} (8.8)
for any € > 0. If X\ is a Borel measure on Z and B meets supp \, we define
1F[ls.a = sup{|F(b)| | b € BN suppA}.
Let C,9 > 0. We say that F'is (C,9)-good with respect to A if

9
ABFE) < C () AB)
[P1F3Y
for any open ball B of Z centered at a point in supp A. When Z is a completion Q, of Q,
we'll simply call (C,9)-good a (C,9)-good function with respect to the Haar measure \g,.

We will write|| - || 5 instead of || - [|5.xg, -
The main example of (C,1)-good functions are polynomial maps. The next result for real
polynomials is due to Kleinbock and Margulis in | , Proposition 3.2].

Lemma 8.3.12. Consider a non-zero polynomial q(t) € R[t] of degree d. If d < dy, then q(t)
defines a (do(do + 1)%, 1/d0> -good function on R.

We prove now a p-adic analog of this result.

Lemma 8.3.13. Consider a non-zero polynomial q(t) € Q,[t] of degree d. If d < dy, then
q(t) defines a (d3p,1/dy)-good function on Q,.

We break the proof of Lemma 8.3.13 into three easy lemmas. We fix a non-zero polynomial
q(t) of degree d with coefficients in Q,. Let m be a positive integer. We define 1,,(¢) as the
set of integers 0 < a < p™ — 1 such that (p™Z, + a) N Z,(q, €) is non-empty.

Lemma 8.3.14. Let m > 0. If #1,,(¢) > d + 1, then

llgllz, < ep™™Y.
Proof. Consider pairwise different elements ay,...,aq in I,(¢) and t; € a; + p"Z, with
lq(t:)|, < e. Notice that

la; — a;|, > p "7V,

Using Lagrange’s Interpolation Formula we write ¢(t) as
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For any z € Z, and any 7 we have

hence |q(2)], < epdm=1, O

Lemma 8.3.15. For any m > 1 and any € > 0 we have

A, (Zp(q,€)) < p~ " #Ln(p)-
Proof. The measure of Z,(q, c)—defined in (8.8)—less or equal than the measure of
U a+p"7Z,
a€lm(e)
because the first set is contained in the second. ]

Lemma 8.3.16. Suppose that q(t) € Q,[t] is non-zero and has degree < dy. Then

1

€ do
)\Qp(ZP(Q75)> S d(Q)p ( > .
lalz,

Proof. We choose mg > 1 such that
Pt <do+1 < p™.

Then p™~—1 < dy and p™ < dyp.
If Ao, (Zy(q,€)) = 0 the inequality we want is true. Suppose now that Ag,(Zy(q,¢)) is
positive and choose m > 1 such that

p—m < AQp<Z;<Qa€)) Sp_(m_1)~
0

By Lemma 8.3.15 we have
A@p (ZP(Q7 5)) < pi(m+m0)#lm+mo (€>7
and we also know that dop~ ("™ < \g, (Z,(q,€)), thus
#Im+mo(€) 2 dO + 17

so we can use now Lemma 8.3.14:

do do
lallz, < pmoptn=D < o(dop)® (—) .
)\Qp (ZP(Q7 5))

This is equivalent to the inequality of the statement. O

We are ready to prove that polynomial maps on Q, are (C,1)-good.
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Proof of Lemma 8.5.13. Let B be a ball in Q,. We write it as z + p"Z, with z € Q, and
n € Z. The degree of Q(t) = q(z + p"t) is also d and [|Q||z, = ||¢||s. By Lemma 8.3.16 we

have )

Ao, (Zp(Q€)) < dgp <||Q€HB) " (8.9)

From the equality
B(Q? 5) =z + pn(ZP(Qa 5))
we deduce that
_ Ag,(B(g,¢))

AQP(Zp(Q;ff)) = pn)\Qp(B(q,E)) = W7

which combined with (8.9) yields

1
do

o, (B(0.6)) = dip (1) " ho, (B),

We need two simple property of (C,)-good functions.
Lemma 8.3.17. Consider two measurable functions F, Fy : Q, — Q,.
(i) If F and Fy are (C,9)-good, then max{|F|,,|Fi|,} is (C,1)-good.
(i1) If F? is (C,9)-good, then F is (C,249)-good.

Proof. We start with (i). Set F,,, = max{|F|,,|Fi|,} and let B be a ball in Q,. It’s easy to
see that

B(Fy,,e) = B(F,e) N B(F,¢),
and ||, || = max{||F||s, ||F1||s}. Suppose that ||F,||s = ||F||p. Since B(F,,,¢€) is con-
tained in B(F,¢) and F is (C,9)-good, then

9
o (BlFne)) < 30 (BFE) < C (150 ) da(B)

Thus F' is (C,9)-good.
We pass to (7). Notice that ||F?||p = ||F||% and B(F?,&?) = B(F,¢) for any € > 0.
Since F? is (C,4)-good, then

9
Vo (BF2) =, (B ) £ € (50 ) Aa.(B)
2\
~ (7)o@
so F'is (C,1)-good. O
Here is finally | , Theorem 9.3] of Kleinbock and Tomanov. Recall that if A is a

lattice of Q% we denote by X(A) the set of non-zero Zg-submodules of A.
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Theorem 8.3.18. Consider a Besicovitch metric space Z, a doubling measure X\ on Z and
a finite set S = {00} U Sy of primes. Let B = Byz(zo,7), B = Bz(20,3%), and let F be a
continuous function B — GL(d,Qg). Suppose that the real numbers C,9 > 0 and p € (0,1)
verify the following: for every A’ € X(Z%)

(i) The map Yar : z — cov(F(2)A) is (C,9)-good with respect to A on B

(i) [larllBa = p-

Then, for any 0 < e < p one has

A({z € B | an(F(2)Z8) < ¢}) < dC(N2DA(3)2)" (;) A(B).

with Nz and Dx(3) as in (8.5) and (8.6), respectively.

The effective recurrence of unipotent flows—Proposition 8.3.10—follows easily from The-
orem 8.3.18.

Proof of Proposition 8.3.10. We write A as gZ% for some g € Gcll,S and we define F'(t) = ug
for t € Q,. Since u; = exp(tv) for some nilpotent d x d matrix v, then

F(t), = (¢i5(t))1<ij<d

for polynomials ¢;;(¢) with coefficients in Q,, of degree at most d — 1. Take any A’ € X(Z%)
and a basis vy, ..., v of it. By (8.4) we have

bar(t) = cou(F(t)A") = cov(A, S = {w}) - [[(F(t)vi)y A= A (F(@)or)ul]o,
where cov(A’, S — {r}) is the constant

H [(gv1)w A== (gui)ul |-

veS—{v}

Writing the (F(t)v;), in terms of the canonical basis ey, ...,eq of Q¢ and expanding the
wedge product we see that

(F(t)vn)y A= A (F(ve)y =Y Qut)ej, A+ ey,

for Q;(t) € Q,[t] of degree at most (d — 1)?, with at least one Q;(t) # 0. Here J runs over
all the k-tuples of integers (j1,...,Jx) with 1 < j; < ... < jx < d. Hence

_ ) (32,Q41)%)7 it v = oo,
Yar = .
maxy Qs ()|, ifv=np.
Lemmas 8.3.12, 8.3.13 and 8.3.17 imply that ¢as is ™

(22(d — 1)%,9,)-good if v = oo,
((d —1)2p,94)-good if v = p.

HTn the case v = co we replace the factor (do + 1)% of Lemma 8.3.12 by 2, which is bigger for dy > 2.
Here doy = 2(d — 1)2.
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Take ¢ € (0,1). We apply Theorem 8.3.18 to Z = Q,, A = Aq,, and F. Consider p € (e, 1)
and
B=B,(T) ={2€Q, ||z, <T}.

We already showed that condition (i) of Theorem 8.3.18 holds for any A’ € Y(Z%). Now
we’'ll show that (ii) holds if T" is big enough. If F/(0) = cov(gA’) > 1 we are done. Otherwise
g\’ belongs to the finite set!?

Y4(A) ={gAl, ..., gA}}.

We write

[N

v = { QM it =,
' max; |Q; j(t)|,. ifv=np.

for some polynomials @; s(t). Since (u;) does not preserve the Qs-module generated by gAl,

some Q; s(t) is not constant. Thus there is t; € Q, such that ¢a/(t;) > 1. Let

T() = T()((Ut), A) = max ’tl|y

1<i<t
Conditon (i7) is satisfied if T > Tj. Recall that
=3 ifv=o0,
Di\(3) .
<3p ifv=np.

The Besicovitch constants of R and Q, are 2 and 1, respectively. Theorem 8.3.18 implies
that

A{z € B,(T) | au(wA) < €}) <
ANB,(T)) B

{a%u—n%ee%wdm% it v = o0,
d((d—1)%p)(3p)% (c/p)"*  ifv=p.

Making p tend to 1 we obtain

A{z € B,(T) | an(w:A) < e}) < 324q328+2% if y = oo,
- 32dd3p2d+1€19d if v = P,

as claimed. O

8.4 'Transversal recurrence of closed Hgs-orbits

Let Hg be the orthogonal group of a non-degenerate, isotropic diagonal quadratic form on
QZ. In this section we prove a transversal recurrence phenomenon for closed Hg-orbits in
Xjg—Lemma 8.1.3—for d > 3. The idea of the proof is simple: Let Wy g be a transversal to
Hg in G}l, g- If no point of ¥ returns to Y under a non-trivial element of (Wd,s)*leﬁ, then
the volume 5d7S(Wd7SY)13 of the box W, Y is equal to the product of the volumes of Wy g

121t is finite because for any 1 < k < d, the set {wy A--- Awy | w; € A} is discrete in A" Q%.
13Recall that B4, is the G}Ls—invariant measure on Xis.



100 CHAPTER 8. VOLUME OF CLOSED Hg-ORBITS

and Y. Since f45(WysY) is at most 5d,5(X§,S), Was can’t be too big. The objective of this
section is to formalize these ideas. It is divided into five parts: first we give a convenient
description of X; ¢ and we fix the Haar measures on various groups we’ll work with in 8.4.1.
The transversal Wy ¢ will be constructed working separately in each Gg4,. In 8.4.2 we do
v =00, and v = p in 8.4.3. These results are put together in 8.4.4 to get Wy g. Finally, we
prove Lemma 8.1.3 in 8.4.5.

8.4.1 Preliminary remarks

First we give a description of X 0}7 ¢ better suited for this section, changing the group G}L g a
semi-direct product—by a direct product G, 5. If v is a prime, we define

a, =19 € Gay | [detgl, =1},

and Gl g = [[,cgGly,- Let’s see that G g acts transitively on Xjg, which justifies the
identification of this space with G ¢/ g, where I') g = T4 NGy g. If g is in G g,

| det goo| oo - H | det gp|, = H5(det g) =1,

pGSf
so det goo is a unit in Zg. Then
diag(det g1, 1,...,1)

is in GL(d,Zs). Let 7, be the diagonal image of this matrix in 'y g. Then gx}i’s = (g’yg)x}i’s
and g7, is in G 5.

We fix now the Haar measures Ag, of the groups G7,. As explained in Appendix A, a
basis of the Lie algebra g, , determines naturally a normalization of Ag;. Let (z1,...,24) be
the coordinates on Q7 of the canonical basis ey, ..., eq, and let €}, ..., e5 € (Q?)* be the dual
basis. We denote by Ej; the matrix of ¢; ® €} and Fy = Ejx — Egq. On gilm = sl(d,R) we
take

(F17 ey Fd—17 E127 E237 s 7Ed—1,d7 E137 s 7Ed—2,d7 RIS E1d7E217 s 7Ed,d—17 (8 10)
E317"'7Ed,d727~"7Ed,1)- .
On g, = gl(d, Q,) we consider the basis Ei;, 1 < i,j < d. We endow G ¢ with the Haar
measure ®,esAcr, and X; g with the G g-invariant measure (4,5 induced by Agr,.
Let v be a prime and consider the orthogonal group H, of the non-degenerate diagonal
quadratic form ayz? + - - - + agz?. We'll work with the Haar measure Ay, of H, determined
by the basis

Bd,Hl, - (H127 H237 ey Hd—l,d) H13a s 7Hd—2,da s 7H1d)7 (811>

of b, where H;; = E;; — aiaj’lEji. If S is a finite set of primes and Hg =[]
Mg = uesAm, -

H,, we define

ves
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8.4.2 The transversal in the real factor

Let Puo(z) = a12? + - -+ + agz? with ay,...,a4 € R*, and H,, = O(Px,R). Consider the
subgroup Wy of lower-triangular matrices of Gj; , with positive entries in the main diagonal.
Here we’ll show that H,, and Wy are transversal, and we’ll estimate the volume of small
neighborhoods of I; in Wy .

First we fix the Haar measure Ay, on Wy o given by the basis

Bd,W = (Fh ey Fd*laE217 E327 v 7Ed,d717 E3,17 o 7Ed,d727 SN Edl) (812)

of its Lie algebra t, ... We prove now that W o, is transversal to Hy, and that Ag_ decom-
poses nicely on Wy oo Ho.

Lemma 8.4.1. Let H,, be the orthogonal group of a non-degenerate diagonal real quadratic
form Py (zx) in d variables.

(i) The multiplication map W oo X Hoo — G&m is injective and the image Wy oo Hoo 15 open
in G -

(17) On WyooHoo we have Aar, = Aw., @ Mg, -

Proof. Since Py (x) is diagonal, the only lower-triangular matrices in H,, are those of the
form diag(£1,...,£1). Hence Hoo N Wy = 1. Take wy, wy € Wy and hy, hy € Ho. Then

wih; = waohy & w;lwl = thfl,

but this last element is in Ho, N Wy, so the equality holds if and only if w; = wy and
hi = he. This proves that the multiplication map M : Wy X Hoo — WyooHo is injective.
We prove now that Wy o Hs is open. The group Wy ., X H acts on GZLOO by

(w,h) - g =wgh™",

and Wy H is an orbit, thus it suffices to prove that W, . H., contains an open neighbor-
hood of I; in G’dm. This follows from the Inverse Function Theorem: The derivative

DM(Ide) : thd,oo X boo — 5[(d, R)

is the map (v, v) — vy + v9, which is a linear isomorphism. This completes the proof of (7).

We pass to (i7). An homogeneous space of the form Go/H, with Gy and Hy locally
compact groups and Hy compact admits a unique (up to multiplication by a positive scalar)
Radon measure—see | , p. 45]. Thus Ay, ® Ay is the only (Wyo X H)-invariant
measure on Wy He. Since Gf . is unimodular, Ag,  is Wy invariant on the left and
H.-invariant on the right, hence

>\G{)o = C()\WOO X )\Hoo)

for some ¢ > 0. To prove that ¢ = 1 is suffices to see that the two measures are defined
by the same—up to sign—multilinear map in /\dz*l(ﬁl(d, R))*—see the conventions we made
right before the statement of this lemma. The base-change matrix from the concatenation of
the bases in (8.12) and (8.11) to the one of (8.10) has determinant 1 because it is unipotent,
upper-triangular, so we are done. O
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For the volume comparison argument in the proof of Lemma 8.1.3 we’ll replace Wy o by
a neighborhood of I; in Wy o,. We use the following estimation of its volume, proved in A.3.1
of Appendix A. Let’s fix notation: consider on gl(d, R) the operator norm || -||,, with respect
to the norm || - ||.. on R%. The exponential map is a bijection between v, o, and Wy . For
any r > (0 we define
B (1) = {v € Wy | |[v]]op <7}

and
Waoo(r) = exp(Bi.. (1)).

Recall that ¢y = d(dTH) — 1.

Lemma 8.4.2. For any 0 <r < % we have

Viret < Awo, (Waoo(r)) < Vree,

2d—1

where V| = and Vd+ — od~1

8.4.3 The transversal in the p-adic factor

Let H, = O(P,Q,) for a diagonal quadratic form P(z) = a12? + ...+ aqz? with ay, ..., a4 €
Q,'. Consider also the subgroup Wy, of lower-triangular matrices of G4, = GL(d, Q,). Now
we'll see that H, and an open subgroup of W, , are transversal. We also compute the volume
of small neighborhoods of I; in Wy,,.

We'll work with the Haar measure Ay, on Wy, determined by the basis

<E117 <. 7Edd7 E217 E327 ey Ed,dfla <. 7Ed1)

of its Lie algebra tog,,.
This time Wy, X H, — G, is not injective, but it has finite kernel, and Ag, also decom-
poses nicely on Wy, H,.

Lemma 8.4.3. Let H, = O(P,Q,) with P as above.
(i) The image Wa,H, of the multiplication map Wy, x H, — Gq, is open in Gg.

(it) On Wyp,H, we have A\g, = Aw, ® Ag,.
Proof. The derivative at (14, 1) of Wy, x H, = G4, is the addition map

g, X hp — Ql(d, Qp)7 (U17U2) = U1 + Vo,

which is a linear isomorphism. By the Inverse Function Theorem—see | , p. 73] for a
proof that works also in the p-adic case—we get that Wy ,H, is a neighborhood of I; in Gy .
Thus Wy, H, is open in Gg,, since it’s a (Wy, x H,)-orbit in G,.
We denote
A={(g,97") | g€ W N Hoo},

and we identify Wy, H, with (W,,x H,)/A. It admits a (Wy, x H,)-invariant Radon measure,
unique up to multiplication by a positive constant, because A is finite. This traduces to a
unique measure on Wy, H, that is W, -invariant on the left and H-invariant on the right.
Aw, ® Ay, and A, verify this condition, hence they differ by multiplication by some ¢ > 0.
To see that ¢ = 1 we use the same argument as in the proof of Lemma 8.4.1. [
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In the next lemma—proved in A.3.2 of Appendix A—ee shrink W, to obtain a strict
transversal to H,, and we compute the volume of small compact-open subgroups of Wy,. We
define

Wap(r) = {w € Wap | [lw = L], < r[Jw™ = Lll, <r}

for any r > 0. Recall that ¢4 = @ -1

Lemma 8.4.4. Let p be a prime number. We set £, =1 if p is odd and ,, =2 if p = 2. The
multiplication map W ,(p%) x H, — Gq,, is injective, Wy,(p~)H, is open in Gq, and

AWP (Wd,p (p_n)) = p_(cd-‘rl)n

for any n > 3.

8.4.4 The S-adic transversal

Let S = {oo} U S; be a finite set of primes. Consider P(z) = ajz} + -+ + aqgr3 with
ai,...,aq € Q5 and let Hg = O(P,Qg). Now we combine the results of the previous two
sections to get the transversal to Hg in G} g. The structure is the same as in the last two
subsections.

We define
Was = Wooa X [ Wap(@™®),

pGSf

and
Was(r) = Waa(r) x [] Wap(p™)

pESf

for any > 0. We endow Hg and W, ¢ with their respective (left for Wg) Haar measures

)\Hs = ®V€SAHU7 )\WS = ®V€S>\Wu7

with the normalizations chosen before in each factor.

For future reference we state here the fact that Wy g is transversal to Hg and the relation
between the Haar measures of W, g, Hg and Géz, g. This follows directly from lemmas 8.4.1,
8.4.3 and A.3.4.

Lemma 8.4.5. Let S = {oco} U Sy be a finite set of primes and let Hg be the orthogonal
group of a non-degenerate diagonal quadratic form on Q%.

i) The multiplication map Ways x Hg — G, o is injective and Wy sHg is open in G, q.
P p , d,s ] , P d,S

(1) On WysHg we have
Acy, = Aws ® Amg.

Now we estimate the volume of Wy 4(r).
Lemma 8.4.6. Let S = {co} U Sy be a finite set of primes. For any 0 <r < 3 we have

‘/;l_p;3(6d+1)r0d < AWS(Wd,S(T)) < ‘/;l+p;3(cd+1)’l“cd,

2d—1

- _ + _ 9d?-1
where V, = S and V," =2 :
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Proof. By Lemma 8.4.4 we have

Awg (Wd,S(T)) = >‘Woo<Woo,d(7”)) . H )\Wp (Wd,p<p_3>) = A (qud(?n))pg:s(cdﬂ)?

pESf

hence the result follows from the bounds for Ay, (W a(r)) of Lemma 8.4.2, which hold when
r is in (0, %) O

8.4.5 The proof of Lemma 8.1.3

Here we’ll finally prove the transversal recurrence for closed Hg-orbits after presenting the
two last intermediate results we’ll use.

Let d > 3. We consider P(z) = ajz3+- - -+aqz? withay, ... ,aq € Q5 and Hg = O(P, Q).
Suppose that Hg is non-compact. Let {24 ¢ be the compact subset of Xis of Lemma 8.1.2.
Let Y be a closed Hg-orbit in Xj g. The proof of Lemma 8.1.3 is based on two observations:

1. If no point of Y Ny ¢ lands back in Y under any w € W, s(r) — {I4}, the volume of
the box is Aw, s (Wa,s(r))py (Y N Q).

2. the volume of the box Wy s(r)(Y N Qqs) is less or equal than the volume of Xj g

Here are the last two intermedidate results we’ll use in the main proof. We denote by W%,
the map
Was(r) x (Y NQqs) = Xgg,  (w,y) = wy.

Recall that Ve = Bo,a(X 4). For the next lemma we define

1

2]}d,ooa

Bd:m.

Lemma 8.4.7. Let d > 3 and let Y be a closed Hg-orbit in Xjg. If Wy is injective and

1
r<j, then
1

7 < Bapepy (V) <.

Proof. Since d is fixed, to simplify the notation we’ll omit the d in the subindices of Xj ¢, Wy s
and ;5. Let yp be a base point in Y N{2g and let Y be a measurable subset of H. s such that

Y 5 YNQs, h— hy
is bijective. If U§ in injective, then
Ws(r)Y — Xig, wh— whyg

is also injective, hence

B(Ws(r)(Y NQs)) = A, (Ws(r)Y).
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We know that >‘G’s = Ay @ Ay on WeHg—see Lemma 8.4.5—, so

Acr, (Ws(r)Y) = Aws (W(r)) Az (V)
= Aws (Ws(r)) puy (Y N Qs)

(et (290

To obtain the last inequality we used Lemma 8.4.6 and Lemma &8.1.2. The volume of
Ws(r)(Y N Qg) is strictly smaller than 24S,d(X;¢) and f45(Xjgs) < Ve by Corollary
A.4.2, hence

Vi — c
—; psg( d+1)uY(Y )t < 2V oo
We finally get

1

1
C — €d
r< (mﬂ? Vot (V) 1) < Bapgiy (Y) 7.

2d+1

[l
Lemma 8.4.8. We have
¥ —1 < dr
for any r € (O, %)
Proof. The function 1(e*" — 1) is increasing on (0, 00), so
2r__1
‘ <2e—1)<4
,

if0<r<i. O

We are ready to prove the transversal recurrence of closed Hg-orbits.

Proof of Lemma 8.1.3. Let Y be a closed Hg-orbit in X ¢. Recall that

A 4 : V d B —2Vdc?°°
1T \dd—1)) T T Add—1)
We define )
ry = Bapepiy (Y) <.
Notice that ry < % if and only if puy(Y) > Adpécd. Suppose that this is the case. Then
U isn’t injective by Lemma 8.4.7. Take w # w' in Wyg(ry) and y,y’ € Y N Qyg such
that w™w'y = y'. We set u = w™'w’. Then u(Y N Q) meets Y. We have w, # w!, for
some v € S, hence u, ¢ H, by (i) of Lemma 8.4.1 or Lemma 8.4.3 if v = 0o or v = p,
respectively. Thus w is not in Hg. Notice that ||u,||, = 1 for any p € Sf because u, is in

Wa,(p~®) € GL(d,Z,). To conclude we estimate ||tuo, — l4]|. By definition of W, 4(ry),

w=-expv, w =expt
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for some v, v’ € 104 With ||[v]|op, |[V]|op < ry. Then

|[ttoo = Tallow < |Jwiwiy — Tallop
< ||wo_olw</>o - wéo“f)p + [[wl, — Lallop
< wz" = Tallopl Wil lop + [[wee — Lallop
< (e =1)e"Y + ('Y — 1)
=2 — 1

1
< A4ry = C’y)pé,uy(Y) <d

1
28y d

where CC(;D = JaT This completes the proof. ]



Chapter 9

Generating sets of S-integral
orthogonal groups

This chapter is based on a classical result of Siegel in his landmark article | |2 The
integral orthogonal group of an integral quadratic form is finitely generated. Here we’ll obtain
an effective S-adic extension of this fact. The case S = {oco} was treated by Li and Margulis
in [ , Theorem 2]. Before giving their result, let’s recall some notation: if @ is an integral
quadratic form in d variables, bg is its matrix in the standard basis of Q%, ||Q||« = ||bo]|~
and dg = det bg.

Theorem 9.0.1. For any d > 3 there is a constant By with the following property: Let () be
a non-degenerate integral quadratic form in d > 3 variables. Then O(Q,Z) is generated by
the v € O(Q,Z) with

4 6
7l < BallQIIX 105

Consider now a finite set S = {oo} U Sy of primes. Our statements treat the interest-
ing case, namely integral quadratic forms @ isotropic over Q¢! We formulate our results
separately for R-isotropic and R-anisotropic quadratic forms, as we did for our criteria of
Zg-equivalence. For the explicit values of the constants K4, 714 and F» 4 in the next two
theorems, see Appendix C.

Theorem 9.0.2. Consider a non-degenerate R-isotropic integral quadratic form @Q in d > 3
variables and a finite set S = {oo} U Sy of primes with Sy # 0. The group O(Q,Zs) is
generated by the & € O(Q,Zg) with
€l < KapB N|QIIZ 16012,
_1
€Ml < p*™*2[dql * forp € S;.

Theorem 9.0.3. Consider an R-anisotropic integral quadratic form Q in d > 3 wvariables
and a finite set S = {oo} U Sy of primes. Suppose that Q is Q,,-isotropic for some py > 2 in

"When @ is anisotropic over Qg, O(Q, Zs) is finite because it is a discrete subgroup of the compact group

O(Q7 QS)

107
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S¢. The group O(Q, Zg) is generated by the £ € O(Q, Zg) with

7 1 4 5
€]lpe < Fraps [1Q]12% 60| %,
_1
€11, < p** 2|00, 2 forp e Sy —{po}.
3 d 3
1¢]| < Foaps” 1Q]12 |60]%-

We establish these two results adapting the strategy of Li and Margulis for S = {oo}.
Here is the basic notation we’ll use: let ) be a non-degenerate integral quadratic form in d
variables. We denote by H? the orthogonal group of Q. If S = {o0} U S¢ is a finite set of
primes, we denote by Fg the diagonal copy of O(Q,Zs) in Hg. We'll work with I‘g instead
of O(Q s Zs) .

The chapter is organized as follows: In Section 9.1 we prove a lemma that constructs a
generating set gSQ of Fg from a generating set M g) of H? and a fundamental set U g of Fg in
Hg. Then, we give Mg and Ug respectively in Section 9.2 and Section 9.3. The description
of U g depends on a certain finite subset ng of I'g s which will be carefully chosen in Section
9.4. We conclude with the proofs of the main results of the chapter in Section 9.5.

9.1 The basic lemma

The proofs of the two main results use the next lemma that gives a generating set of a
subgroup 'y of a group H,.

Lemma 9.1.1. Let I'y be a subgroup of a group Hy. Suppose that M and U are subsets of
Hy such that
Hy= | JM" =UT,.

n>1

Then Ty is generated by (U~'MU) N Ty.

Proof. Let A, = U™'M"U for any positive integer n. Since Hy = U,>14,, to show that
A = (A; NTy) coincides with 'y it suffices to prove that A, NIy is contained in A for any
n > 1. We show this by induction on n. This is true for n = 1 by the definition of A. Suppose
now that A, NIy C A for 1 < ¢ < n and consider 7,1 € A, 1 NTy. Take uy,us € U and
my,...,Myr1 € M such that

-1
Tn4+1 = Uy My - - Mp41U2.

We write my,1us as uzy; for some uz € U and v; € I'g. Then v, and v, = uflml s My, U3
are respectively in A1 NIy and A, N T[y. By the inductive hypothesis, v1,7, belong to A,
hence v,11 = Y71 as well. O]

When Hy = UTy as in Lemma 9.1.1 we’ll say that U is a fundamental set of Ty in H.
Lemma 9.1.1 builds a generating set of 'y in terms of a generating set of the ambient group
Hy and a fundamental set of I'y.
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9.2 A generating set of Hg

Here we give a generating set of Hg. Since Hg is conjugated to the orthogonal group Hg
of a standard quadratic form on Q%, the task reduces to finding a generating set M, of H,
for v € S. When v = oo, we take M, as any subset of H,, with non-empty interior meeting
every connected component of H.

For H, we’ll do something similar, replacing the connected components by Hp-cosets of
H,. Recall that H} is the image in H, of the corresponding Spin group.

Lemma 9.2.1. Consider a prime p > 2 and an integer d > 3. Any orthogonal group H, of
a standard quadratic form on @z is generated by the h € H, with ||h||, < p*.

Proof. O]

9.3 A fundamental set of Fg in Hg

Now we construct a fundamental set U g of Fg in Hg by analogy with the classical case
S = {oo}, first treated by Siegel in | |. His argument relies on the reduction theory of
real quadratic forms?, which in turn is based on the concept of Siegel sets of GL(d, R). This
section has two parts: in 9.3.1 we introduce the Siegel sets of GL(d,Qg), which we use in
9.3.2 to construct Ug?.

9.3.1 Siegel sets of GL(d)

We denote by G4 the Q-group GL(d). Let S = {oo} U Sy be a finite set of primes. We
introduce here the Siegel sets ydoféﬁ of G4, a family of subsets of G4 ¢ that depends on two
positive parameters «, 3. They play a key role in the study of S-arithmetic groups because
any lattice in Q¢ is of the form gZ¢ for g € yggg when o and 8 are big enough.

Let’s start with S = {oo}. Consider the following subgroups of G :

K =0(d,R)
A ={diag(a,--- ,aq) € Gaoo | a; > 0 for every 1 <i < d},

N = {unipotent, upper-triangular matrices in G4}
For o, 8 > 0 we define

Aa:{diag(alv'” ,Cld) eAla”L Saai—‘rl for 1 Slgd_l}a
Ng={n e N |ln - lal| <P}

The (a, §)-Siegel set of G4 is defined as

S = KALN;.

2See Appendix B for the basic definitions and | , Chapitre I; §2, §5] for a complete discussion.
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For a general S = {oo} U Sy we define the («, 5)-Siegel set of Gy ¢ as

Il =70 <[] 6L, z,).

pESf

Recall that I'y s is the diagonal copy of GL(d,Zgs) in Gg4s. The standard way to give a
fundamental set of I'y g in G4 g is using the Siegel sets.

Proposition 9.3.1. Consider a finite set of primes S = {oo} U Sy and d > 2. If a > \/lg
and 3 > %, then
Gd75 = Ydf‘de’S.
See [ , Lemma 2.2] and | , Proposition 5.7 ] for the proofs for S = {co0} and

GL(d,Q) C GL(d,A), respectively. The same argument gives Proposition 9.3.1.

9.3.2 Construction of Ug

Let’s see how to describe a fundamental set of Fg in Hg. We'll use some ideas from the
reduction theory of quadratic forms on Q%.

Let S = {00} U Sy be a finite set of primes. We say that a quadratic form R on Q% is
(o, B)-reduced if we can write it as P o s for a standard quadratic form® P on Q% and some
s € yd‘ff . If B is a quadratic form on Q7 we write Bg when we consider it as quadratic
form on Q¢ via the diagonal embedding ) — Qg. We say that B is (S, a, 3)-reduced if Bg
is (o, B)-reduced. Here are some basic properties of reduced quadratic forms.

Lemma 9.3.2. Let S = {oco} U Sy be a finite set of primes. Consider an (S,2,1)-reduced
quadratic form R in d > 3 variables with coefficients in Zg, and an integral quadratic form
Q@ in d variables. Then:

(1) R is integral and p=2 < |6g|, <1 for p € Sy.

(i) If Q = Rov for some v € GL(d, Zs), then |xloo < p2l0qe,
1 1 1
Pt <ldetrle <l0gle  and  |doli < |detrl, < pldgl:

forp € Ss.

Proof. Let br,bg € GL(d,Q) be the matrices of R and @ in the canonical basis of Q4. Write
Rg=Posforse 5/5,191 and a standard quadratic form P = (P,),cs on Q%. Let ¢ € G4 be

the matrix of P in the canonical basis of Q%.
Let’s prove (7). Recall that R = P, 0s, and s, € GL(d,Z,) for p € S, so

|0r[, = | det Sp’?u [(6P)plp = [(6P)plp,

3Recall that this means that P = (P,),cs and that each P, is a standard quadratic form on Q%, which
are defined in Section 3.2 for v = 0o and in Subsection 3.3.1 for v = p.
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thus* p=2 < |dg|, < 1. The matrix bp € My(Zg) verifies
10rlL, < 1 spllllepll ]Il < 1

for any p € Sy, so bg is integral.
Now suppose that we are in the situation of (i7). Since R and @) are Zg-equivalent,
Hs(0r) = H5(0g). Using (i) we get

PEl0R|c < H5(0R) = H#4(00) < 10000,

which proves the first inequality. For the second one, since 'vbry = bg and [0g|e > 1
because R is integral, then

1 1
0000 \ 2 1 Snla ) 2
| det7]oe = o <|0gl% and |dety| ! = [9roc < ps.
107 o 0] oo

Let’s prove the third inequality. For p € S; we have

|5Q|p %
|det |, = ( ,
P |5R‘p

1 1 ,
so |glp < |dety|, < plogls by (4). O

We denote by %g the set of rational quadratic forms that are Zg-equivalent to ) and
(S,2,1)-reduced.

Lemma 9.3.3. Let () be a non-degenerate integral quadratic form in d variables. The set
%ﬁ is finite for any finite set S = {oo} U Sy of primes.

Proof. Any R € 9?3 is integral by Lemma 9.3.2, so
0r|ee < H5(0R) = H5(dq)-

Also, R is (2,1)-reduced as real quadratic form because the real factor of Yd‘gﬁ is the («, )
Siegel set of GL(d,R). By Proposition B.3.1 there are finitely many (2, 1)-reduced integral
quadratic forms on R? of bounded determinant. O

Let’s see how to obtain a fundamental set of Fg in Hé? from 5?? and 5”;’31. Any R € %g
is in fact integral by Lemma 9.3.2. We choose 7r € I'y s such that Rgo7p = QQg—in the next
section we’ll pick a convenient 7p—and we define

‘?SQ:{TR|RE%$Q'}7

which is finite since %@9 is by Lemma 9.3.3.

1

4Since P, is standard, then |(6p),|, is either p=2,p~! or 1.
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Lemma 9.3.4. Let Q be a non-degenerate integral quadratic form in d > 2 variables. Con-
sider a finite set of primes S = {oo} U S; and the standard quadratic form P on Q% that is
Qg-equivalent to Qg. Set

vg = (97378 nug,
where g € Ggs takes P to QQs. Then Hg = U?Fg.

Proof. Take h € Hg. By Proposition 9.3.1 we can write gh as sy~ ! for some s € yjsl and
v=(Y0,---,7%) € I'as. Let R = Q o~y. From Qg = Po(gh) we obtain Qgoy = Pos,so R
is in 9?? Consider 7 € ,?SQ such that Rg o7 = Qg. Then 771y~ is in F? because

Qsoy=Rs=Qsor "

Ls belongs to UZ, and h = u(r~'y™"), so we are done. O

Notice also that v = g~

9.4 Choosing a small generating set

Recall that Lemma 9.1.1 gives a generating set %59 of Fg from a generating set M g;? of Hg—
obtained in Section 9.2—and a fundamental set Ug of Fg in Hg. We described such an
U g in Section 9.3 in terms of a subset ,?SQ of 'y s. Here, using our effective criteria of Zg-
equivalence of quadratic forms—theorems 5.1.1 and 5.1.2—, we choose a %Q that will allow
us to control the size of the elements of %g in Section 9.5.

We state separately the results for R-isotropic and R-anisotropic quadratic forms.

Lemma 9.4.1. Consider a non-degenerate R-isotropic integral quadratic form @) in d > 3
variables, a finite non-empty set Sy of odd primes and S = {oo}USs. For any R € %@9 there
is yr € GL(d, Zg) that takes R to Q with

6154 3 4042
&l < Gapg™ T NQII 16g 120

&l < p? forp e S;.

Y

Here G, = 2d5Ci7dW27dd3 with C; 4 as in Theorem 5.1.1 and W5 4 as in Lemma B.3.1.

Proof. Any R € %g is integral by Lemma 9.3.2, so Theorem 5.1.1 shows there is v €
GL(d,Zs) taking R to @ with

6 3 2
el < Ciaps™ (II1R]|<1Q1-)" [0rdelo

1
and ||vg||, < plogrlp® for p € Sy.
We'll replace the terms in R by terms in Q. Recall that |0g|. < p%|dg|ee—see Lemma
9.3.2. Note also that R is reduced as real quadratic form since Rg is (2,1)-reduced and

Frg =S x || GLd. Z,).
pESf

Then, by Proposition B.3.1

|R||o < 28 W a|05[24 < 28 Wy gpt|og| 2.
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To conclude we bound the norms of yg:

d2

17k~ < Ciap™ 2% Wa,ap 10012 |QN1E (pE[0q|2)"
<g p19d°+5d4 | |Q| ‘d?’ ’6Q|2d4+2d2

Y

where G; = 2d5C,;’dW§‘fz with C; 4 and Ws 4 respectively as in Theorem 5.1.1 and Lemma B.3.1.
Also

_1
Ve, < plogly® < p?

by Lemma 9.3.2, for p € Sy. m

Lemma 9.4.2. Consider an R-anisotropic integral quadratic form @ in d > 3 variables and
a finite set S = {oo} U Sy of primes with 2 ¢ S. Suppose that Q is Q,, isotropic for some
po > 2in Sy. For any R € %g? there is yr € GL(d,Zg) that takes R to QQ with

vl < Haapg® 27 |Q]|27 D |5 L1147,

||7R||p Sp fO?"pESf,
2dd
Vel < Hoapg Y \|QH°O|5Q|M b,

Here H; 4 = 2¢ Ca aWs d2 *(d=1) and Hoq = of qa+1 . d'Ws 4 T with Cq.q as in Theorem
5.1.2 and W54 as in Lemma B.3.1.

Proof. Any R € #% is integral, and the upper bounds for |0g|, and ||R]|. in the proof of
Lemma 9.4.1 remain valid in the current situation. Consider vz € GL(d,Zg) taking R to @
as in Theorem 5.1.2. We have

6 La2(4— I
V&l < Caaps™ (IIR|-l|Ql1) 2V [dr0%
7
< Coaps” (2T Waapd!]| Q|60 2) 2D (p |0 2. ) 2
6 4 152 3(
< Hiaps? PT|QIZT Y |dg |5V

2(d—1
where H; 4 = 24 CadW22d )

Lemma B.3.1. For p € Sf,

, with C, 4 and Wy 4 respectively as in Theorem 5.1.2 and

_1
Iell, < plorly * < p,

and finally

gl < d™*' - dl|RI| 2 (1QI2

2d(d—1)
< Haoaps 7 Ql12 15012,

d—1

where Hy g = 24441 . d'W, 5 .
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9.5 Proofs of the main theorems

Everything is now in place. We complete now the proofs of our effective results on generators
of O(Q,Zs). We start with the R-isotropic case.

Proof of Theorem 9.0.2. We write Qg = P o g for a standard quadratic form P on Q% and
g € Gygs. Set Hg = O(P,Qg), so Hy, is non-compact. For p € Sy we define

M, = {h € Hy |||h]], < p"},
which generates H, by Lemma 9.2.1. Consider
My, = {diag(ar, . .., a4) | a: = £1}
and
My(e) = Moo U{h € Hy | ||h — 4| < £}
Note that My (¢) generetes H., since it has non-empty interior and M., meets all the

connected components of H,,. Hence Mg(e) = My () X Hpesf M, generates Hg and

Mg(s) = g 'Mg(e)g generates Hg = g 'Hgg for any ¢ > 0. For each R € 9?2 we de-
fine 7p = (YR, ..., Vr) € 'as with vg taking R to @ as in Lemma 9.4.1, and we set

78 = {1 | Re 23},
Consider
US = (97" 45 95°) N HS.
Then HY = USTY by Lemma 9.3.4, and
9 (e) = (US) "M (e)US) NT'g
generates Fg according to Lemma 9.1.1. Letting ¢ — 0 we see that
95 = (U) ' MJUG) nTg

generates Fg ° where MS? = g 'Mgg. For any E € E{é‘? , let € be the corresponding matrix in
GL(d,Zs). Let’s see that any & verifies the bounds of the statement. We write

E=1""s"lglg img)g "ty =17

s_lmtn
with 7,1 € &, m € Mg and s,t € Yd%’;. Let ¥/ = s~'mt = 76071, so ' is in [ys. Forpe S,
we have

10,11, = [, mptoll, < P,

s0 b := p2bl,, has integral coefficients. The equality socb = p2mocto” shows that .7 b meets

21
S 80

d,00?

[1b]]o < Wia det b2 (9-1)

5The reason for considering this set instead of %SQ (e) is that M is contained in O(d, R), unlike Mg(e).
SHere is where we use that M, is contained in O(d,R).
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by Corollary B.2.11. Note that the determinant of & = 7'/ _n., is £1 since it preserves @,
SO

det 00| oo

| det b |0 = I det Tooloo

| det Moo | oo

by Lemma 9.3.2. Writing (9.1) in terms of 0’ yields

1
< psldgl

0ol < Wi api? =2 det 1|24 < Wi apl® 00| L.

We are ready to bound ¢&:

€]l = 175" Uottoollee < @17 oo 1100 oo D5 |
d—1
| det Too | 0o

< d- dips(Gapg™ QUL 1512 ) (Waap§" 00|5.)
7 4 5
< Kaps™ 11QII% 10013

oo )

where Ky = d - d!ggW&d with G4 and W34 as in Lemma 9.4.1 and Corollary B.2.11, respec-
tively. We also have

17l 1711,

1
< p**ogl,
| det 7, |,

1€l = lI7, s, mptompll, < [lmll,

for p € Sy.
O

Proof of Theorem 9.0.3. Let Hg be the orthogonal group of the standard quadratic form
P on Q¢ that is Qg-equivalent to Qg and consider g € Gy taking P to Qg. Since @Q is
R-anisotropic and Q,,-isotropic, Hy, = O(d,R) and H,, is non-compact. Consider again

M, ={h € H, | ||hll, < p’},

which generate H, by Lemma 9.2.1. As generating set of H,, we take M., = H. Note
that Mg = [],.q M, generates Hg and MS = ¢ 'Mgg generates Hg = g 'Hgg. For each
R e %’g we define 7p = (YR, ..., 7r) € L'ys with vg € GL(d, Zs) taking R to () as in Lemma
9.4.2. Consider 95@, Uég and %Q as in the proof of Theorem 9.0.2. Once more, the Ee %SQ
generate Fg, so the corresponding ¢ € GL(d,Zs) generate O(Q, Zg).

Let’s see that these £ verify the inequalities of the statement. We write

&= T_ls_lmtn

with 7,7 € 75@, m € Mg and s,t € YdQ’Sl. We consider again b’ = s~ tmt = Tgn’l €lys. In
the present situation the inequality

[Vl < Wsap§"[d0l%
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still holds. We are ready to bound &:

H€IJ0HP0 = ||7—p_013;olmpotpo77po”po < p(2)| det TpolgolHTpono_ll‘npo‘|po
_1 1
< BRlOaln’ (HuapP 20| Q280D |5 | @-1+7)d
7 14 5
< Fraps®11Q)12" |60|% .

2
oo

where F; g = H¢ , with H; 4 and in Lemma 9.4.2. For p € S; — {po} we have
) 1,d ) f

1 1
1€11, < p*10ely * (17115 HInpll, < p**210qln -
An finally the oo-norm:

I\Toolli‘lllnoo!!opo, |
| det Too| oo cotles
— 1 _
< d - dips(Haapz™ " V1|Q12 00|24 D)4 (Ws api|60] L)

3 d 3
< Foaps’ [1Q|Z 100/,

€]l < d - d!

where Fpq = d- d'H$ ;W34 with Hs 4 and Wi 4 respectively as in Lemma 9.4.2 and Corollary
B.2.11. [



Appendix A

Volume computations

This appendix gathers volume computations on various Lie groups. The explicit constants
in our criteria of Zg-equivalence—theorems 5.1.1 and 5.1.2—depend on these.

There are four parts. Section A.l1 explains how to choose a Haar measure on a real or
p-adic Lie group form a basis of its Lie algebra. Then, in Section A.2 we estimate the volume
of neighborhoods of the identity in orthogonal groups and we build bump functions on real
orthogonal groups. Section A.3 deals with volume estimates in groups of lower-triangular
matrices. Finally, we prove a formula for the volume of the space of covolume 1 lattices of

¢ in Section A.4.

A.1 Haar measure on Lie groups

We start with general remarks. Let v be a prime and let Hy be a closed subgroup of GL(d,Q,).
Let’s fix a choice of Haar measure on Hy and Lebesgue measure on its Lie algebra hy. Let
(y1,-..,yk) be the coordinates on hy with respect to a basis § on hy. We take Ay, such that
2F if v = oo,
)\bo({(yla"'ayk)ebo ’ ‘yllllaa‘yk‘llgl}: .
1 ifv=np
Let w be the left-invariant volume form on H, such that

wr, = (dyy A -+ - A dyg)o-

We denote by Ap, the left Haar measure on H, given by integration with respect to w. We’ll
say that a Haar measure vy, on Hjy and a Lebesgue measure vy, on by are compatible if they
can be obtained from the same basis of fhj.

A.2 Orthogonal groups

The aim of this section is to establish volume estimates for open neighborhoods of the identity
in real and p-adic orthogonal groups—Lemma A.2.1 and Lemma A.2.12, respectively. These
were used in the proof of the dynamical statements of Chapter 6 and Chapter 7.

117
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A.2.1 Real orthogonal groups

We treat first the case of real orthogonal groups. The goal of this subsection is to prove
Lemma A.2.1.
Let || - || be the norm on My(R) of the maximum of the absolute values of the entries.
If P(x) is a non-degenerate quadratic form on R¢ we denote by Hp the group O(P,R). As
before, let bp be the matrix of P in the canonical basis ey, ..., e4 of R?. Then
hp = {U € g[(d, R) | tl)bp + pr = O}
If P(x) = a;2? + - -+ + aqz?, we consider the basis of hp formed by

with 1 <4 < j < d. Here Ej; is the matrix of €] ®e; and €7, .. ., ej is the dual standard basis
of (R%)*. We'll denote by A\g, and )y, the Haar measures of Hp and hp induced by this
basis. We'll estimate the measure of small symmetric balls of Hp centered at the identity:

Hp(r)={h € Hp | ||h — Ly||. <7, || — Ii]|. <T}.

Lemma A.2.1. For everyd > 3 there are positive constants Rq, Sq with the following property:
if P(z) = a12% + - - - + aqz? with each a; € {£1}, then

Rd’f’%d(dil) < >\HP (HP(T)) < SdT%d(dil)
. 2
Zfr S L

In Lemma A.2.1 we can take
d(d—1) d(d—1)

e (L) ° 4 g (204) 7
d — 3d an d = 3 .

The idea to prove Lemma A.2.1 is simple: if r is small, Hp(r) is parametrized by via the
exponential map of Hp. We'll see that Ay, (Hp(r)) and Ay, (exp~* Hp(r)) are comparable.
We break the proof into several auxiliary lemmas.

Let Goo = GL(d,R) and g = gl(d,R). To compare the sizes of v € go, and expv € G
it is convenient to work with a submultiplicative norm. Let || - ||,, be the operator norm on
0o With respect to the norm || - ||, on RY. For any linear subspace 1o of g, we define

w(r) = {v € w | ||v]|o, <1}
The next lemma gives open subset of g., and G, where exp restricts to a diffeomorphism.
Lemma A.2.2. For any d > 2, the exponential map of G s a diffeomorphism between
000 (log 2) and an open subset of G.
Proof. The inverse of exp, that we’ll denote by log, is defined by the power series

- (_1)n+1 n
osg =3 " g 1y

i=1
that converges when ||g — I4||op < 1. If v is in goo(log2), then
|| exp(v) — Ig||op < €82 —1 =1,

so we are done. O
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The next result is useful to estimate the volume of G (7).

Lemma A.2.3. Letd > 3. For anyr € (0, 5%} we have

d
exp Poo <%r) C Goo(r) C exp goo <%7‘) C exp goo(log 2).

To prove Lemma A.2.3 we use the next two simple inequalities. The first one is immediate.

Lemma A.2.4. Ifs e [O, %}, then

Lemma A.2.5. Ifs € [O, %}, then
gs <log(1l+s)
10° =" '

Proof. Since log(1+s) is concave, the statement follows from the inequalities for s € {0,2/15}.
O

Proof of Lemma A.2.3. Take r € (0 l} and g = expv € Goo(r). We have

? 5d
g = Lallop < dllg — lalloc <dr <1,

sologg =5 (_17):“ (g — I3)" converges. Moreover

110 gllep < D llg = Lally,

n>1

dr 5d
< —r.

<
“1l—dr — 3

We used Lemma A.2.4 in the last line. This proves the inclusion
bd
Goo(r) g €XP PJoo (?T) .

Since r < 5271 < 135, %dr < % < log2 =0.693..., so log is a diffeomorphism from G (r) to an
open subset of g,,—see Lemma A.2.2.

Now take v € goo(97/10) and set g = expv. Thanks to Lemma A.2.5 we have
[[0l]op < log(1 +7),

SO
lg = Lall< < llg = Lallop < Ml =1 <7

The same argument with —v gives the same upper bound for ||¢g~! — I3||... This proves the
inclusion

exp foo (%r) C Goo(r).
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Now we recall the well-known relation between the Haar measures of a Lie group and its
Lie algebra near the identity. Let ¢(z) be the power series %

Lemma A.2.6. Let Hy be a Lie subgroup of G Suppose that vy, and vy, are compatible
Haar measures on Hy and bo. The map

Dy, (v) = detl/}(adbov)
is a density of log, g, with respect to Ay, on ho(log2).

Proof. Since vy, and vy, are compatible, there are coordinates (yi, ..., yx) on by with respect
to a basis of by such that vy, and 14, are respectively given by the integration with respect to w
and dy; \- - -Adyy, where w is the left-invariant volume form on Hy with wy, = (dy1 A- - -Adyy)o.
We just have to prove that

(exp”w)y = Dy (0)(dys A -+ A dyp).-
The derivative of exp : hy — Hy at v—see | , D- 99]—is given by
D exp, = Ly, o ¥(ad y,0),
where Ly, : Hy — Hj is the left multiplication by h = expwv. Thus

(exp* w), = ¥ (ad y,v)" Lywp

= w(ad hov)*wfd
= det y(ad p,v)(dys A - -+ A dyg)o.

]

The next lemma gives positive lower and upper bounds of Dy, near 0. Let ng be dd-2)

2
if d is even and ““Y2 if 4 is odd.

Lemma A.2.7. Let P be a non-degenerate quadratic form on R?. For any v € hp(1/2) we

have
57" < Dy, (v) < 2™,

We state a less sharp version of Lemma A.2.7 that we’ll use later.

Corollary A.2.8. Let P be a non-degenerate quadratic form on R%. For any v € hp(1/2)

we have
57240 < Dy, (v) < 229D,

Proof. The inequality follows from Lemma A.2.7 since ng < @. O

We introduce the function £(r) = 1(e” — 1 — ). To prove Lemma A.2.7 we use the next
inequality.

Lemma A.2.9. For any z € C with |z|w < 1 we have

L—£(r) < |¥(2)|eo < 14+ £(r).
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Proof. We have

W) =1 = 30| <3 =t <10, (A2)

By the triangle inequality we have
1= 9(2) = oo < [P(2)]o0 < T+ [9(2) = 1o (A-3)
The inequality of the statement follows from (A.2) and (A.3). O

Proof of Lemma A.2.7. Note that Dg,(v) = [], ¥(n), where n runs through all the eigenvalues—
with multiplicity—of ady, v. Since (0) = 0, the n = 0 don’t contribute to Dy, (v), so we’ll
neglect them. Each 7 is the sum of two eigenvalues of v. Let || - ||,, be the operator norm on
gl(d,C) with respect to || - ||.. on C¢. Suppose that v € hp(1/2) and let A be an eigenvalue

of v. Then

1
Moo < op < =
Moo < 1follop < 5

It follows that |n|s < 1 for any 7, and
1
= <0281 = —£(1) < [P()| < 1+ £(1) = L7IS... <2 (A.4)

by Lemma A.2.9. To obtain the inequality of the statement we multiply (A.4) for all n # 0.
There are at most ny of these'.
]

The last thing we need to prove the estimate of Ay, (Hp(r))—Lemma A.2.1—is an ap-
proximation of the volume of hp(1).

Lemma A.2.10. If P(z) = a12% + ... + agz% with each a; € {+1}, then

d(d—1)
2

(;) < Ay (Bp(1)) < 257

Proof. We define
Bp(r) ={vebp|[lv]l. <r}

Let v =}, ;viH;; € hp. Since a; = £1 for every i, we have |[v]|, = maX;; |[vij|e. Then
Nop (Bp(r)) = (2r)%mdr by our choice of \y,.
Note that
Bp(1/d) € bp(1) € Bp(1)

since 1|+ [[op < || || < |]*]|op on gl(d, R). Comparing their volumes we obtain the inequality
of the statement.
[

!Since v is antisymmetric with respect to a non-degenerate symmetric bilinear form, the eigenvalues of v
come in pairs: +Aq,..., j:/\% if d is even and +Aq,...,+Aa1,0if d is odd.
2
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Proof of Lemma A.2.1. Since r < 52—d, then

expbhp (%7’) C Hp(r) Cexphp <%) C exphp(log?2)

by Lemma A.2.3. Recall that
d(d—1)

DHP (U) <2
by Corollary A.2.8 since r < 52—d < % Thus

Aty (Hp(r)) < A <eprp (%D

— [ Du )
bhp(5dr/3)
d(d—1)

d(d—1 5d 2
<20, 0n0) (3

d(d—1)

< 20d\ 2 d(d—1)
— r .
—\3

We used Lemma A.2.10 to obtain the last line. A similar argument gives the lower bound:

i (Hp(r) > 575 Ny, <()P (%))

d(d—1)

S 1 2 d(d—1)
- 2
- 3d r .

A.2.2 p-adic orthogonal groups

Now we treat the p-adic case, where we’ll prove a formula—Lemma A.2.11—for the volume

of small balls in orthogonal groups, rather than a simple estimate as in the real case. If H
is a Lie subgroup of G4, = GL(d,Q,), we define

Ho(r) = {h € Hy | [|h.— Iall, < n||h7" = L4ll, < 7}.

Let P(z) = a123 + ...+ aqx} with a1, ..., aq € QF and let Hp = O(P,Q,). We consider here
also the Haar measures Ay and Ay of Hp and hp induced by the basis H;; = E;; — aiaj’lEj,;,
1 < j of hp. We define

Dp = Hmin{l, |aa; ']}
i<j

Here is our volume formula.

Lemma A.2.11. Let p be a prime number and let P be a non-degenerate diagonal quadratic
form on Qg. For any integer n > 3 we have

>\H<Hp(p_n)) _ @P . p—%d(d—l)n'
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Corollary A.2.12. Let d > 3 and let H be the orthogonal group of a standard quadratic
form on QZ. Then

A (H(p™)) = p 24,

Proof. If P(x) = a1z} + ---aqx] is a standard quadratic form on Qf, then |ay|, = 1 for

k<d—2and p! <|ag1lp, |ad, < 1. It follows that |aiaj_1|p >1ifi<j,s0 Pp=1. O

We’ll compare again the measure of Hp(p~™) with the measure of open balls in hp. The
strategy is the same as in the real case: we’ll determine neighborhoods 4 of 0 in hp and U
of I; in Hp where exp : 4 — U is bijective, we’ll establish the relation between log, A\g and
Ay on 4 and we’ll compute the volume of 4.

Let g, = gl(d,Q,) ~ M4(Q,) and let || - ||, be the norm on g, of the maximum of the
p-adic absolute values of the entries. For any linear subspace to of g, we define

w(r) ={vew |, <r}

Lemma A.2.13. Let p be a prime number and d > 2. The exponential map is a bijection
between g,(p~™") and Gqy,(p™") for any integer n > 3.

One has to be careful because exp doesn’t converge in all of Q,. We handle this with the
next lemma.

Lemma A.2.14. Consider t € Q,. If 0 < [t|, < p~3, then:

(1) ﬂ‘p < |t|, for any integer m > 1.

m/!

(i1) £ — 0 as m — oo.

m

Proof. Notice that -7 < 3(m — 1) for any integer m > 2 and any prime number p. Then

m m m

Jj21 jz1
SO
‘mw;l < pS(mfl) < ‘t’pf(mfl)'

It follows that ‘%‘p < |t]p-
Since .
| < emmyan < pitrpam (), (A.5)
“lp

and zﬁ — 3 < 0, the last term of (A.5), and hence also the first, tend to 0 as m — oco. [

Proof of Lemma A.2.13. Consider n > 3 and v € g, with ||v||, < p™". By Lemma A.2.14 we
have

| el
ol < s < Dol

for any m > 2, so
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converges and || exp(v) — I4||, = ||v||,- This shows that exp sends g,(p™") to Gap(p™").
Now consider g € Gy,(p~"). We have

— Ig)™ g — La|l}" g — La|l}"
H(g || o=ty Moty
m p Im|, im!|,
for m > 2, so
(_1)m+1 m
10%92(9—fd)+ZT(9—fd)
m>2

converges and [|logg||, = ||g — I4||,- Thus log = exp™! sends G4,(p™") to g,(p~™"), which
proves our claim. O

The relation of log, Ay and Ay on hp(p~3) is very simple.

Lemma A.2.15. Consider a prime number p and d > 2. Let H be the orthogonal group of
a non-degenerate diagonal quadratic form on Qg. Then log, Agp = Ay on h(p~3).

To prove Lemma A.2.15 we’ll use the explicit formula of the function relating the two
measures, which is proved in the same way as in the real case. Recall that ¢(z) is the power
series (1 —e™?).

Lemma A.2.16. Let Hy be a Lie subgroup of Gq, with Lie algebra by. Consider compatible
Haar measures vy, and vy, on Hy and by. Then

‘DHO (U> = | det ¢<adbo U)‘P
is a density of log, vy, with respect to vy, on Ho(p™?).
Proof of Lemma A.2.15. Since Ay and Ay are compatible, then

dlog, Ay

) = | dety(adyo),

on h(p~®) by Lemma A.2.16. Thus it suffices to prove that |¢)(n)], = 1 for any eigenvalue 7
of adyv when v € hp(p~3).

Let’s fix v € hp(p~3). Let K be a finite extension of Q, that has the eigenvalues A of v.
The p-adic absolute value extends uniquely to an ultrametric absolute value on K that we
denote also by | - |,—see | , Theorem 11, chapter II1]. On K¢ we consider the norm

- wa)ll, = max fyiy.

Let y € K% be an eigenvector of v corresponding to A € K with ||y||, = 1. Then

Al = llvyll, < [Joll, < p~*

I,

An eigenvalue 7 of ady v is the sum of two eigenvalues of v, hence ||, < p~.

A214 |1 —e ", =|n|p, so

By Lemma

1—e™"

Ui

= 1.
P

= |
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Now we compute the volume of hp(1).

Lemma A.2.17. Let P(x) be a non-degenerate diagonal quadratic form on Qg. Then

Ay(bp(1)) = Zp.

Proof. We write P(x) = a123 + -+ - + aq23. Recall that the matrices H;; = E;; — aiaj_lEji,

1 < j form a basis of hp. Take v = ZK]. v;;H;; € hp. Consider the norm

HUW = f?jg_x |Uij|p

and let
B ={vebp||l| <1}

Then \y(B’) = 1 by our choice of Haar measure on hp. The entries of v are v;; and aiaj_lvij
with ¢ < j, in particular ||[v||" <||v||,. The ball hp(1) is an open subgroup of ®B’, hence

-
[B: bp(1)]A(bp(1) = 1.

Notice that v is respectively in B’ and hp(1) if and only if |v;;[, < 1 and |v;;], < min{1, |a;a;'[,}
for every ¢ < j. Hence

1 . ~1
@ e~ Lt lee ) = 2p

1<j

We are ready to compute the volume of Hp(p~™).

Proof of Lemma A.2.11. Let n > 3. Then exphp(p™™) = Hp(p~™™) by Lemma A.2.13. By
Lemma A.2.15 we know that log, Air = Ay on hp(p~2), so

A (Hp(p ™) = My (0 (™) = Ay (b (1) A = 7 =1,

A.2.3 Bump functions in real orthogonal groups

Let P(z) = ajz{ + -+ + aqr? with a; € {+1} and let H = O(P,R). In this section we
construct, for every small enough neighborhood U of I; in H, a smooth bump function 1/,
on H supported at U. We'll give explicit upper bounds of the L?-norms of vy, and its first
order derivatives in terms of the size of /. We’'ll use the notation and conventions for the
Haar measures introduced in Subsection A.2.1.

Here is our main statement. We define M, = 104 d1(d+2)?,

Lemma A.2.18. Consider d > 3. Let P(x) = ayz? + - -+ + aqz? with each a; € {+1} and
H = O(P,R). For anyr € (O, 527} there is a smooth function ¢, : H — [0,00) with support
in H(r) such that ||| = 1,

l|er |22 < Moﬂ’*id(d*l)y

and for any v € b |
o[22 < M| or™ GHEDHD,
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The maps ¢, will be obtained by precomposing with the logarithm map suitable smooth
functions in h. As usual, we’ll break the proof of Lemma A.2.18 into small auxiliary results—
four in this case.

In first lemma we forget about the orthogonal group, and work in an euclidean space.
The proof is straightforward, so we’ll omit it. Let m be a positive integer. We denote

B"(r) ={x € R" | ||z||. <T}.
If F"is a map R™ — R, we define
Fiy(v) = r M (r ).

We endow the space of linear maps R™ — R with the operator norm with respect to the
norms || - ||, on R™ and R.

|l
Lemma A.2.19. Let F' : R™ — [0,00) be a C' function with support in B™(1) and let r > 0.
a) The map F/; has support in B™(r).
[r]
(0) [[Eplle = [1F"]]zr-
() [1Fpylle = r || F"[| 2.
(d) Suppose that r < 1. Let V' be a vector field on B,,(1). Then
IV (EG Iz < 2% M Myr= (540,
where
Mp = sup ||DyF'||op and My = sup ||Vi||w.
z€B™(1) z€B™ (1)

Let P(x) and H = O(P,R) be as in Lemma A.2.18. We give now the basic building block
to construct the ,’s: a smooth bump function supported on the unit ball of h. Recall that

any y € b is of the form
y= Zyinij7

i<j
where H;; = E;; — aiaj_lEji. We define F' : h — [0, 1] as
i<j

where b : R — [0,1] is a smooth function with support in [—1,1], f_11 b(t)dt = 1 and
[b(t)|0o < 2 for any t € R. We consider once more

B(r)={yeb|llyll.<r}
The map F' is smooth and has support in ®8B(1). Let’s estimate Mp—see Lemma A.2.19.
Lemma A.2.20. For any y € b we have ||D,F||,, < d*.
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Proof. We have

oF b (Yio o)
= | L] o) <2
’5%‘0,]‘0 o | 0ioo) E "l

hence

oF

(DyF)olos =Y 20| <D 2l = d(d = 1)[[v]].
0
i<j Yij o i<y

The conclusion follows from this inequality. O

Recall that || - ||, is the operator norm on gl(d, R) with respect to || - ||.. on R? and that

||

f](?”) = {U €bh | ||U||0p < 7’}.

For v € b we denote by v the vector field y %(v) on h. This is simply, near 0, the

left-invariant vector field determined by v in exponential coordinates. Let’s estimate Mj.
Lemma A.2.21. Ifv e b andy € h(1), then
[vylloe < 5d][v]]c.

Proof. Recall that || -, is the operator norm on b with respect to || - ||.. on R%. We denote
also by || - ||op the operator norm on gl(h) with respect to || - ||, on h. Notice that

Hady(W)lop = [lvy" — v'yllop < 20|Ylloplly'lops

s0 |lad y||op < 2|Y||op. We conclude as follows:

D, T ady | (ady)?
[Tyl < 11Ty ]op < H[d_ e

[[v]]0p
op

1
< (1 e = 1) ol

1
< (e + Ddllull. < 5dlfol |

For r € (0, 2] we define ¢/ : H — [0, 00) as

¢;<h) = F[Tﬂ(log hﬂlH(T)(h)’
where r; = %r. This function verifies almost all the properties we want in Lemma A.2.18.
Let Mg, = 5d®(20d) 14D+,

Lemma A.2.22. For any r € (O, %} the map ¢ : H — [0,00) is smooth, has support in
H(r) and:

(i) 572D < [br] | L1 cary < 27d(d-1),
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(i) |[)|p2qmy < Mgar—1d@=D),

(i) [[v())l[n2m < Maalollor™GHEDD for any v € b.

Proof. Since r € (O 2], exp : b(%) — H(r) is injective by Lemma A.2.2. Note that
B(ry) C b (3) since ||v||op < d||v||~. The map Fj,,; : b — [0,00) is smooth and has support
in B(r1), so Y. is smooth and has support in exp B(r;), which is contained in H(r).

In the computations that follow we’ll use the properties of Fj,; in Lemma A.2.19. By

Lemma A.2.6 we have
[ tmaran) = [ Fu@Dewin),
H %(7’1)

so (i) results from the fact that 57240 < Dp < 22441 on h(1/2)—see Corollary A.2.8.
Now note that

N

HWW@Z(%P%@%WMWO
214D Bl 2 )

1
(27 YD Fl g

We have ||F||p2@) = ||bHd’mh < 1 since b? < b and ||b|,1x) = 1. Thus

IN

1

1\ Ld(d— 204\ +"Y la(d
|| L2y < (2r7)a%4=Y = < 5 ) rm el < Mgy addmh),

so (i1) is established. For v € h we have

@2y < 28D B(Fpr)l 2265
S 21 d(d-1) <2id(d—l)MFM5 . Tl_(%d(d_l)—i_l))

1

Ld(d-1)
— 93d(d-1 <10d) Mg M - p—(3d(d=1)+1)
9 ! ’

Recall that Mp < d? and Mz < 5d||v||. by lemmas A.2.20 and A.2.21, so

o) [z < MaarGUDHD,

To prove Lemma A.2.18 we just have to normalize ..

Proof of Lemma A.2.18. Consider r € (O, 527} and ¢! : H — [0,00) as in Lemma A.2.22.
We set [, = Hw;Hle(H) and ¢, = L. Then |[¢,||1g) = 1. By Lemma A.2.22 we have

I, < 52401 thys
6ol 22y < 529D Mg 790=D < pyp=idd=D),

and for any v € §

1

: 1 (L
o) lzsy < 540D Mg ol D4 < o] Gela-D4),
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A.3 Triangular groups

Let Hg be the orthogonal group of a diagonal quadratic form on Q%. To prove the transversal
recurrence of closed Hg-orbits in X ¢—Lemma 8.1.3—in Section 8.4, we thickened any such
orbit using a subgroup Wy s = [[,cq Wa, of lower-triangular matrices in GL(d, Qg). Here we
prove the volume estimates for the open subsets W, (r) of W, that we introduced: Lemma
A.3.1 for v = 0o and Lemma A.3.4 for v = p.

A.3.1 Real triangular groups

The objective of this subsection is to prove Lemma A.3.1. The strategy we follow is the same
as for Lemma A.2.1 above.

Let Wy be the group of lower-triangular matrices in GL(d,R) with positive entries in
the main diagonal. The Haar measure of Wy o, determined by the basis

Bd,W = (Flv LI Fd717E217 E327 e 7Ed,d717 E3,17 s e 7Ed,d727 sy Edl)

of its Lie algebra tvg o, will be denoted by A, . Recall that Fj, = Ey, — Egq for 1 <k < d.
The exponential map is a bijection between tv, ., and Wy . For any » > 0 we define

Wa00(r) = {v € Wa00 | [[0]|op <7}

and
Waoo(r) = exp(104,00(7)).

We introduce ¢; = @ — 1.

Lemma A.3.1. Forany 0 <r < % we have

Viret < Ao, (Waoo(r)) < Vi ree,

2d—1

- _ + _ 9d?-1
where V, = S and V" =2 :

To prove Lemma A.3.1 we’ll use the next two auxiliary results.

Lemma A.3.2. Let v = Zjd Vi Eij € W0g. The eigenvalues of adv : 10 — W44 are 0
with multiplicity d — 1 and 1,; = vi; —vj; for 1 < j <i<d.

Proof. Consider

d—1
a= @RFZ and n= @REU
k=1

1>)
Notice that W, = a ®n. Write v = v; + v with v; € a and v, € n. The matrices of ad v,
and ad vy in the basis (4 are diagonal and strictly lower-diagonal. Hence the eigenvalues of
adwv are the diagonal entries of adv;. Since [vy, Fy] =0 for 1 <k <d—1, 0 is an eigenvalue
with multiplicity (at least) d — 1. For i > j we have [vy, E;;] = (v;; — v;;) E;j, which gives the
eigenvalues 7;;. O]



130 APPENDIX A. VOLUME COMPUTATIONS

Lemma A.3.3. We have

Proof. For
V11 0 0
d—1
v = E v Fl + E UijEz'j = ’ ) ) ) € Wy
1 = Vg—11 *** Vd—1d—1 0
Vg1t Udd-1 —(v1+ -+ Ud_1,d—1)
we define
/
[[o]|" = max |vj] oo
1>]
and

B(r) = {v € wapo [ [0l <7},
SO Ap,, (B'(1)) = 2% by our choice of A, . Notice that

< e < U1 Hlop < dll - oo < @11,

SO
1
B’ <$) C1g(1) CB'(1).
The comparison of the volumes of these balls gives the inequality of the statement. O]

We are ready to estimate the volume of W oo (7).

Proof of Lemma A.3.1. We consider again the analytic map ¢ (z) = (1 — e™*). The expo-
nential map is a bijection W, — Wy and, like in the proof of Lemma A.2.6, the positive
function

D(v) = dety(ad v)

is a density of log, Ay, with respect to Ay, .
Consider v = >, vy Eij € Wy With [|v][, < 1. Aside from the 0 with multiplicity
d— 12, the eigenvalues of ad v are n;; = v;; —vj; for 1 < j < i < d according to Lemma A.3.2,

D(v) = HW%)-

i>j
For ¢ > j we have
[Mijloc = |vii = vjjloo < 2|[0]]o < 2[v]lop < 1.
Since 1® is decreasing on R, we have
1
3 <0.632...=¢(1) <¢(ny) <y(—1)=1.718... <2,

2They don’t contribute to the density since ¥(0) = 1.
3From the identity z2e*1)’(z) = z + 1 — * we readily see that ¢ < 0 on R*
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hence
_d(d—1) d(d—1)

2772 <Dw)<2 7 .

For any 0 < r < % we have

Aive (Wipo(r)) = / D) 0

d(d—1)

<277 Ao (M0g00(1))re

2
< ¥ 1pca,

We used Lemma A.3.3 to get the last line. In the same fashion we obtain

Caaey 2\ 241
A (Waoe(r) > 27 (d—) =

A.3.2 p-adic triangular groups

Here we work with the group Wy, of lower-triangular matrices in GL(d, Q,). The main result
is Lemma A.3.4.
We endow Wy, with the Haar measure Ay, determined by the basis

<E117 s 7Edd7 E217 ESZ: R Ed,d*la s 7Ed1>

of its Lie algebra to,;,. We’ll compute the measure of small compact-open subgroups of Wy,
of the following form: For r > 0, set

Wap(r) = {w € Wy | [w — L], < r[Jw™ = Lil|, < r}.
We consider also the orthogonal group H, of a non-degenerate diagonal quadratic form
P(z) = a2} 4 - - - + aqx] on QF.
Lemma A.3.4. Let p be a prime number. We set £, =1 if p is odd and {, = 2 if p = 2.
The multiplication map Wa,(p) x H, = G, is injective, Wy ,(p~*)H, is open in Gq, and

A, (Wap(p™)) = p~leatie
for any n > 3.

To compute the volume of Wy ,(p™") we use the next two lemmas. The proof of the first
one is the same as in Lemma A.3.2.

Lemma A.3.5. Let w,, = Lie(Wy,). Consider v = (v;j)1<ij<d € Wap. The eigenvalues of
adv 1 Wy, — g, are n;; = vy —vj; for 1 < j <i<d and 0 with multiplicity d.

We use once more the analytic function ¢(0) = (1 —e™).

Lemma A.3.6. Let p be a prime number. Then (0) converges for any 0 € p*Z, and
[$(0)], = 1.
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Proof. Notice that

N (B

WO=2 G

We have (_1)], pitt
‘<j+1>!93p<'<j+1>!p’

and the right-hand side term tends to 0 as j — oo by (i7) of Lemma A.2.14, so 1)(0) converges.
We also have

—1) .
‘ <, ) 0 <1
(7 +1)!
for any j <1 by (i) of Lemma A.2.14, thus [¢(0)|, = 1. O

We are ready to prove the main result of this subsection.

Proof of Lemma A.3.4. The matrices in Wy, N H, are of the form diag(£l,...,£1), so
Wa,(p~%) N H, = 1. This implies that Wy,(p~%) x H, — Gy, is injective.
The exponential map is a bijection between
wap(p") = {v € wap | [Jv]l, <p™"}
and Wy ,(p~") for any n > 3 by Lemma A.2.13, and the map
D(v) = | det Y(ad v)l,
is a density of log, A, with respect to Ay, on wg,(p~™"). If
v = Z UUEU
1<j<i<d

then

D(v) = |] [ ¥ (vii = v35)

J<i

p

by Lemma A.3.5. When |[v]|, < p~3, D(v) =1 by Lemma A.3.6. Hence

)\Wp(Wd,p(p_n)) = /\mp (md,p(p_")) _ p_(8d+1)n
for n > 3. .

A.4 The volume of Xc%,S

Here we prove a formula—Lemma A.4.1—for the volume of the space X; g of covolume 1

lattices of Q%. From it we deduce the bound in Corollary A.4.2, which was used in Section
8.4.
As in that section, we identify X; ¢ with G} ¢/T" ¢. Recall that G} ¢ = [[,cq G,

iy = {9 € GL(d,Q,) | [detg|, = 1},

and I'; 3 = Gy g N Tqs. We work with the G g-invariant measure (45 on X ¢ induced by
the Haar measure of G ¢ fixed in 8.4.1. We denote the volume of X ¢ by Vas.
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Lemma A.4.1. For any finite set of primes S = {oco} U Sy we have

vds_vdooHH<1——).

p€ESy j=1
We record an immediate consequence of Lemma A.4.1.

Corollary A.4.2. For any finite set S = {oo} U S of primes and any integer d > 2 we have
Vis < Vioco-

We'll deduce Lemma A.4.1 from the next lemma. Let ' be a lattice in a locally compact
group G. A measurable subset U of G is a fundamental domain of I" in G if any g € G can
be written as uy with v € U and v € I' in a unique way.

Lemma A.4.3. Let S = {oco}US} be a finite set of primes. Consider a fundamental domain
Uioo for T in SLE(d,R). Then

Uss = Usso x || GL(d.Z,)

pGSf
; : / . !
is a fundamental domain of I'y g in Gy g

Proof. First we’ll show that the group

is=SL*(d,R)x [ GL(d. Z,)

pESf

acts transitively on X 4. Any lattice A of Q¢ of covolume 1 is of the form ¢'Z% for some
g € G g. Suppose that Sy = {p1,...,px}. Since

GL(d,Qp) = GL(d, Z,)GL(d, Z[1/p])

for any prime p*, we write g, = ky,7,, with ky,, € GL(d,Z,,) and ~,, € GL(d, Z[1/p1]).
Note that det~, = det(k,'g, ) € ZX, so v, is in SL*(d,Z[1/p1]). Then A = ¢°Z,
where ¢* = ¢, " and 7,0 = (Ypys- -2 %) € [, - Remark that g* is still in G7 ¢ and
9,, € GL(d,Zy,). Moreover, if g; already was in GL(d, Zj,) for some i > 1, the same is true
for gy since 7, € GL(d,Z,,). Hence, continuing this process with ps, ..., py express A as
g"Z¢ for some ¢" € G g

We identify Xj ¢ with G} ¢/T" g, where '} ¢ = G’ ¢ N T g—this is the diagonal copy of
Laoo = GL(d,Z) in G7j 5. We'll see that Uy s is a fundamental domain of T 5 in G g, which
is equivalent to our statement. Since SL*(d,R) = Uyool'd o0, then G g = Uq 5T g. Consider
now u,v € Ugs, 11,72 € Laee and 7 = (v, ..., %) € I'yg. If uy1 = v73, comparing the real
coordinates we see that v = v, so u = v. O

4Since Z[1/p] and SL(d,Z[1/p]) are dense in Q, and SL(d,Q,), respectively.
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Proof of Lemma A.4.1. Consider a fundamental domain Uy, of [0 in SL*(d,R) and

Uss = Useo x || GL(d, Z,).

pGSf

By Lemma A.4.3,

Vis = A4 s (Uas) = Voo X || A, (GL(d, 7)),

pESf

so the result follows from Lemma A.4.4 ]

A.4.1 The volume of GL(d,Z,)

Lemma A.4.4. For any prime p and any integer d > 2 we have

Ny (GL(d, Z,)) = f[ (1 - l) |

j=1 P

The proof of Lemma A.4.4 is based on three intermediate lemmas. The first one is a
formula for the volume of G4,(p~") for n > 3. We omit the proof of the first one, since its
very similar to Lemma A.2.15.

Lemma A.4.5. Let p be a prime and consider n > 3. Then

—d?n

>\Gd,p Gd,}? (p_n) =P

To determine the volume of GL(d,Z,) = G4,(1) we just need to compute the index of
Gap(p~™) in G, 4(1), which is the cardinality of GL(d, Z/p"Z). We need a definition. Consider
positive integers d and N. A complete flag of (Z/NZ)? is a sequence

0=AyC A C...CAy=(Z/NZ),

where 4; is a free Z/NZ-submodule of (Z/NZ)? of rank i. We denote by Fi(d) the number
of complete flags of (Z/NZ)¢. In the following lemma, ¢(N) = #(Z/NZ)* is Euler’s phi
function.

Lemma A.4.6. For any prime p and any integers n,d > 0 we have

- H(l —p ).

Proof. We'll prove the result by induction on d. The base case d = 1 is immediate.
Suppose that the formula holds for d — 1. The number of flags of My = (Z/p"Z)¢ having
A equal to a fixed line ¢ of My is Fyn(d — 1) since My/¢ is a free (Z/p"Z)-module of rank
d — 1. Thus
Fyn(d) = #{lines in My} - Fpn(d —1).
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An element (ay,...,aq) of My generates a line if some a; is invertible in Z/p"Z. There are
p?n — pd=1) guch elements, thus
. . dn d
#{lines in M,} = D) (1—p™9),
since each line has ¢(p™) generators. This proves the formula for Fj.(d). O

Lemma A.4.7. For any prime p and any d > 2 we have
n d%n . 1
#GL(d,Z/p"Z) = p jl:[l (1 — ﬁ) .
Proof. The group GL(d,Z/p"Z) acts transitively on the set of complete flags of M, =
(Z/p"Z)?. The stabilizer of
0C (e1) C...C{ey,...,eq-1) T My,

where ey, ..., eq is the standard basis of My, is the subgroup of upper-triangular matrices in
d(d—1)

GL(d,Z/p"Z), whose cardinality is> ¢(p™)%p~ 2 ™. Then

d(dQ—l) n

#GL(d, Z/p"Z) = o(p")"p Fye(d),
and the formula follows from Lemma A.4.6. OJ
Now we can compute the volume of GL(d,Z,).

Proof of Lemma A.4.4. Consider an integer n > 3. We have

A, (GL(d, Zy)) = [Gap(1) : Gap(p™")] Ay, (Gap(p™™))
= #GL(d, Z/p"Z) A, (Gap(p™")),

so the formula is obtained from Lemma A.4.7 and Lemma A.4.5. OJ

5The entries in the main diagonal are in (Z/p"Z)* and the entries above the main diagonal can be chosen
freely in Z/p"Z.
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Appendix B

Effective Reduction Theory

As we mentioned in Chapter 2, C. Hermite and H. Minkowski developed (probably motivated
by the Z-classification problem) a reduction theory for real and integral quadratic forms
building on the work of C.F. Gauss for binary quadratic forms. In this appendix we prove
quantitative versions with explicit constants of some of its classical results. The main one
is the bound of the norm of a reduced integral quadratic form in Proposition B.3.1, which
played an important role in the proofs of Lemma 9.4.1 and Lemma 9.4.2 in Chapter 9.
There are three sections: We reintroduce the Siegel sets of GL(d, R) and we recall when a
real quadratic form R is reduced in terms of these in Section B.1. The base of the reduction
theory over R is the case R definite positive, treated in Section B.2, where we discuss the
concept—introduced by Minkowski—of successive minima of R with respect to a lattice of
R?. We close with the proof of Proposition B.3.1 in Section B.3. The proofs we give are
based on the exposition of reduction theory in the book of Cassels | , Chapter 12].

B.1 Basic definitions

We denote the group GL(d,R) by G4 . Consider the following subgroups of G :

K = 0(d,R)
A= {diag(ay, - ,aq) € Gaoe | a; > 0 for 1 <i < d},

N = {unipotent, upper-triangular matrices in G4}
For a, 5 > 0 we define

Aa:{diag(ah'” 7ad)€A|ai§aai+l fOI‘]_SZSd_].},
Ny={neN|ln—ILil. <}

The (a, §)-Siegel set of G4 is defined as
P = KA, N;.

Recall that chi;f is a fundamental set of I'y oo = GL(d,Z) in Gy if @ > \% and 8 > %—see
Proposition 9.3.1.
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Let @4 be the quadratic form 23 + - + a2 — 27, —--- — 27, , and set d = p+¢. We'll

say that a quadratic form R on R? is (, 3)-reduced if R = Q40 s for some s € yd‘j‘cf , where
P, q is the signature of R.

B.2 Positive definite quadratic forms

The purpose of this section is to prove an upper bound of the norm of an integral matrix
that takes a positive definite reduced quadratic form to another.

Proposition B.2.1. For i € {1,2}, let R; be an (o, B;)-reduced positive definite quadratic
form on R?, where oy, B; > 1. If b is an integral d x d matriz such that R1 ob = R,, then

6] < Waadtas™™"" 3351 det b2,
where Wy = d= (d)(d + 1)%.

Here is the main idea to prove Proposition B.2.1: A positive definite quadratic form R
on R? determines a basis vy, ..., vy € Z% of R? as follows: v; is the R-shortest vector of Z¢,
v;11 is the R-shortest vector in Z¢ — (Rv; @ - - - & Ru;). In Lemma B.2.7 we’ll see that the
oo-norms of vy, -+ , v, are bounded in terms of « and § when R is (a, 8)-reduced. A similar
thing is true if we replace Z¢ by any lattice A C Z4 of R%—see Lemma B.2.3. Thanks to this
we’ll show that, if Ry, Ry and b are as in Proposition B.2.1, bry = bry for some non-singular
7; € My(Z) with norm bounded in terms of a; and §;, from where the bound for b is easily
obtained.

This section has three parts. In B.2.1 we introduce extremal vectors of a lattice A of R?
with respect to a positive definite quadratic form R, and we prove in Lemma B.2.3 a bound
for these when R is reduced and A C Z¢. Then, in B.2.2 we define the succesive R-minima
of A and we show in Lemma B.2.7 that if they are attained by a basis vy,...,v5 € A, the
vis are R-extremal, hence the bound of Lemma B.2.3 applies when R is reduced. The proof
of Proposition B.2.1 is completed in B.2.3.

B.2.1 Extremal vectors in lattices

Consider a positive definite quadratic form R on R? and a lattice A of R%. For » > 0 we define
E-(A,R) and E2(A,r) as the respective linear spans of the v € A with R(v) < r, R(v) <.
A vector v € A is said to be R-extremal if v does not belong to E%, (A, R). When R is
(o, B)-reduced, the norm of an R-extremal vector is bounded in terms of o and £.

Lemma B.2.2. Let R be a positive definite, (o, 3)-reduced quadratic form on R?, where
a, 8 > 1. Any R-extremal vector v of Z verifies

0] < Vd-dla® 5%

Proof. Consider a = diag(ay,--- ,aq) € Ay and n = (n;;) € Ns such that R = Qg0 o (an).
We set
w=nv=(wy, - ,w,).

First we bound |wg|s for 1 < k < d. Consider two cases:
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e Case I: there is j < k such that R(v) < R(e;). Then
@i < Rv) < Rey),

which implies that

2 2 2
o _ a1 o 51 o a;
k= ai 1j a2 7 1.j az
S (a2(k—1) I 042(’“_]))62
< da?(d71)62

Thus |wi|e < Vda® 5.

e Case II: R(e;) < R(v) for every j < k. Then, since v is an R-extremal vector of Z¢,
R(v) < R(v') for every v of the form v + cieq + -+ + cpeg with ¢, -+ ¢, € Z. Set
w’ = nv', and choose ¢, cp_1,- -+, 1 so that \w;\ < % for every j < k. Since w; = w}
for k <i <d, from R(v) < R(v") we deduce that

2 a% I\2 a% 2
wy < — (W) + -+ = (wy)
ag a,

1
< Z(O‘Q(k_l) +ota’4)
< gQQ(d 1) <d0é2(d 1)&2’

S0 |wi]eo < Vdad™1p.

Combining both cases we get

|w]|.. < Vda® 8.
Now it’s easy to control the norm of v:
10]le = lIn" w]l < dlln™ |||l
< d((d = DY[n|)(Vda®'8)
<Vd-dla* g,
This completes the proof. O

We need a slight generalization of Lemma B.2.2.

Lemma B.2.3. Let R be a positive definite, (o, 3)-reduced quadratic form on R?, where
a,B>1, and let A C Z? be a lattice of R?. Any R-extremal vector w of A verifies

lwlloe < Whga® 42" - AT,

where Wy 4 = d2 - d!(d + 1)
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To prove Lemma B.2.3 we’ll use three easy intermediate results. The first one can be
proved easily by induction on /.

Lemma B.2.4. Let xy,--- ,xp be positive integers such that x1---x, =m. Then
x4+, <m+Ll—1,
and the equality holds if and only if x; = m for some j and x; =1 for i # j.

For the second result we need a definition: We say that a d x d matrix b with real
coefficients has big diagonal if b;; > |b;;| for any 1 <14,j < d.

Lemma B.2.5. Let ¢ be a non-singular d X d matrix with integral coefficients. There is
v € I'yoo such that cy is an upper-triangular matriz with big diagonal.

Proof. Using repeatedly the euclidean algorithm, we transform c into an upper-triangular
matrix with big diagonal performing elementary column operations®, which correspond to
multiplying c on the right by some v € I' .

O

Lemma B.2.6. Consider an upper-triangular matriz b € My(Z) with big diagonal. Let
0 = |detb|w and take o >0 and f > 1. Then Yd‘fﬁb is contained in Ydo’f’o’g(ﬂd).

Proof. Take a € A, and n € Ng. It suffices to prove that anb = a'n’ for some a’ € A,s and
n' € Nﬂ(g_,_d). We set ¢ = diag(bu, s 7bdd>- Then

, .
a' = ac = diag(aj by, , aqabaa),
and

@i 1,i+10i41 541

2 < abiyy,41 < ad,
Q3044

hence a’ is in Ans. Now, n’ = ¢ 'nb so for i < j we have

1 J J
5l = b Znikbkj < 52 D] 0
" k=1 o k=1
J
<BY b < B0 +d).
k=1
We used Lemma B.2.4 in the last step. This shows that n’ is in Ngsa).- O

We are ready to prove that R-extremal vectors in A are small if R is (a, #)-reduced.

Proof of Lemma B.2.3. By Lemma B.2.5, we can write A as bZ? for some upper-triangular
matrix with a big diagonal b € My(Z). Then [Z? : A] = |det b|s,, which we denote by 4.

IThese are permuting columns or adding to a column an integral multiple of another.
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Consider an R-extremal vector w = bv of A. Then v is an (R o b)-extremal vector of Z4. The
positive definite quadratic form Ro b is («d, 5(§ + d))-reduced by Lemma B.2.6, so

[0l < Vd - dl(ad)*(5(0 + d))*
< Vd-di(d+ 1)t pla%

by Lemma B.2.2, and hence

[[wllee < dl[b]]o]lv]]
< d? - dl(d + 1)%a 1 pl%.

B.2.2 Succesive minima of lattices

Consider a positive definite quadratic form R on R? and a lattice A of R%. The dimensions
of E-(A,R) and E? (A, R) will be respectively denoted by d. (A, R) and d(A, R). Let i be
an integer between 1 and d. The i-th R-minima of A is defined as

AM;(AR) =inf{r >0]|d (A, R)>i}.
We say that the vectors vy, --- , vy € A realize the R-minima of A if
R(v;) = (A R),
for every 1 < i < d. In the proof of Proposition B.2.1 we’ll use the next lemma.

Lemma B.2.7. Let vy,--- ,vq be linearly independent vectors in A realizing the R-minima
of A. Then each v; is an R-extremal vector of A.

Remark B.2.8. There are always linearly independent vy, ... ,vq € A realizing the R-minima
of A: we choose an R-shortest non-zero vi € A. If we already have vy, ...,v;, we choose an
R-shortest vji1 in A — (Rvy @ --- @ Ruj). It’s possible to do this since any subset of A is
closed.

Let’s prepare for the proof of Lemma B.2.7. For R and A fixed, the subspaces E (A, R)
form a (not necessarily complete) flag of R?

[0} =By G- C B =R

Let d; be the dimension of E; for 0 < ¢ < ¢ and let r; be the smallest non-negative real

number such that
E; = Er: (A, R).

To lighten the notation we write .#; instead of .Z;(A, R) in the next lemma.

Lemma B.2.9. Let 1 < j < d and k > 0 be integers such that d < 7 < dipy1. Then
E%,(A, R) = E}.
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Proof. From the definition of .#; follows that d°, (A, R) < j. But d%, (A, R) is one of the

d’s, hence its value cannot exceed dj. This means that E°, (A R) is contalned in Fj. Now,
By = E_ (A, R) has dimension dj < j, hence rj, < .Z;. ThlS implies that Ej, is contained in
E, (A R). O

Proof of Lemma B.2.7. Consider any integer 1 < j < d and choose k > 0 such that
dp <j < dpq1.

Then E°, (A R) = Ej by Lemma B.2.9. Since B, = E (A, R) has dimension dj, then

ry > .//dk = R(vq,). It follows that vy,--- ,vq, belong to Ej. Since vy,..., v, are linearly
independent, (vq,--- ,va,) is a basis of Ek and thus v; is not in By = Ep, (A R). In other
words, v; is an R-extremal vector of A. O

Corollary B.2.10. Let R be a positive definite, (o, B)-reduced quadratic form on R?, where
a, 8 > 1. Consider linearly independent vectors vy, --- ,vq in a lattice A C 72 realizing the
R-minima of A. Then

HUZ'HOO S Wl’dadflﬁd[zd . A]Zd,

for every 1 < i < d, where Wy 4 = ds - d'(d+ 1)<,

Proof. Lemma B.2.7 tells us that each v; is an R-extremal vector of A, hence the desired
bound is given by Lemma B.2.3. [

B.2.3 The main proof

Proof of Proposition B.2.1. Consider linearly independent vectors vy, --- ,vq € Z¢ realizing
the Ro-minima of Z¢, and let 75 = (v, -+ ,v4) € My(Z). By Corollary B.2.10 we know that,

172l < Wiaas™" 55

Let A be the lattice bZ? of R? and set w; = bv;. Since Ry o b = Ry, the linearly indepen-
dent vectors wq, -+ ,wy realize the Ri-minima of A. Let 7 be the d x d integral matrix
(wy, -+ ,wq). Using Corollary B.2.10 once more we get

71l < Wigad ' B7] det bJ2Z.
Note that b, = 7, so

101l = 17175 Yoo < dlI71 ]l 175 Y|
< AWy 081 57| det b22) (W gad ' gy
— (d% ()" (d+1)T)ad ol 584 det b2,

This concludes the proof. n

We conclude with a reformulation of Proposition B.2.1 in terms of right translates of
Siegel sets by integral matrices.
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Corollary B.2.11. Let b be a d x d integral matriz. If ng’;)lob meets S2L | then

d,00’
1Bl < Wa gl det bJ2C,
where Wi g = 2961 q% (d)d+(d + 1)%.

Proof. Take s1,s5 € Yj 010 such that s;b = so. The positive definite quadratic form R; =
Qap © s; is (2,1) reduced and b takes Ry to Ry, so Proposition B.2.1 implies

0] < W20 det b2
= 21 DGF (@)H(d + 1)%] det b|%.

B.3 Reduced integral quadratic forms

The goal of this section is to establish the bound in Proposition B.3.1 of the norm of an
(v, B)-reduced integral quadratic form @ on R%—we are not assuming Q positive definite—in

terms of a, 8 and dg2. It is a slight improvement of | , Lemma 12.3, p. 325] and | ,
Corollary 3, p. 902]. From it we recover in Corollary B.3.3 the main finiteness lemma of the
reduction theory of integral quadratic forms—see | , Lemme 5.7, p. 38].

Proposition B.3.1. Let Q be an integral, (o, 8)-reduced quadratic form on R for some
a,B>1. Then
QI < Waaa® 516022,

where Wa,g = d (d 4 1)% (dl)24+L

The proof of Proposition B.3.1 is based on Proposition B.2.1 and the next lemma. We
denote by J = (J;;) the d x d matrix with entries J;; = ;4 a1

Lemma B.3.2. Consider real numbers o > 0 and f > 1. If s belongs to the Siegel set Yd‘iﬁ,

\1pd—1
then 's™1J is in Yd(f;d R

Proof. Write s = kan with k € K,a = diag(ay,--- ,aq) € Ay, and n € Ng. Then 's™1J =
(kJ)(Ja ' J)(J'n~1J). Note that kJ is in K,

Ja 'J = diag(aj', - ,a7")
is in A,, and J'n~1J is in N(4-1)8 because it is unipotent, upper triangular and
1T e = Il < (d = DYIn||Z < (d = 1)1

]

2Recall that bg is the matrix of @ in the canonical basis of R, and that ||bg||. and det bg are denoted
by [|Q|| and éq, respectively.
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Proof of Proposition B.3.1. Consider sy € Yd‘iﬁ such that QQ = @), 4 © s2 and define

s1=1I,,"'sy"J,
where I, is the matrix of @), , in the canonical basis of R?. Notice that s; is in chf;d_l)!ﬁ o
by Lemma B.3.2. Then, the positive definite quadratic forms ;) = Qqo0s1 and Ry = (Qg0052
are respectively (a, (d—1)!4%71) and («, 8)-reduced. One easily checks that sy = s;Jbg, hence
Ry o (Jbg) = Rs. Proposition B.2.1 gives

1Qll = [[Tbol|o < Waad=1ald=D?((d — 1)13@D)2344=D | det Jbg| %
< dF (d)H((d - 1))Hd + 1) o 527|502,

Now we easily obtain the next classical result.

Corollary B.3.3. Let m be a non-zero integer. There are finitely many Z-equivalence classes
of integral quadratic forms @) in d variables with g = m.

Proof. Any such class has a (\%, %)-redueed representative ) by Proposition 9.3.1, and there
2 1

are finitely many (75, §>—reduced integral quadratic forms on R¢ by Proposition B.3.1. [
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Constants

C.1 Chapter 4

e D; (not explicit)—Corollary 4.3.2

C.2 Chapter 5
e Cig= (J3° (d—1)+13d+1 'd!2d2+10d(0§2))6—Theorem 511

® Coa= (d!)7d2d2(d_l)Fd(C§Q))4fTheorem 5.1.2

C.3 Chapter 6
o Cy=12-23PW@-DDON1242 Proposition 6.0.1
e D = 5v/D,—Proposition 6.2.1
o Ny =3(3d2-d)i%=D+ A, Lemma 6.3.3

C.4 Chapter 7
o [y = (10F,)*- 2d2(d*1)—PropOSition 7.0.1

o Fy=Ry ' (3d*- d!)éd(d*l)—proof of Proposition 7.0.1

C.5 Chapter 8
(2) _ (92d* j6d3+1\c iy
o O =(3"7d )¢4V4.0o—Proposition 8.0.1
o & =24 . 324" 3¢ _Gection 8.1

o Aa=(gg55)  Vaeo—Lemma 8.1.3
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1
0(4) 23V 50 %
d

Ad-1) —Lemma 8.1.3

_1)2
® food =3 (W)(d V" Subsection 8.3.2

(d-1)?
® i = % . <W> —Subsection 8.3.2
® £,5 = Min,cgeq,—Subsection 8.3.2
o Coq = 3%d329t2Proposition 8.3.10
o C, 4= 3*d®p***1—Proposition 8.3.10

e J, = ﬁ—Proposition 8.3.10

1

e B, = %—Lemma 8.4.7

C.6 Chapter 9
o Cy=d- d!gddW&d—Theorem 9.0.2

e Fi4=Hi 4% Theorem 9.0.3

Foq=d-dHs W3 ;—Theorem 9.0.3

Gy =27C; W, ¢® —Lemma 9.4.1

Hia = stca,dWZd%dz(d’l)—Lemma 9.4.2

Hyq = 28°q0+1 . d!ngd%—Lemma 9.4.2

C.7 Appendix A

d(d—1)

e R; = (ﬁ) 2 —Lemma A.2.1

d(d—1)

e S, = (%Z) 2 —Lemma A.2.1

° ng= @ if d is even or @ if d is odd—Lemma A.2.7

o cy= @ — 1—Lemma A.3.1, Lemma 8.4.2 Lemma 8.4.4 Lemma 8.4.6

oV, = ZZ—::—Lemma A.3.1, Lemma 8.4.2, Lemma 8.4.6

o V= 2°-1_Temma A.3.1, Lemma 8.4.6

o My = 10772’ Lemma A.2.18
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o My, = 5d3(20d)%d(d’1)“—Lemma A.2.22

® Vi = Bd,oo(Xioo)—Lemma A4l

C.8 Appendix B
o Wy =d?% (d)*(d + 1) —Proposition B.2.1
o Wig=d?-d\(d+1)—Lemma B.2.3
o Wiy =29d-1g% (d)(d + 1) —Corollary B.2.11

e Wyy= d%(d + 1)%(d!)24+!—Proposition B.3.1
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